
STAR BODY VALUED VALUATIONS

CHRISTOPH HABERL

Abstract. All linearly intertwining Lp harmonic valuations on convex poly-
topes are completely classified for nonzero p. The only symmetric ones turn

out to be the polar Lp centroid bodies.

1. Introduction

Lp centroid bodies and their polars are fundamental concepts in modern convex
geometry. For p ≥ 1, they have been intensively studied; see e.g. [3], [5], [10], [24],
[29], [31], [33], [37]. In addition, these bodies led to sharp information theoretic
inequalities [32] and deep results concerning concentration of mass [38]. Moreover,
they give rise to strong affine isoperimetric inequalities; see e.g. [3], [7], [31]. A
recent result of Ludwig and the author [13] showed that for −1 < p < 0 polar Lp

centroid bodies are the symmetric Lp analogs of intersection bodies. The class of
intersection bodies turned out to be crucial for the solution of the Busemann-Petty
problem; see [6], [9], [28], [45]. Current research is concerned with the analogy
between the intersection body operator and polar Lp centroid bodies for −1 < p <
1; see e.g. [12], [15], [16], [44].

Let p > −1 be nonzero and letK ⊂ Rn be a convex body with nonempty interior.
The Minkowski functional ‖ · ‖Γ∗pK of the polar Lp centroid body Γ∗pK is defined by

‖u‖p
Γ∗pK =

∫
K

|x · u|p dx, u ∈ Sn−1.

For p ≥ 1, ‖ · ‖Γ∗pK defines a norm with unit ball Γ∗pK and this body is in fact the
polar of a unique convex body ΓpK called the Lp centroid body of K. Petty [39]
introduced L1 centroid bodies in the middle of the last century. For bodies of unit
volume, the boundary of Γ1K is just the locus of centroids of halves of K formed
by slicing K by hyperplanes through the origin. For p > 1, Lp centroid bodies were
defined by Lutwak and Zhang [33]. Subsequently, the definition of polar Lp centroid
bodies was extended to nonzero p with |p| < 1 by Gardner and Giannopoulos [8].

In this paper, polar Lp centroid bodies are shown to be the unique nontrivial
star body valued valuations which are compatible with the general linear group and
have symmetric images.

A valuation is a function Z : Q → 〈G,+〉 defined on a class of subsets of Rn with
values in an abelian semigroup 〈G,+〉 which satisfies

Z(K ∪ L) + Z(K ∩ L) = ZK + ZL,

whenever K,L,K ∪ L,K ∩ L ∈ Q. The theory of real valued valuations lies at the
very core of geometry; see e.g. [11], [19], [35], and [36]. Many important real valued
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functions in convex geometry are valuations and are characterized by their invari-
ance or covariance behaviour with respect to certain groups of transformations; see
e.g. [1], [2], [17], [18], [22], [26], [27]. Ludwig’s seminal work [21], [23]–[25] showed
that fundamental operators in convexity and geometric tomography can be classi-
fied as convex or star body valued valuations which are compatible with the general
linear group (see also [13], [42]).

We are concerned with valuations defined on Pn
o , i.e. convex polytopes containing

the origin, which have star bodies as images. A compact starshaped subset S of Rn

containing the origin in its interior is called a star body if its Minkowski functional
‖ · ‖S is a continuous function on the unit sphere. The set Sn of star bodies is
turned into an abelian semigroup if it is endowed with Lp harmonic addition. The
Lp harmonic sum K +̂p L of two star bodies K,L ∈ Sn is defined for nonzero p by

‖ · ‖p

K+̂pL
= ‖ · ‖p

K + ‖ · ‖p
L.

We denote by 〈Sn, +̂p〉 the monoid obtained from the semigroup Sn (equipped with
+̂p) by adjoining an identity element. A valuation Z : Pn

o → 〈Sn, +̂p〉 is called an
Lp harmonic valuation.

Let Z : Pn
o → 〈Sn, +̂p〉 and denote by SL(n) the special linear group. The map

Z is called SL(n) covariant, if for all φ ∈ SL(n) and all polytopes P ∈ Pn
o ,

Z(φP ) = φZP.

It is called SL(n) contravariant, if for all φ ∈ SL(n) and all polytopes P ∈ Pn
o ,

Z(φP ) = φ−t ZP,

where φ−t is the inverse of the transpose of φ. We call Z homogeneous, if there
exists an r ∈ R such that ZλP = λr ZP for every λ > 0 and all P ∈ Pn

o . All
group actions on 〈Sn, +̂p〉 in the above definitions are the unique extensions of
the corresponding actions on Sn. Finally, Z is called linearly intertwining if it is
co- or contravariant and homogeneous. We remark that the notions of co- and
contravariance were crucial for previous classifications of body valued valuations;
see [13], [21]–[25].

Our main result is the following classification theorem.

Theorem 1. Suppose n ≥ 3, p 6= 0, and let Z : Pn
o → 〈Sn, +̂p〉 be a linearly

intertwining valuation. For p > −1, the operator Z is nontrivial if and only if there
exist positive constants c1, c2 such that

ZP = c1 Γ+,∗
p P +̂p c2 Γ−,∗

p P

for every P ∈ Pn
o . If p ≤ −1, then Z is trivial.

Here, a valuation is called trivial, if it maps every element of its domain to the iden-
tity element. The operators Γ±,∗

p are closely related to the generalized Minkowski-
Funk transform [40] and are the asymmetric Lp analogs of the intersection body
operator for negative p; see [12], [13]. A detailed definition of Γ±,∗

p will be given in
Section 2.

If we denote centrally symmetric star bodies by Sn
c , then we obtain from the

above theorem the following characterization of polar Lp centroid bodies.

Theorem 2. Suppose n ≥ 3, p 6= 0, and let Z : Pn
o → 〈Sn

c , +̂p〉 be a linearly
intertwining valuation. For p > −1, the operator Z is nontrivial if and only if there
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exists a positive constant c such that

ZP = cΓ∗pP

for every P ∈ Pn
o . If p ≤ −1, then Z is trivial.

Here, the polar Lp centroid body of a lower-dimensional polytope is defined as the
identity element.

