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Abstract
We present formula equations—first-order formulas with unknowns standing for predicates—as a general formalism for
treating certain questions in logic and computer science, like the Auflösungsproblem and loop invariant generation. In the
case of the language of affine terms over Q, we translate a quantifier-free formula equation into an equivalent statement
about affine spaces over Q, which can then be decided by an iteration procedure.

1 Introduction

The question of how to solve formulas containing predicate variables, i.e. substitute formulas for
the predicate variables such that the entire formula becomes valid, has a history going back to the
19th century (see [22, 23]). It was considered by Schröder in the context of propositional logic
under the name Auflösungsproblem [20]. The Auflösungsproblem is related to the notion of Boolean
unification: given propositional formulas ϕ, ψ with Boolean variables, find a substitution σ such
that ϕσ = ψσ modulo the theory of Boolean algebra. We can view this as an instance of the
Auflösungsproblem because every substitution σ that makes (ϕ ↔ ψ)σ true modulo Boolean
algebra serves as a unifier for ϕ and ψ . On the other hand, solving a formula ϕ is tantamount to
unifying ϕ with �. Boolean unification has been studied extensively; see [17] and [2, 16]. It plays a
role in several application areas such as database systems [13, 14] and logic programming [4].

Boolean unification has been extended to first-order logic under the name Boolean unification
with predicates (BUPs) in [6]. There, the authors consider the following problem: given a formula
ϕ(X1, . . . , Xn) in first-order logic with equality, where X1, . . . , Xn are predicate variables, are there
quantifier-free first-order formulas G1, . . . , Gn such that ϕ(G1, . . . , Gn) is valid modulo equality?
They show that the problem is undecidable if ϕ is of the form ∀x̄ϕ′ or ∃x̄ϕ′ with ϕ′ quantifier-free
by reduction from the Post correspondence problem and the validity problem of first-order logic,
respectively. On the other hand, they prove that for quantifier-free ϕ, the problem is

∏p
2-complete.

The solvability of BUP problems is relevant for the automated introduction of cuts [8, 9] and for
automatically finding induction invariants [5].

There is a parallel between Boolean unification problems and equations over, e.g. the rational
numbers: solving the equation t(x1, . . . , xn) = 0 amounts to finding terms g1, . . . , gn such that
t(g1, . . . , gn) evaluates to 0 modulo the theory of Q; similarly, solving the Boolean unification prob-
lem ϕ(X1, . . . , Xn) amounts to finding formulas G1, . . . , Gn such that ϕ(G1, . . . , Gn) is equivalent to
� modulo equality. In other words, the problem is to solve the ‘equation’ ϕ(x1, . . . , xn) ↔ �. For
this reason, we call formulas of the form ϕ(X1, . . . , Xn) formula equations.

Formula equations are hardly, if at all, considered in the literature. We argue that they ought to be,
as they allow one to represent a variety of problems in a uniform way. This paper is intended to serve
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698 Decidability of affine solution problems

as an example of how a previous result can be expressed in a more general manner with formula
equations.

The problem of solving formula equations is related to that of second-order quantifier elimination:
we say that a theory Thas quantifier elimination if every formula is equivalent to a quantifier-free
formula modulo T. Consider the second-order formula ψ ≡ ∃Xϕ(X ). If we can find a solution G to
the formula equation ϕ(X ) modulo T, then ψ is equivalent to the quantifier-free formula ϕ(G). On
the other hand, a theory having second-order quantifier elimination does not necessarily allow us to
solve formula equations, as it does not guarantee the existence of a witness. Ackermann investigated
second-order quantifier elimination in [1].

Formula equations naturally lend themselves to expressing problems of loop invariant generation.
The conditions necessary for a formula I to be a correct loop invariant of some program p can
typically be expressed as a formula ϕ(I). If the invariant is unknown, then I is a variable and ϕ is a
formula equation whose solutions are exactly the invariants of p. We will say more about this topic
in Section 2.3.