In Section 3 we prove the above results and we also provide complete classifi-
cations in dimension n = 2. Moreover, we address the question whether polar Lp

centroid bodies are characterized as linearly intertwining valuations defined on gen-
eral convex bodies containing the origin. As will be shown in Section 5, this is not
the case in general. We construct a counterexample which is closely related to affine
surface area, a classical notion from affine differential geometry. This counterex-
ample is a nontrivial linearly intertwining body valued valuation which vanishes on
polytopes. However, we establish characterizations of polar Lp centroid bodies as
monotone valuations on arbitrary convex bodies in Section 4.

2. Preliminaries

We work in Euclidean n-space Rn. The canonical basis vectors are denoted by
e1, e2, . . . , en. We write · for the usual inner product on Rn and ‖ ·‖ for the induced
norm. Let x⊥ be the hyperplane through the origin orthogonal to x. The closed
halfspaces determined by a hyperplane H are denoted by H±. We write B(a, r) for
the ball with center a ∈ Rn and radius r. The boundary of B(o, 1) is denoted by
Sn−1.

As usual, int, bd, lin, conv stand for interior, boundary, linear hull, and convex
hull, respectively.

The set of convex bodies in Rn, i.e. nonempty, compact convex subsets of Rn,
is denoted by Kn. Associated to a convex body K ∈ Kn is its support function
h(K,x) = max{x · y : y ∈ K}, for x ∈ Rn. Convex bodies containing the origin are
denoted by Kn

o . We write Pn for the set of convex polytopes, i.e. the convex hull
of finitely many points, and abbreviate Pn

o = Pn ∩ Kn
o .

Star bodies were already defined in the introduction. For S ∈ Sn, the Minkowski
functional ‖·‖S is defined by ‖x‖S = min{λ ≥ 0 : x ∈ λS} for all x ∈ Rn. Note that
the Minkowski functional is homogeneous of degree one. We defined the monoid
〈Sn, +̂p〉 by adjoining an identity element e /∈ Sn to Sn equipped with Lp harmonic
addition. Geometrically, the identity element can be interpreted as the origin for
p < 0 and Rn for p > 0. Up to isomorphisms, this extension is unique and is the
smallest monoid containing the semigroup Sn.

Let G be a subgroup of the general linear group GL(n). We work with extensions
of group actions of G on Sn to actions of G on Sn ∪ {e} where e /∈ Sn. Such
extensions are unique because the orbit of e has to be the set containing only e.
In the sequel, all actions are defined in this way and therefore we will not further
comment on it.

Suppose that q ∈ R and let Z : Q → 〈Sn, +̂p〉 be an operator defined on a set
Q ⊂ Kn. Denote by GL+(n) the group of linear maps with positive determinant
and suppose that Q is closed with respect to the standard action of GL+(n). The
map Z is called GL+(n) covariant of weight q, if for all φ ∈ GL+(n) and all bodies
Q ∈ Q,

Z(φQ) = (detφ)q φZQ,
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where detφ denotes the determinant of φ. It is called GL+(n) contravariant of
weight q, if for all φ ∈ GL+(n) and all bodies Q ∈ Q,

Z(φQ) = (detφ)q φ−t ZQ.

We call a map Z : Q → 〈Sn, +̂p〉 linearly intertwining if it is GL+(n) co- or con-
travariant of some weight. Note that this definition for Q = Pn

o is equivalent to the
one given in the introduction. In order to classify linearly intertwining valuations
it is therefore enough to characterize GL+(n) co- and contravariant valuations of
arbitrary weight.

Now, we are going to define examples of linearly intertwining operators. For
nonzero p > −1 and convex bodies K ∈ Kn which contain the origin in their
interiors, we define Γ±,∗

p K by

‖u‖p

Γ+,∗
p K

=
∫

K∩u+
|x · u|p dx, u ∈ Sn−1,

and Γ−,∗
p K = Γ+,∗

p (−K). Here, u+ denotes the halfspace {x ∈ Rn : x · u ≥ 0}.
As was noted in the introduction, the operators Γ±,∗

p are closely related to the
generalized Minkowski-Funk transform [40] and are the asymmetric Lp analogs of
intersection bodies. We extend the operator c1 Γ+,∗

p +̂p c2 Γ−,∗
p for positive constants

c1, c2 from convex bodies containing the origin in their interiors to Kn
o as follows.

For n-dimensional K ∈ Kn
o we set

‖u‖p

c1 Γ+,∗
p K+̂pc2 Γ−,∗

p K
= c1

∫
K∩u+

|x · u|p dx+ c2

∫
K∩u−

|x · u|p dx,

where u− denotes the halfspace {x ∈ Rn : x · u ≤ 0}, and for bodies K with
dimK < n we define c1Γ+,∗

p K +̂p c2Γ−,∗
p K = e. This is reasonable by our geomet-

ric interpretation of the identity element. The resulting map is in fact a linearly
intertwining valuation on Kn

o .

3. Proofs of polytopal classifications

3.1. Reduction. In this subsection we establish two lemmas which show that in
order to derive Theorem 1 it is enough to know the values of the involved valuations
on simplices. We start by investigating the behaviour of co- or contravariant oper-
ators on lower-dimensional bodies. Let 〈M,+〉 be a monoid with identity element
e and Q ⊂ Kn. We call a valuation Z : Q → 〈M,+〉 simple, if bodies of dimension
less than n are mapped to e. From now on it is assumed throughout that p 6= 0.

Lemma 1. Let Q be either Pn
o or Kn

o and suppose Z : Q → 〈Sn, +̂p〉 is a GL+(n)
co- or contravariant operator of arbitrary weight. Then Z is simple.

Proof. Because of the assumed GL+(n) co- or contravariance it is enough to prove
that a body Q which is contained in e⊥n is mapped to the identity element.
For s > 0, we define φ ∈ GL+(n) by

φei = ei, i = 1, . . . , n− 1, and φen = sen.

First, assume that Z is GL+(n) contravariant of weight q. Thus

ZQ = ZφQ = (detφ)qφ−t ZQ.