The authors of [3] advocate the use of sets of constrained Horn clauses as a target language
for problems of program verification. They give a procedure for extracting verification conditions
from a program formalism with assertions and subroutine calls that results in nonlinear constrained
Horn clauses, i.e. those with more than one formula variable in the antecedent. Formula equations
are more general in not restricting the number of positive formula variables that can occur in a
clause, resulting in a structure that has no obvious correlate in programs. We follow the line of
reasoning of [3] in considering a logical formalism useful for the representation and solution of
problems of program verification and we extend it from solving sets of constrained Horn clauses to
solving formula equations. The interesting question then becomes whether methods for finding loop
invariants generalize to (certain classes of) formula equations. In this paper, we answer this question
in the affirmative for one particular setting: that of affine invariants for affine programs.

Algorithms for computing affine invariants of affine programs have been given in [19] and
its antecedent [15]. When translated to formula equations, their methods provide solutions for
formula equations which are conjunctions of affine Horn clauses. We significantly generalize this
result to arbitrary quantifier-free formula equations. The gist is that an affine formula equation
ϕ can be clausified and the clauses translated into statements about affine spaces over Q called
affine conditions; during this process, the unknown formulas in ϕ (the predicate variables) become
unknown affine subspaces of Qk for some k. At this point, we use the fact that affine subspaces of Qk

have a certain disjunction property: if a subspace Yis covered by
⋃n

i=1 Xi, then it is already covered
by some Xi0 . This allows us to break the affine conditions of ϕ apart into affine Horn conditions.
If a solution to some set of affine Horn conditions exists, we find it with an iteration procedure that
is guaranteed to terminate. In fact, the procedure returns the smallest subspaces satisfying all affine
Horn conditions.

In Section 2, we define formula equations and investigate their relationship to problems of loop
invariant generation. We also state the affine solution problem and its decidability. In Section 3, we
prove the decidability result. In Section 3.5, we describe how a solution in terms of affine spaces can
be translated back to a solution in terms of linear equation systems.

2 Formula equations and invariant generation

2.1 Logical preliminaries

We review some notions of first-order logic that will be essential to this paper. A more in-depth
treatment can be found in [11]. A first-order language L is a collection of constant, function and

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/30/3/697/5688170 by guest on 03 M
ay 2020



Decidability of affine solution problems 699

predicate symbols. Terms over L are constructed from variables and constant and function symbols
of L. First-order formulas over L, or L-formulas, are in turn constructed from predicate symbols
of L, terms over L and logical connectives.

For a logical language L, an L-structure M is a set M (the domain) together with a function ·M
that interprets constants, functions and predicates of L as elements, functions and relations of M ,
respectively. We stipulate that if L contains the binary predicate symbol =, it is always interpreted
as the actual equality relation. On this basis, the truth of a closed formula ϕ in a structure M, written
as M |� ϕ, is defined inductively.

We call a set of closed L-formulas a theory. A theory Tis true in a structure M, written as M |� T,
if all formulas in Tare true in M. In this case, M is called a model of T. If M is an L-structure, we
call the set Th(M) of all L-formulas that are true in M the theory of M.

Let L be a first-order language, Tan L-theory and ϕ an L-formula. We say that Tentails ϕ,
written as T|� ϕ, if M |� ϕ for every model M of T.

We give some examples to illustrate these concepts.

EXAMPLE

Let L+
N

be the language consisting of the constant symbols 0 and 1, the binary function symbol +
and the binary predicate symbol =. Let PB be the theory consisting of the following formulas:

1. ∀ x. x + 1 	= 0
2. ∀ x, y. x + 1 = y + 1 → x = y
3. ∀ x. x + 0 = x
4. ∀ x, y. x + (y + 1) = (x + y) + 1
5. For any L+

N
-formula ϕ with one free variable:

ϕ(0) ∧ ∀y(ϕ(y) → ϕ(y + 1)) → ∀xϕ(x).

PBis called Presburger arithmetic. Let N+ be the L+
N

-structure with domain N and 0, 1 and +
interpreted as actual 0, 1 and addition. It is easy to see that N+ is a model of PB.

∀ x. 0 + x = x is an example of a formula that is entailed by PB.

EXAMPLE

Let L+×
N

be the language L+
N

augmented by the binary function symbol ×. Clearly, every L+
N

-
formula is also a L+×

N
-formula. Let PA be the theory containing all formulas of PB plus the

following formulas:

1. ∀ x. x×0 = 0
2. ∀ x, y. x×(y + 1) = x×y + x
3. For any L+×

N
-formula ϕ with one free variable:

ϕ(0) ∧ ∀y(ϕ(y) → ϕ(y + 1)) → ∀xϕ(x)

PAis called Peano arithmetic. Let N+× be the L+×
N

-structure that interprets L+
N

as N+ does and ×
as actual multiplication. N+× is a model of PA.