Suppose ZQ 6= e. Then we have

(1) ‖x‖Z Q = ‖(detφ)−qφtx‖Z Q = (detφ)−q‖φx‖Z Q
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for every x ∈ Rn. ZQ contains a closed Euclidean ball with center at the origin
and is contained in such a ball. Thus there exist positive constants c1, c2 with

(2) c1‖x‖ ≤ ‖x‖Z Q ≤ c2‖x‖,
for every x ∈ Rn. Together with (1), this implies

(3) c1

√√√√n−1∑
i=1

x2
i + (sxn)2 ≤ c2s

q

√√√√ n∑
i=1

x2
i ,

for all x ∈ Rn. Note that s > 0 was arbitrary. Evaluate (3) at e1 and take the limit
s→ 0+. This yields a contradiction for positive q. If q = 0, then the limit s→∞
in relation (3) at en gives a contradiction. Finally, for negative q consider (3) at
e1 and let s → ∞. We obtain again a contradiction. Thus we proved that for all
weights ZQ = e.
Second, suppose that Z is GL+(n) covariant. Then, on the assumption that ZQ ∈
Sn, one derives from

‖x‖Z Q = (detφ)−q‖φ−1x‖Z Q

and (2) that

c1s
q

√√√√ n∑
i=1

x2
i ≤ c2

√√√√n−1∑
i=1

x2
i +

(xn

s

)2

holds on Rn. For q > 0, q = 0, q < 0 consider this inequality at points e1, en, e1
and take limits s→∞, s→∞ and s→ 0+, respectively. As above, we obtain that
ZQ has to be the identity element. �

Lemma 2. Let 〈M,+〉 be an abelian monoid with cancellation law. Then a simple
valuation Z : Pn

o → 〈M,+〉 is uniquely determined by its values on n-dimensional
simplices having one vertex at the origin.

As usual, we say that an abelian monoid 〈M,+〉 satisfies the cancellation law if the
equality x+ z = y + z for x, y, z ∈M implies x = y.

Proof. A finite set TP of n-dimensional simplices is a triangulation of an n-dimen-
sional polytope P ⊂ Rn if the union of all simplices in TP equals P and no pair of
simplices intersects in a set of dimension n. A starring of P at x is a triangulation
such that there is an x ∈ P for which every simplex in TP has a vertex at x.

Let P ∈ Pn
o be an n-dimensional polytope. It is well-known that for arbitrary

x ∈ P there exists a starring of P at x. Indeed, for n = 1 it is trivial. Suppose that
the assertion is true for (n−1)-dimensional polytopes and denote by Fj , j = 1, . . . , k
the facets of an n-dimensional polytope P . We choose starrings TFj of Fj for those
facets which do not contain the given point x. Thus the convex hulls of x and the
(n− 1)-dimensional simplices in TFj

define the desired starring.
The proof of the lemma is finished if we can show that

P = P1 ∪ P2 ∪ · · · ∪ Pk, P, P1, . . . , Pk ∈ Pn
o , dim(Pi ∩ Pj) < n for i 6= j

implies

ZP =
k∑

i=1

ZPi

for an n-dimensional polytope P ∈ Pn
o . We proceed by induction on k. For k = 1, 2

this is trivial. It also holds true if P1 = P because then dimPi < n for i 6= 1 and
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Z is assumed to be simple. Suppose that our desired conclusion is true for at most
k− 1 polytopes. Without loss of generality assume that dimP1 = n and that P1 is
a proper subpolytope of P . Then P1 has a facet F containing the origin such that

P ∩ int(linF )+ 6= ∅, and P ∩ int(linF )− 6= ∅.

For simplicity, we write H := linF and assume that P1 ⊂ H−. Define

P− := P ∩H−, P+ := P ∩H+, P−i := Pi ∩H−, P+
i := Pi ∩H+,

for i = 1, . . . , k. From the fact that P+ = P+
2 ∪ · · · ∪P+

k , the induction hypothesis,
and the simplicity of Z we obtain

ZP+ =
k∑

i=2

ZP+
i =

k∑
i=1

ZP+
i ,

and therefore

ZP +
k∑

i=1

ZP−i = ZP+ + ZP− +
k∑

i=1

ZP−i

=
k∑

i=1

(ZP+
i + ZP−i ) + ZP−

=
k∑

i=1

ZPi + ZP−.(4)

If P−1 = P−, we have
∑k

i=1 ZP−i = ZP− and we are done by the cancellation law.
Otherwise, we can proceed as above but now for the polytope P−. So cutting with
a suitable hyperplane H2 gives

P−,2 := P− ∩H−
2 , P+,2 := P− ∩H+

2 , P−,2
i := P−i ∩H−

2 , P+,2
i := P−i ∩H+

2 ,

and

ZP− +
k∑

i=1

ZP−,2
i =

k∑
i=1

ZP−i + ZP−,2.

By (4) we therefore get

ZP +
k∑

i=1

ZP−i +
k∑

i=1

ZP−,2
i =

k∑
i=1

ZPi + ZP− +
k∑

i=1

ZP−,2
i

=
k∑

i=1

ZPi +
k∑

i=1

ZP−i + ZP−,2.

The cancellation law proves

ZP +
k∑

i=1

ZP−,2
i =

k∑
i=1

ZPi + ZP−,2.

Repeating this procedure finitely many times (depending on the number of sup-
porting hyperplanes of P1 which contain the origin), we are in the situation that
P−,m

1 = P−,m. �
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Note that 〈Sn, +̂p〉 satisfies the cancellation law. Indeed, suppose for a moment
that S1 is the identity element e whereas S2 is contained in Sn. Since e /∈ Sn we
obtain S1 +̂p e = e 6= S2 = S2 +̂p e. But also for an arbitrary R ∈ Sn we would
have S1 +̂p R = R 6= S2 +̂p R because ‖ · ‖p

S2+̂pR
= ‖ · ‖p

S2
+ ‖ · ‖p

R > ‖ · ‖p
R and two

bodies in Sn coincide precisely when their Minkowski functionals are equal. If we
interchange the roles of S1 and S2 in the above lines we deduce that the relation

(5) S1 +̂p R = S2 +̂p R, S1, S2, R ∈ Sn ∪ {e}.

implies that S1 and S2 are either both contained in Sn or both equal to e. If S1

as well as S2 are star bodies, then (5) yields ‖ · ‖p
S1

+ ‖ · ‖p
R = ‖ · ‖p

S2
+ ‖ · ‖p

R and
hence ‖ · ‖S1 = ‖ · ‖S2 . This shows S1 = S2.

From Lemmas 1 and 2 we therefore conclude that a GL+(n) co- or contravariant
valuation Z : Pn

o → 〈Sn, +̂p〉 is uniquely determined by its value on the standard
simplex Tn := conv{o, e1, . . . , en}.

3.2. The 2-dimensional case. For 0 < λ < 1, we define two families of linear
maps by

φe2 = (1− λ)e1 + λe2, φek = ek for k 6= 2,
ψe1 = (1− λ)e1 + λe2, ψek = ek for k 6= 1.

Note that

φ−1e2 = −1− λ

λ
e1 +

1
λ
e2, φ−1ek = ek for k 6= 2,

ψ−1e1 =
1

1− λ
e1 −

λ

1− λ
e2, ψ−1ek = ek for k 6= 1.

LetH be the hyperplane through o with normal vector λe1−(1−λ)e2. Then we have
Tn∩H+ = φTn and Tn∩H− = ψTn. So for a simple valuation Z : Pn

o → 〈Sn, +̂p〉
we obtain

(6) ZTn = Z(φTn) +̂p Z(ψTn).

If Z : P2
o → 〈S2, +̂p〉 is a nontrivial GL+(2) contravariant valuation, then ZT 2 ∈

S2 and f(x1, x2) := ‖(x1, x2)‖p
Z T 2 is a continuous function on R2\{o} which is

positively homogeneous of degree p. Moreover, equation (6) reads as

(7) f(x1, x2) = λ−pqf(x1, (1− λ)x1 + λx2) + (1− λ)−pqf((1− λ)x1 + λx2, x2)

for arbitrary (x1, x2) ∈ R2\{o}. It turns out in the next lemma, that such functions
f are of very special form. Indeed, for given q ∈ R, we define a function gp,q on R2

by

gp,q(x1, x2) =

 (xp−pq
1 − xp−pq

2 )(x1 − x2)pq for 0 < x2 < x1,

xp−pq
1 (x1 − x2)pq for x1 > 0, x2 ≤ 0,

0 otherwise.

Define linear transformations γi, i = 0, 1, 2, by

γ0(x1, x2) = (−x1,−x2), γ1(x1, x2) = (x2, x1), γ2(x1, x2) = (−x2,−x1),

that is, γ0, γ1, and γ2 are the reflections with respect to the origin, the line x1 = x2,
and the line x1 = −x2, respectively.
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Lemma 3. Let f : R2\{o} → R be a function which is positively homogeneous of
degree p and satisfies (7) for every 0 < λ < 1. Then

(8) f = f(1, 0) gp,q + f(−1, 0) gp,q ◦ γ0 + f(0, 1) gp,q ◦ γ1 + f(0,−1) gp,q ◦ γ2

on R2\{(x1, x2) : x1 = x2}.

Proof. For points (x1, 0), (0, x2) with x1, x2 ∈ R\{0}, equality (8) immediately
follows from the homogeneity of f and the definition of gp,q.
Evaluate equation (7) at the point (1, 0). This gives

f(1, 0) = λ−pqf(1, 1− λ) + (1− λ)−pqf(1− λ, 0).

Since f is positively homogeneous of degree p we obtain

f(1, 0) = λ−pqf(1, 1− λ) + (1− λ)p−pqf(1, 0),

and therefore

(9) f(1, 1− λ) = λpq(1− (1− λ)p−pq)f(1, 0).

Similarly, equation (7) evaluated at the points −(1, 0), ±(0, 1), ±(−λ, 1 − λ) and
the homogeneity of f yield

f(−1, λ− 1) = λpq(1− (1− λ)p−pq)f(−1, 0),(10)
f(λ, 1) = (1− λ)pq(1− λp−pq)f(0, 1),(11)

f(−λ,−1) = (1− λ)pq(1− λp−pq)f(0,−1),(12)
f(−λ, 1− λ) = λp−pqf(−1, 0) + (1− λ)p−pqf(0, 1),(13)
f(λ, λ− 1) = λp−pqf(1, 0) + (1− λ)p−pqf(0,−1).(14)

First, suppose that x1 > x2 > 0. By (9) we obtain

f(x1, x2) = xp
1f(1, 1− (1− x2/x1)) = xp

1

(
1− x2

x1

)pq
(

1−
(
x2

x1

)p−pq
)
f(1, 0)

= f(1, 0) gp,q(x1, x2).

Since gp,q ◦ γ0, gp,q ◦ γ1, and gp,q ◦ γ2 are zero for x1 > x2 > 0, equation (8) holds
in this part of the plane. Relation (10) gives

f(−x1,−x2) = xp
1f(−1, (1− x2/x1)− 1)

= xp
1

(
1− x2

x1

)pq
(

1−
(
x2

x1

)p−pq
)
f(−1, 0)

= f(−1, 0)(gp,q ◦ γ0)(−x1,−x2).

But gp,q, gp,q ◦ γ1 as well as gp,q ◦ γ2 vanish at points (−x1,−x2) with x1 > x2 > 0
and therefore (8) is true at these points.
Second, assume x2 > x1 > 0. Formulae (11) and (12) yield

f(x1, x2) = xp
2f(x1/x2, 1) = xp

2

(
1− x1

x2

)pq
(

1−
(
x1

x2

)p−pq
)
f(0, 1)

= f(0, 1)(gp,q ◦ γ1)(x1, x2),

f(−x1,−x2) = xp
2f(−x1/x2,−1) = xp

2

(
1− x1

x2

)pq
(

1−
(
x1

x2

)p−pq
)
f(0,−1)

= f(0,−1)(gp,q ◦ γ2)(−x1,−x2).
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Since gp,q, gp,q ◦ γ0, gp,q ◦ γ2 are zero for x2 > x1 > 0 and gp,q, gp,q ◦ γ0, gp,q ◦ γ1

vanish at points (−x1,−x2) with x2 > x1 > 0, it remains to prove identity (8) at
points with coordinates which have different signs.
So let x1 and x2 be greater than zero. By (13) and (14) we have

f(−x1, x2) = (x1 + x2)pf(−x1/(x1 + x2), 1− x1/(x1 + x2))

= (x1 + x2)p

((
x1

x1 + x2

)p−pq

f(−1, 0) +
(

x2

x1 + x2

)p−pq

f(0, 1)

)
= f(0, 1)(gp,q ◦ γ1)(−x1, x2) + f(−1, 0)(gp,q ◦ γ0)(−x1, x2),

f(x1,−x2) = (x1 + x2)pf(x1/(x1 + x2), x1/(x1 + x2)− 1)

= (x1 + x2)p

((
x1

x1 + x2

)p−pq

f(1, 0) +
(

x2

x1 + x2

)p−pq

f(0,−1)

)
= f(0,−1)(gp,q ◦ γ2)(x1,−x2) + f(1, 0)gp,q(x1,−x2).