2.2 Formula equations

DEFINITION 2.1 (Formula equation).
Let Lbe a first-order language. A formula equation over L is an L-formula ϕ that may additionally
contain formula variables, i.e. variables standing for m-ary predicates for some m ∈ N. To distinguish
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700 Decidability of affine solution problems

them from the formula variables, we call the first-order variables in ϕ individual variables. The
formula variables contained in ϕ are called the unknowns of ϕ.

EXAMPLE 2.2
ϕ ≡ ∀ n. X (2×n) ∧ (X (n) → ¬X (n + 1)) is a formula equation over the language of PA. It
is intuitively clear that ϕ should have a solution modulo PA; we clarify this intuition in the next
definition.

DEFINITION 2.3 (Solution problem).
Let Lbe a first-order language. A solution problem over Lhas three components:

1. A theory T(the background theory)
2. A class C of formulas (the candidate solutions)
3. A class Φ of formula equations.

Given T,C, Φ as above, the solution problem 〈T,C, Φ〉 is the set of formula equations in Φ that
have solutions in C modulo the theory T, i.e. the set{

ϕ ∈ Φ
∣∣ ∃F̄ ∈ C s.t. T|� ϕ[X1\F1, . . . , Xn\Fn]

}
.

EXAMPLE 2.4
Let L+×

N
be the language of PA. Consider the solution problem P = 〈PA,C, Φ〉, where C is the set

of purely existential formulas of L+×
N

and Φ is the set of all formula equations over L+×
N

. Then ϕ

from Example 2.2 is an instance of P, since E(n) ≡ ∃k n = 2×k ∈ C and

PA |� ∀n. ∃k 2×n = 2×k ∧ (∃k n = 2×k → ¬∃k n + 1 = 2×k).

Let us give some more general examples of the expressive power of formula equations.

1. Let L be any first-order language and Φ the set of variable-free formula equations—in other
words, first-order formulas—over L. The solution problem 〈Ø, Ø, Φ〉 is the problem of first-
order validity.

2. Let C = {�, ⊥} and Φ the set of formula equations that contain only nullary formula variables
and propositional connectives. Then 〈Ø,C, Φ〉 is SAT.

3. Provability in PA can be obtained as a solution problem as follows. A formula ϕ is provable
in PA iff ϕ is provable from a single induction axiom and the axioms of a simple base theory
such as Robinson arithmetic Q in first-order logic; see, e.g. [10, Corollary 2.1]. Let L be the
language of arithmetic and C the class of all first-order formulas over L. Furthermore, let IND
be the formula equation X (0)∧∀ n(X (n) → X (n+1)) → ∀ nX (n), i.e. the induction principle
for an unknown formula X and Φ the set of all formula equations of the form Q ∧ IND → ϕ,
where Q is the conjunction of the axioms of Robinson arithmetic and ϕ is a closed formula
over L. Then 〈Ø,C, Φ〉 is the problem of provability in PA.

These examples show that a large variety of questions can be formulated as solution problems,
among them also some whose algorithmic solution poses considerable difficulties in practice. We
are particularly interested in the decidability of loop invariant generation.

2.3 Invariant generation

Formula equations can be used as a formalism for investigating questions of loop invariant
generation: as soon as a program formalism contains some notion of loops or recursion, verifying
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Decidability of affine solution problems 701

a program entails finding invariants that are generally non-analytic. While there are several ways
to represent programs and reason about them, such as Hoare calculus, state transition diagrams and
control f low graphs, they all have the problem of finding invariants in common. Formula equations
are of interest here because irrespective of the formalism used to represent it, the correctness of a
program with respect to some pre- and postcondition can be put in the form of a formula equation in
which the unknowns are the loop invariants.