The fact that gp,q and gp,q ◦γ2 are zero in the second quadrant and gp,q ◦γ0, gp,q ◦γ1

are zero in the fourth quadrant completes the proof. �

Now, we are in the position to establish the 2-dimensional classifications. We
start with the contravariant case.

Lemma 4. Let Z : P2
o → 〈S2, +̂p〉 be a valuation which is GL+(2) contravariant

of weight q. For p > −1, q = −1/p, and nontrivial Z, there exist positive constants
c1, c2 such that

ZP = c1Γ+,∗
p P +̂p c2Γ−,∗

p P, for every P ∈ P2
o .

In all other cases, Z is trivial.

Proof. Assume that Z is nontrivial. Thus ZT 2 ∈ S2. As before, we set f(x1, x2) :=
‖(x1, x2)‖p

Z T 2 . So f is positively homogeneous of degree p and Lemma 3 implies

f = f(1, 0) gp,q + f(−1, 0) gp,q ◦ γ0 + f(0, 1) gp,q ◦ γ1 + f(0,−1) gp,q ◦ γ2

on R2\{(x1, x2) : x1 = x2}. Let p > −1 and q = −1/p. Since f is continuous, the
latter representation yields

f(x1, x1) = lim
x2→x−1

x1+p
1 − x1+p

2

x1 − x2
f(1, 0) = lim

x2→x+
1

x1+p
2 − x1+p

1

x2 − x1
f(0, 1)

for positive x1. Thus f(1, 0) = f(0, 1) and an analogous observation for negative
values x1 proves f(−1, 0) = f(0,−1). So f satisfies

f = f(1, 0) (gp,−1/p + gp,−1/p ◦ γ1) + f(−1, 0)( gp,−1/p ◦ γ0 + gp,−1/p ◦ γ2).

We claim that

(15)
∫

T 2∩u+
|x · u|p dx = (p2 + 3p+ 2)−1(gp,−1/p(u) + gp,−1/p ◦ γ1(u))

almost everywhere. Indeed, let u = (u1, u2). If u1 ≤ 0 and u2 ≤ 0, then the left
hand side of (15) vanishes. By the definition of gp,−1/p this is also the case for the
right hand side of (15). For other u, use Fubini’s theorem to rewrite the integral in
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(15) as a certain double integral. Then one can calculate this integral and observes
that (15) holds. Moreover, we have∫

T 2∩u−
|x · u|p dx =

∫
T 2∩(γ0(u))+

|x · γ0(u)|p dx

= (p2 + 3p+ 2)−1(gp,−1/p ◦ γ0(u) + gp,−1/p ◦ γ2(u))

almost everywhere. Thus the first part of the lemma is settled.
Still under the assumption that ZT 2 ∈ S2, we investigate the relation

(16) f(x1, x2) = (xp−pq
1 − xp−pq

2 )(x1 − x2)pqf(1, 0)

for other weights q and x1 > x2 > 0. For pq > −1, the right hand side of (16)
converges to zero when x2 → x−1 . If pq < −1 and p− pq > 0, it assumes arbitrary
large values as x2 → x−1 . For pq < −1 and p−pq ≤ 0, or q = −1/p and p ≤ −1, the
right hand side of (16) is less or equal than zero. But f is a positive, continuous
function on Rn\{o}, a contradiction. �

We define the rotation

ψπ/2 =
(

0 −1
1 0

)
.

Then the characterization of covariant valuations reads as follows.

Lemma 5. Let Z : P2
o → 〈S2, +̂p〉 be a valuation which is GL+(2) covariant of

weight q. For p > −1, q = −1/p−1, and nontrivial Z, there exist positive constants
c1, c2 such that

ZP = ψ−1
π/2(c1Γ

+,∗
p P +̂p c2Γ−,∗

p P ), for every P ∈ P2
o .

In all other cases, Z is trivial.

Proof. Define an operator Z by

ZP := ψπ/2 ZP

for every P ∈ P2
o . Since ψπ/2(S1+̂pS2) = ψπ/2S1+̂pψπ/2S2 for all S1, S2 ∈ S2∪{e},

Z is a valuation. For every φ ∈ GL+(2) we have

ψπ/2φψ
−1
π/2 = (detφ)φ−t.

So if Z is GL+(2) covariant of weight q, then Z is contravariant of weight q+1. This
and the already established characterization result of Lemma 4 finish the proof. �

If we combine the last two lemmas we arrive at a complete classification in
dimension two.

Theorem 3. Suppose p 6= 0 and let Z : P2
o → 〈S2, +̂p〉 be a linearly intertwining

valuation. For p > −1, the operator Z is nontrivial if and only if there exist positive
constants c1, c2 such that

ZP = c1Γ+,∗
p P +̂p c2Γ−,∗

p P

or
ZP = ψ−1

π/2(c1Γ
+,∗
p P +̂p c2Γ−,∗

p P ),

for every P ∈ P2
o . If p ≤ −1, then Z is trivial.
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3.3. The n-dimensional case, n ≥ 3.

Lemma 6. Let n ≥ 3 and Z : Pn
o → 〈Sn, +̂p〉 be a valuation which is GL+(n)

contravariant of weight q. For p > −1, q = −1/p, and Z nontrivial, there exist
positive constants c1, c2 such that

ZP = c1Γ+,∗
p P +̂p c2Γ−,∗

p P, for every P ∈ Pn
o .

In all other cases, Z is trivial.

Proof. Assume that ZTn ∈ Sn and set

f(x) = ‖x‖p
Z T n , x ∈ Rn\{o}.

We further define a function f̄ : R2\{o} → R by

f̄(x1, x2) = f(x1e1 + x2e2).