For instance, in Hoare calculus, one investigates Hoare triples {A}p{B}, where A and B are
formulas and p is a program, expressing that if A holds before running p, then B must hold afterwards.
The triple {A}p{B} can be transformed into a set of first-order formulas vc(A, p, B) (the verification
conditions) such that

∧
vc(A, p, B) implies {A}p{B}. However, the Hoare calculus rule for loops

involves a loop invariant that cannot trivially be derived from the program but has to be supplied
by a human. Thus, the formulas in vc(A, p, B) will contain formula variables for the unknown
invariants, making

∧
vc(A, p, B) a formula equation. Each element of vc(A, p, B) has the form

X (x̄), A1(x̄), . . . , Am(x̄) � Y (t̄(x̄)), where X and Y are formula variables and the Ai are first-order
formulas. Such clauses are called linear constrained Horn clauses and the Ai are called constraint
formulas.

Another popular formalism are state transition systems. Before showing how to translate the state
transition systems of [19] to formula equations in Section 2.5 we introduce affine formula equations
that will be useful for that purpose in Section 2.4.

2.4 Affine formula equations

DEFINITION 2.5 (Laff).
Let Laff be the first-order language consisting of

• the constants 0 and 1;
• the binary function symbol +;
• the unary function symbols {c | c ∈ Q};
• the binary predicate symbol =.

In the sequel, let Th(Q) be the theory of Q over Laff, with 0, 1, +, = interpreted in the natural manner
and the unary function symbol c interpreted as multiplication with c for each c ∈ Q. For c ∈ Q, we
write the term c1 as c. Moreover, for any term t, we write the term −1t as −t.

We write t(x1, . . . , xn) for a term that contains exactly the variables x1, . . . , xn. Similarly,
A(x1, . . . , xn) denotes a formula whose free variables are exactly x1, . . . , xn. We call t and A a term
and a formula over {x1, . . . , xn}, respectively.

For the rest of the paper, we will tacitly interpret terms and formulas over Laff modulo
Th(Q). Consequently, we can assume without loss of generality that every term t(x1, . . . , xn) is of
the form c0 +∑n

i=1 cixi and every atomic formula A(x1, . . . , xn) is of the form t(x1, . . . , xm) = 0.
We call such atomic formulas linear equations and conjunctions of linear equations linear equation
systems.

Since Th(Q) |� c0 +∑m
i=1 cixi = c0 +∑m

i=1 cixi + 0y, a term over the set of variables S is also a
term over any S′ ⊇ S. Similarly, a linear equation (system) over S is also a linear equation (system)
over any S′ ⊇ S.

Thus, if ϕ is a formula over Laff containing exactly the individual variables x1, . . . , xn, we may
assume without loss of generality that each term in ϕ is an affine term over x1, . . . , xn and each
atomic formula in ϕ is a linear equation over x1, . . . , xn. Note that the latter stipulation does not
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702 Decidability of affine solution problems

include formula variables: a formula variable in an affine formula equation may contain any number
of terms.

DEFINITION 2.6 (Affine formula equation).
An affine formula equation is a quantifier-free formula equation over Laff.

Let X1, . . . , Xm be the formula variables in ϕ with respective arities k1, . . . , km. Then the tuple
〈n; k1, . . . , km〉 is called the dimensions of ϕ.

DEFINITION 2.7 (Affine solution problem).
The affine solution problem is the solution problem 〈Th(Q),C, Φ〉 where C is the class of linear
equation systems and Φ is the class of affine formula equations.

Throughout the rest of this paper, we will illustrate the parts of our procedure with the following
running example.

EXAMPLE 2.8
Let ϕ be the affine formula equation X (1, 0) ∧ (X (x, y) → X (−y, x) ∨ X (x, −y)) ∧ (X (x, y) → x =
y ∨ y = 0). The dimensions of ϕ are 〈2; 2〉.
THEOREM 2.9 (Main result).
The affine solution problem is decidable.

Restricting the affine solution problem to quantifier-free formulas allows to obtain this decidabil-
ity result. In Section 3, we develop the means necessary to prove Theorem 3.27. Before we start work
on the proof, let us discuss the connection between affine solution problems and invariant generation
in affine programs.

2.5 Invariant generation in affine programs

In [19] the authors consider a formalism for the verification of affine programs based on state
transition diagrams: a program consists of points connected by directed edges, each of which is
labeled with either an affine variable assignment or a subroutine call. There are no guards of
any kind; loops continue iterating or terminate nondeterministically. Operations other than affine
assignments are abstracted as nondeterministic assignments x :=? that may set a variable to an
arbitrary value. The authors present an algorithm that calculates, for each program point, the set of
all linear equations that hold at that point whenever execution reaches it. This algorithm is based on
iteratively computing (an abstract representation of) the set of runs that reach each program point.
This idea has no obvious analogue in formula equations, since there is no sense of ‘f low’ from
one location to the next. Instead, we take the position that an affine formula equation describes
a relationship between certain affine spaces and their images and preimages under some affine
transformations. It is then straightforward to iteratively calculate minimal affine spaces that can
possibly satisfy this relationship. If they do, they are a (maximally precise) solution; if they do not,
then no solution exists.

Let us present the transformation from the graph formalism of [19] to formula equations in a bit
more detail. Each procedure p in the program has an entry point ep and a return point rp. Moreover,
there is a special procedure Main whose entry and return points serve as the entry and return points
of the whole program. For each point s, let Xs be a formula variable over all individual variables of
the program. We give the resulting formula equation as a set of constrained Horn clauses:

• � XeMain(x̄) asserts that at the start of the program, no nontrivial linear equations are valid;
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Decidability of affine solution problems 703

• If s
xj:=t(x̄)−→ s′ is an edge in the program, then we add the clause Xs(x̄) � Xs′(x1, . . . , t(x̄), . . . , xn).

• If s
xj:=?−→ s′ is an edge in the program, we add the clauses Xs(x̄) � Xs′(x1, . . . , 0, . . . , xn)

and Xs(x̄) � Xs′(x1, . . . , 1, . . . , xn). The idea here is that if (x1, . . . , 0, . . . , xn) and
(x1, . . . , 1, . . . , xn) both solve the linear equation system Xs′ , then so does (x1, . . . , y, . . . , xn)

for any y ∈ Q.

• If s
p−→ s′ is an edge in the program and p is a procedure, we add the clauses Xs(x̄) � Xep(x̄)

and Xrp(x̄) � Xs′(x̄).

These formula equations are even simpler than in the case of Hoare calculus: there is only at most
one negative formula variable in each clause; constrained Horn clauses with this property are called
linear constrained Horn clauses. Moreover, due to the absence of guards, there are no constant
formulas in these clauses.

Note that [19] is not concerned with whether a solution exists; in fact, the existence of a solution
of ϕ is not in question, since we can let Xp ≡ � for all program points p of P. Rather, they compute a
strongest solution for each unknown in ϕ. In this sense, our approach diverges from theirs. Moreover,
it is easily seen that in general, a formula equation need not have a unique strongest solution. It turns
out, however, that our algorithm MINIMALSOLUTION produces a maximally strong solution. We
will elaborate on this in Sections 3.4 and 3.5.

3 Deciding affine solution problems

This section is devoted to proving Theorem 3.27. We proceeds as follows. We first translate ϕ into
a set of clauses Cl(ϕ). Each clause C induces a statement C that asserts the inclusion of an affine
space in a union of affine spaces. The statements we obtain in this way from clauses in Cl(ϕ) form
the set AC(ϕ) of affine conditions of ϕ. Notably, solutions of ϕ and AC(ϕ) correspond to each other.
We then apply Algorithm 1, which iteratively computes a solution of AC(ϕ) if a solution exists and
reports failure otherwise. The resulting tuple of affine subspaces can be translated back into a tuple
of linear equation systems.

3.1 Clausification

Let ϕ be an affine formula equation. As mentioned before, we may assume that terms and atomic
formulas in ϕ are respectively affine functions of their variables and linear equation systems. It
follows that ϕ is a Boolean combination of linear equations and formula variables. We go a step
further and regard linear equation systems—i.e. conjunctions of linear equations—as the building
blocks of affine formula equations. Therefore, we use the word ‘clause’ to refer to a disjunction of
possibly negated linear equation systems (and formula variables, which range over linear equation
systems).