From (6) we obtain

f(x) = λ−pqf(φtx) + (1− λ)−pqf(ψtx)

for arbitrary x ∈ Rn\{o}. Thus f̄ satisfies (7) and the proof of Lemma 4 shows
that a nontrivial valuation can only exist for p > −1 and q = −1/p. Moreover,

f̄(x1, x2) = ‖(x1, x2)‖p

c̄1Γ
+,∗
p T 2+̂pc̄2Γ

−,∗
p T 2

for p > −1 and q = −1/p. Denote by IA the indicator function of a set A. Since
there exists a positive constant c with∫

T 2
|x1y1 + x2y2|p I(0,∞)(x1y1 + x2y2) dy1dy2

= c

∫
T n∩(x1e1+x2e2)+

|(x1e1 + x2e2) · y|p dy,

we obtain that

f(x1e1 + x2e2) = ‖x1e1 + x2e2‖p

c1Γ
+,∗
p T n+̂pc2Γ

−,∗
p T n

for suitable positive constants c1, c2. For simplicity we will write

f1(x) = ‖x‖p

c1Γ
+,∗
p T n+̂pc2Γ

−,∗
p T n

in the sequel.
Hence we arrived at the following situation: f, f1 : Rn\{o} → R are two continuous
functions satisfying

(17) f(x) = λf(φtx) + (1− λ)f(ψtx).

They are invariant under even permutations of indices and are equal on the set
lin{e1, e2}\{o}. We will show that f coincides with f1 on Rn\{o}. Because of the
invariance properties it is enough to prove
(18)
f(x) = f1(x), ∀ x ∈ lin{ei1 , . . . , eik

} =⇒ f(x) = f1(x), ∀ x ∈ lin{e1, . . . , ek+1}
for 2 ≤ k ≤ n − 1. Indeed, let x be contained in lin{e1, . . . , ek+1}. Suppose
0 < x1/x2 < 1 and let λ := x1/x2. Then

(ψ−tx)1 = (φtψ−tx)1 =
x1

1− λ
− λ

1− λ
x2 = 0,

(ψ−tx)i = (φtψ−tx)i = 0, i = k + 2, . . . , n.
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By (17) it follows that

f(ψ−tx) = λf(φtψ−tx) + (1− λ)f(x).

But the analogous relation holds true for f1, too. Therefore, implication (18) is
correct for 0 < x1 < x2 and x2 < x1 < 0.
For 0 < λ := (x1 − x2)/x1 < 1, we obtain

(φ−tx)2 = (ψtφ−tx)2 = −1− λ

λ
x1 +

1
λ
x2 = 0,

(φ−tx)i = (ψtφ−tx)i = 0, i = k + 2, . . . , n.

Since
f(φ−tx) = λf(x) + (1− λ)f(ψtφ−tx)

and f1 satisfies the same identity, (18) holds for 0 < x2 < x1 and x1 < x2 < 0.
For x1, x2 6= 0 and sgn(x1) 6= sgn(x2) define 0 < λ := x1/(x1 − x2) < 1. Then

(φtx)2 = (φtx)i = (ψtx)1 = (ψtx)i = 0, i = k + 2, . . . , n.

As before we conclude that (17) implies (18) for x1 < 0, x2 > 0 and x1 > 0, x2 < 0.
The continuity of f and f1 concludes the proof of (18). �

In contrast to the two dimensional case, the next lemma shows that nontrivial
GL+(n) covariant valuations do not exist.

Lemma 7. Every GL+(n) covariant valuation Z : Pn
o → 〈Sn, +̂p〉 for n ≥ 3 is

trivial.

Proof. Assume ZTn 6= e and set f(x) := ‖x‖p
Z T n . Then f is a positive, continuous

function on Rn\{o}. Thus (6) implies

(19) f(x) = λ−pqf(φ−1x) + (1− λ)−pqf(ψ−1x)

on Rn\{o}. Since e3 is an eigenvector with eigenvalue 1 of φ−1 and ψ−1, we get

1 = λ−pq + (1− λ)−pq, for every 0 < λ < 1.

If q 6= −1/p this is not possible. For q = −1/p, evaluate (19) at e1 to obtain

f(e1) = (1− λ)−pf(e1 − λe2), for every 0 < λ < 1.

Taking the limit λ→ 1 yields a contradiction. �

Combining the last two lemmas we obtain Theorem 1. Theorem 2 follows im-
mediately from it.

4. Monotone valuations

As announced in the introduction, we want to establish characterizations for
valuations Z : Kn

o → 〈Sn, +̂p〉. To do so, we initially extend the usual partial
ordering on Sn (which is induced by the partial ordering by inclusion on Rn) to
Sn ∪ {e}. Motivated by the geometric interpretation of the identity element e we
set S ⊂ e for p > 0 and every S ∈ Sn ∪ {e}. If p < 0, then we define e ⊂ S
for every S ∈ Sn ∪ {e}. We investigate operators which are compatible with this
partial ordering. A map Z : Kn

o → 〈Sn, +̂p〉 is called increasing if K ⊂ L implies
ZK ⊂ ZL, and decreasing if K ⊂ L implies ZL ⊂ ZK. If Z is either increasing or
decreasing, we simply call it monotonic.
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Theorem 4. Suppose n ≥ 3, p 6= 0, and let Z : Kn
o → 〈Sn, +̂p〉 be a monotonic,

linearly intertwining valuation. For p > −1, the operator Z is nontrivial if and only
if there exist positive constants c1, c2 such that

(20) ZK = c1Γ+,∗
p K +̂p c2Γ−,∗

p K,

for every K ∈ Kn
o . If p ≤ −1, then Z is trivial.

Proof. We start with the case p ≤ −1. The restriction of Z to Pn
o satisfies the

conditions of Theorem 1. Thus ZP = e for every P ∈ Pn
o . Obviously, for each K ∈

Kn
o there exist polytopes P1, P2 ∈ Pn

o such that P1 ⊂ K ⊂ P2. The monotonicity
of Z implies ZP1 ⊂ ZK ⊂ ZP2 or ZP2 ⊂ ZK ⊂ ZP1 and hence e ⊂ ZK ⊂ e. This
proves ZK = e. Consequently, Z is simple. Let p > −1. We know from Lemmas 6
and 7 that unless Z is contravariant of degree q = −1/p, it is trivial on polytopes.
For q 6= −1/p we can therefore conclude that ZK = e for all K ∈ Kn

o as above. In
order to prove the theorem we can therefore restrict ourselves to nontrivial GL+(n)
contravariant valuations of weight −1/p for p > −1.