The goal is to transform ϕ into a conjunction of clauses, i.e. formulas of the form

¬A(x̄) ∨ ¬X1(s̄1(x̄)) ∨ . . . ∨ ¬Xm(s̄m(x̄))

∨B1(x̄) ∨ . . . ∨ Br(x̄) ∨ Y1(t̄1(x̄)) ∨ . . . ∨ Yn(t̄n(x̄)),

where si, ti are affine terms, A, Bi are linear equation systems and Xi, Yi are formula variables ranging
over linear equation systems. As per the usual convention, such a clause is implicitly universally
closed over its individual variables. Note that for i 	= j, Xi and Xj are not necessarily distinct formula
variables; for instance, a clause might contain the same formula variable multiple times with different
terms.
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704 Decidability of affine solution problems

We write clauses in sequent form, i.e. the list of negative atoms, then the dividing symbol ‘�’,
then the list of positive atoms. The negative atoms are implicitly joined by conjunction, the positive
atoms by disjunction. Thus, the clause above is written as

A(x̄), X1(s̄1(x̄)), . . . , Xm(s̄m(x̄))

�
B1(x̄), . . . , Br(x̄), Y1(t̄1(x̄)), . . . , Yn(t̄n(x̄)).

In principle, any kind of clause form transformation that preserves satisfiability will serve here
if we are only interested in the existence of solutions, but for transformations that do not preserve
logical equivalence, it may be unclear how the solutions of the original formula equation and the
clause form relate to each other. Thus, for the sake of simplicity, we choose the naive method of
computing a clause form by distributivity.

DEFINITION 3.1 (Cl(ϕ)).
Let ϕ be an affine formula equation. Then Cl(ϕ) is the set of clauses obtained from ϕ by distributing
out its logical connectives.

EXAMPLE 3.2
Let ϕ be the affine formula equation defined in Example 2.8. ϕ is already in clause form; writing
the clauses of ϕ as sequents yields

� X (1, 0)

X (−x, y) � X (−y, x), X (x, −y)

X (x, y) � x = y, y = 0.

3.2 Affine spaces

Q interprets terms and formulas over Laff as functions and sets, respectively: let t1(x1, . . . , xm), . . . , tn
(x1, . . . , xm) be terms over Laff. We write t̄Q : Qm → Qn for the function denoted by the tuple of
terms t̄. Likewise, if A(x1, . . . , xn) is a formula over Laff, we write AQ for the n-ary relation on Q

denoted by A.
We present the following facts about the interpretations of terms and formulas.

PROPOSITION 3.3
Let A(x̄), B(x̄), A1(x̄), . . . , Am(x̄) be formulas over Laff and t1(x̄), . . . , tn(x̄) terms over Laff.

1. (
∨m

i=1 Ai)
Q =⋃m

i=1 AQ
i

2. (
∧m

i=1 Ai)
Q =⋂m

i=1 AQ
i

3. A[x̄\t̄]Q = (t̄Q)−1(AQ)

4. Th(Q) |� A(x̄) → B(x̄) iff AQ ⊆ BQ

Affine geometry (in the context of vector spaces) plays an important role in this paper. We
therefore brief ly review some important concepts. For a more rigorous treatment, see [21].

An affine subspace A of Qn is a subset of Qn that can be written as a + �A for a vector a ∈ Qn

and a linear subspace �A ⊆ Qn. The dimension of A is the dimension of �A.
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Decidability of affine solution problems 705

An affine transformation from Qm to Qn is a map that can be written as a linear map followed
by a translation. The images and preimages of affine subspaces under affine transformations are
themselves affine subspaces.

DEFINITION 3.4 (Aff).
Let V be a vector space over Q. Then Aff V is the set of all subsets of V that are either empty or
affine subspaces of V .

Aff V is a complete lattice: its least element is Ø, its greatest element is V and, since the
intersection of elements of Aff V is always either an affine space or empty, it is closed under infima.
We write the supremum of A,B ∈ Aff V as A∨ B. Moreover, if dim V = n, the height of Aff V is
equal to n + 2: for affine subspaces A,B, A � B implies dimA < dimB. Consequently, for any
chain Ø � A1 � A2 � . . ., dimA1 < dimA2 < . . ., is a chain in [0, n] and can therefore be at
most of length n + 1.

The following proposition shows the connection between formulas and terms of Laff and affine
spaces and transformations, respectively.