From Lemma 1 we deduce that ZK = e for bodies K of dimension less than
n. Thus Z coincides with c1Γ+,∗

p +̂p c2Γ−,∗
p on lower-dimensional bodies. It is

therefore enough to prove (20) for n-dimensional bodies. Given a body K ∈ Kn
o

with nonempty interior, there exists a vector u ∈ intK such that for every λ > 1
we can find polytopes Pλ which have nonempty interior, converge to K − u with
respect to Hausdorff distance as λ tends to one, and satisfy Pλ + u ∈ Pn

o as well as

Pλ + u ⊂ K ⊂ λPλ + u.

Assume p > 0. Since Z restricted to Pn
o coincides with c1Γ+,∗

p +̂p c2Γ−,∗
p and is

therefore decreasing on polytopes, it has to be decreasing on Kn
o . Thus

‖x‖Z(Pλ+u) ≤ ‖x‖Z K ≤ λn/p+1‖x‖Z(Pλ+λ−1u)

for every x ∈ Rn. Now take the limit λ → 1+. Then the already established
classification of such valuations on polytopes together with the continuity properties
of the operator c1Γ+,∗

p +̂p c2Γ−,∗
p conclude the proof. For negative p, one proceeds

in a similar way. �

As in the proof of Theorem 4, one establishes the next result.

Theorem 5. Suppose n ≥ 3, p 6= 0, and let Z : Kn
o → 〈Sn

c , +̂p〉 be a monotonic,
linearly intertwining valuation. For p > −1, the operator Z is nontrivial if and only
if there exists a positive constant c such that

ZK = cΓ∗pK,

for every K ∈ Kn
o . If p ≤ −1, then Z is trivial.

5. Affine surface area and star body valued valuations

In the sequel we present an example of a valuation Z : Kn
o → 〈Sn

c , +̂p〉 which is
linearly intertwining and nontrivial on Kn

o , but is trivial if restricted to Pn
o . This

shows that no extension of Theorems 1 and 2 to arbitrary convex bodies holds
without further assumptions.

We write Hn−1 for (n − 1)-dimensional Hausdorff measure. Let K ∈ Kn. The
surface area measure S(K, ·) of K is a finite Borel measure on the sphere and
defined as follows (see, e.g. [41, Chapter 4]). For a Borel set ω ⊆ Sn−1, S(K,ω) is
the (n − 1)-dimensional Hausdorff measure of the set of all boundary points of K
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for which there exists a normal vector of K belonging to ω. For every Borel subset
ω of the sphere Sn−1, we write

S(K,ω) =
∫

ω

fK dHn−1 + S⊥(K,ω),

for the Lebesgue decomposition of S(K, ·) with respect to Hn−1. So the density
fK : Sn−1 → R is a nonnegative, Borel measurable function, and S⊥(K, ·)⊥Hn−1,
i.e. S⊥(K, ·) is singular with respect to Hn−1. If the body K is smooth, fK is
just the curvature function of K. For −1/n < p < 1, we define a function on
Kn × Rn\{o} by

(21) ap(K,u) =
∫

Sn−1
|u · v|pfK(v)

n+p
n+1 dHn−1(v).

Hölder’s inequality immediately shows that the integral in (21) is finite. We remark
that for −1 < p < −1/n there exist by Minkowski’s existence theorem (see e.g. [41,
Theorem 7.1.2]) convex bodies for which this integral is not finite for some u.

Taking the limit p→ 0+ in (21), we obtain that a(K, ·) converges pointwise to∫
Sn−1

fK(v)
n

n+1 dHn−1(v).

For smooth bodies K, this is the affine surface area of K.
From now on, we assume 0 < p < 1. Obviously, for fixed K the function ap(K, ·)

is continuous and either constant with value zero or strictly positive on Sn−1. Now,
we are going to investigate the behaviour of ap(φK, ·) for maps φ ∈ GL(n).

Suppose q > 0 and let f, g : Rn\{o} → [0,∞) be functions such that f and g are
positively homogeneous of degree q and −(n+q), respectively, g is Hn−1 integrable
on the sphere and f is continuous. Then we claim that

(22) |detφ|
∫

Sn−1
f(φv)g(v) dHn−1(v) =

∫
Sn−1

f(v)g(φ−1v) dHn−1(v),

for every φ ∈ GL(n). For q ≥ 1, linear maps φ with determinant one, and positive
and continuous functions f and g, this result is due to Lutwak [30, Lemma 1.14].
Using Lutwak’s ideas, we start with the proof of (22) for q > 0, arbitrary φ ∈ GL(n)
and continuous, strictly positive functions f and g. For arbitrary star bodies K
and L the polar formula for volume yields

(23) −q lim
ε→0+

V (K+̂qε
−1/qL)− V (K)
ε

=
∫

Sn−1
‖u‖−n−q

K ‖u‖q
L dH

n−1(u).

Since φ(K+̂qL) = φK+̂qφL, formula (23) gives

|detφ|
∫

Sn−1
‖u‖−n−q

K ‖u‖q
φ−1L dH

n−1(u) =
∫

Sn−1
‖u‖−n−q

φK ‖u‖q
L dH

n−1(u).

Define special star bodies K and L by ‖ · ‖−(n+q)
K = g and ‖ · ‖q

L = f . Then the
definition of K and L proves (22) for positive and continuous functions. Subsequent
approximation arguments conclude the proof of (22) in the general case. We extend
fK to a positively homogeneous function of degree −(n+ 1) on Rn\{o}. Let L be
an arbitrary body contained in Kn

o . Since

1
n

∫
Sn−1

h(L, v) dS(K, v) = V (K, . . . ,K, L),
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where V (K, . . . ,K, L) denotes the mixed volume of (n− 1) copies of K and L (see,
e.g. [7, Formula A.12]) and V (φK1, . . . , φKn) = |detφ|V (K1, . . . ,Kn) (see e.g. [7,
Formula A.17]), we obtain by (22)∫

Sn−1
h(L, v)fφK(v) dHn−1(v) +

∫
Sn−1

h(L, v) dS⊥n−1(φK, v) =(24)

|detφ|2
∫

Sn−1
h(L, v)fK(φtv) dHn−1(v) + |detφ|

∫
Sn−1

h(L, φ−tv) dS⊥n−1(K, v).

There exists a Borel measure ν on Sn−1 with

|detφ|
∫

Sn−1
h(L, φ−tv) dS⊥n−1(K, v) =

∫
Sn−1

h(L, v) dν and ν⊥Hn−1.

Since differences of support functions are dense in C(Sn−1) (see e.g. [41, Lemma
1.7.9]), we obtain that (24) holds for arbitrary continuous functions. By Riesz’s
representation theorem we therefore get∫

ω

fφK dHn−1 + S⊥(φK,ω) = |detφ|2
∫

ω

fK ◦ φt dHn−1 + ν(ω).

The uniqueness of the Lebesgue decomposition yields fφK = |detφ|2fK ◦φt almost
everywhere on Sn−1 with respect to Hn−1. So by (22) we conclude that

(25) ap(φK, u) = |detφ|
n+2p−1

n+1 ap(K,φ−1u), u ∈ Sn−1.

Finally, we establish the valuation property

(26) ap(K ∪ L, ·) + ap(K ∩ L, ·) = ap(K, ·) + ap(L, ·),

provided that K,L,K ∪ L ∈ Kn
o . Since ap vanishes on lower dimensional sets, it

suffices to prove (26) for n-dimensional bodies K and L. Let regK denote the set
of regular points on the boundary bdK of K, i.e. boundary points at which there
exists a unique outward normal vector of K. For x ∈ regK, denote by σK(x) the
unique outward unit normal vector of K at x. We write M(K) ⊂ regK for the set
of points at which the function which locally represents the boundary of K is twice
differentiable. Let Hn−1(K,x) denote the generalized Gauss curvature which can
be defined Hn−1 almost everywhere on the boundary of K. For n-dimensional K
we will deduce the representation

(27) ap(K,u) =
∫

bd K

|σK(x) · u|pHn−1(K,x)
1−p
n+1 dHn−1(x).

The proof of this relation is based on techniques developed by Hug [14]. For r > 0,
define

(bdK)r = {x ∈ bdK| ∃a ∈ Rn : x ∈ B(a, r) ⊂ K}.

For Hn−1 almost all x ∈ (bdK)r, the approximate Jacobian (see [4, Theorem
3.2.22]) ap Jd−1σK(x) equals Hn−1(K,x) (see [14, Lemma 2.3]). Since σK is Lip-
schitz continuous on (bdK)r (see [14, Lemma 2.1]), the coarea formula [4, Theorem
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3.2.22] yields∫
(bd K)r

|σK(x) · u|pHn−1(K,x)
1−p
n+1 dHn−1(x) =∫

(bd K)r

I{Hn−1(K,·)>0}(x)|σK(x) · u|pHn−1(K,x)
−p−n
n+1 apJd−1σK(x) dHn−1(x) =∫

Sn−1

∫
σ−1

K (v)∩(bd K)r

I{Hn−1(K,·)>0}(x)|σK(x) · u|pHn−1(K,x)
−p−n
n+1 dH0(x)dHn−1(v).

For Hn−1 almost every u ∈ σK((bdK)r), the support function hK is twice dif-
ferentiable at u, ∇hK(u) ∈ M(K), and Hn−1(K,∇hK(u))Dn−1hK(u) = 1 (see
[14, Lemma 2.6]). Here, Dn−1hK(u) denotes the sum of the principal minors of
order n− 1 of the Hessian of hK at u ∈ Sn−1 (which can be defined Hn−1 almost
everywhere). Thus∫

(bd K)r

|σK(x) · u|pHn−1(K,x)
1−p
n+1 dHn−1(x) =∫

σK((bd K)r)

|v · u|pDn−1hK(v)
n+p
n+1 dHn−1(v).

Define (bd K)+ :=
⋃

r>0(bd K)r. Since Hn−1(bd K\(bd K)+) = 0 (see [34]) the
theorem of monotone convergence implies∫

bd K

|σK(x) · u|pHn−1(K,x)
1−p
n+1 dHn−1(x) =∫

σK((bd K)+)

|v · u|pDn−1hK(v)
n+p
n+1 dHn−1(v).

But for Hn−1 almost every v ∈ Sn−1 we have v ∈ σK((bd K)+) if and only
if Dn−1hK(v) > 0 (see [14, Lemma 2.7]) and Hn−1 almost everywhere fK =
Dn−1hK(·) (see [20, Formula 781] and the references cited there). Consequently,
we obtain∫

bd K

|σK(x) · u|pHn−1(K,x)
1−p
n+1 dHn−1(x) =

∫
Sn−1

|v · u|pfK(v)
n+p
n+1 dHn−1(v).

This proves representation (27).
For K,L ∈ Kn

o with n-dimensional intersection and convex union we follow
Schütt [43] and work with the decompositions

bd (K ∪ L) = (bd K ∩ bd L) ∪ (bd K ∩ Lc) ∪ (bd L ∩Kc),
bd (K ∩ L) = (bd K ∩ bd L) ∪ (bd K ∩ int L) ∪ (bd L ∩ int K),

bd K = (bd K ∩ bd L) ∪ (bd K ∩ Lc) ∪ (bd K ∩ int L),
bd L = (bd K ∩ bd L) ∪ (bd L ∩Kc) ∪ (bd L ∩ int K),(28)

where all unions are disjoint. By [43, Lemma 5] we have

Hn−1(K ∪ L, x) = min{Hn−1(K,x),Hn−1(L, x)},
Hn−1(K ∩ L, x) = max{Hn−1(K,x),Hn−1(L, x)},
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at points x ∈ bd K ∩ bd L where all involved generalized Gauss curvatures exist.
For n-dimensional convex bodies K,L with convex union we have

σK(x) = ±σL(x), x ∈ reg K ∩ reg L,
σK∪L(x) = σK(x) = σL(x), x ∈ reg K ∩ reg L ∩ reg (K ∪ L),
σK∩L(x) = σK(x) = σL(x), x ∈ reg K ∩ reg L ∩ reg (K ∩ L).

To prove (26), one uses representation (27), splits the involved integrals in the
parts indicated by (28), and applies the above observations concerning curvature
and spherical image. For bodies with intersection of dimension less than n, note that
there exists a hyperplane H such that (K ∪L)∩H = K ∩L and that Hn−1(K, ·) =
Hn−1(L, ·) = 0 on the relative interior of K ∩H = L ∩H.
So by (25) and (26) the function Ω : Kn

o → 〈Sn
c , +̂p〉 defined by

‖x‖p
ΩK = ap(K,x)

for bodies K with ap(K, ·) > 0 on Sn−1, and e otherwise, is a covariant valuation.
Obviously, it vanishes on polytopes.
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