PROPOSITION 3.5

1. Let A(x1, . . . , xn) be a linear equation system. Then AQ ∈ AffQn.
2. Let t1(x1, . . . , xm), . . . , tn(x1, . . . , xm) be affine terms, i.e. ti = ci,0 +∑m

j=1 ci,jxj. Then t̄Q is an
affine transformation from Qm to Qn.

We write elements, subspaces and transformations of affine spaces in calligraphic typeface, e.g.
x,A,T.

DEFINITION 3.6 (Affine condition).
Let m, n, �, r ∈ N. An affine condition C is a statement of the form

A∩
�⋂

i=1

T−1
i (Xi) ⊆

m⋃
i=1

Bi ∪
�+r⋃

j=�+1

T−1
j (Xj),

where A,B1, . . . ,Bm ∈ AffQn and for i = 1, . . . , � + r, Ti : Qn → Qki is an affine transformation
and Xi is a variable ranging over AffQki . The tuple 〈n; k1, . . . , k�+r〉 is called the dimensions of C.

A tuple F̄∈ AffQk1× . . . × AffQkl+r is a solution of C if C[X̄\F̄] is true.

DEFINITION 3.7 (Affine conditions of an affine formula equation).
Let ϕ be an affine formula equation and

C ≡ A(x̄), X1(t̄1(x̄)), . . . , X�(t̄�(x̄))

�
B1(x̄), . . . , Bm(x̄), X�+1(t̄�+1(x̄)), . . . , X�+r(t̄�+r(x̄)),

a clause with dimensions 〈n; k1, . . . , k�+r〉 in Cl(ϕ). Then we call

C :≡ AQ ∩
�⋂

i=1

(
t̄Qi

)−1
(Xi) ⊆

m⋃
i=1

BQ
i ∪

�+r⋃
j=�+1

(
t̄Qj

)−1
(Xj)

the affine condition corresponding to C. The dimensions of C are equal to those of C.
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706 Decidability of affine solution problems

We say that C is an affine condition of ϕ iff it corresponds to some clause in Cl(ϕ). We write
AC(ϕ) for the set of affine conditions of ϕ.

EXAMPLE 3.8
Consider the affine formula equation ϕ from Example 3.2. We obtain the affine conditions of ϕ by
translating each of the clauses:

Q2 ⊆ T−1
1 (X),

S−1(X) ⊆ T−1
2 (X) ∪ T−1

3 (X),

X⊆ B1 ∪ B2,

where X is a variable ranging over AffQ2 and

T1 :
(

x
y

)
�→
(

1
0

)
B1 =

(
0
0

)
+
[(

1
1

)]

T2 :
(

x
y

)
�→
( −y

x

)
B2 =

(
0
0

)
+
[(

1
0

)]

T3 :
(

x
y

)
�→
(

x
−y

)
S:
(

x
y

)
�→
( −x

y

)
B1 and B2 are straightforwardly obtained as solution spaces of the linear equations x = y and y = 0,
respectively.

The following theorem shows that the translation from clauses to affine conditions is justified,
because solutions of one translate to solutions of the other.

THEOREM 3.9
Let ϕ be an affine formula equation, C a clause of ϕ containing the formula variables X̄ , C the
corresponding affine condition and F̄ a tuple of linear equation systems of appropriate arities. Then
Q |� C[X̄\F̄] iff F̄Q is a solution of C.

PROOF. Let W , Z be such that C[X̄\F̄] is syntactically equal to W � Z and W,Z such that C[X̄\F̄Q]
is syntactically equal to W⊆ Z. Then W= WQ and Z= ZQ by Proposition 3.3 1–3. Moreover, by
Proposition 3.3 (4), W⊆ Z iff Q |� W → Z, from which the claim obtains immediately. �
COROLLARY 3.10
Let ϕ be an affine formula equation. A tuple F̄ of linear equation systems is a solution of ϕ iff F̄Q is
a solution of AC(ϕ).

3.3 Projections

DEFINITION 3.11 (Affine Horn condition).
We call affine conditions of the form

A∩
�⋂

i=1

S−1
i (Xi) ⊆ B or A∩

�⋂
i=1

S−1
i (Xi) ⊆ S−1(Y)

affine Horn conditions.
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Decidability of affine solution problems 707

DEFINITION 3.12 (Projections).

1. Let

C : A∩
�⋂

i=1

T−1
i (Xi) ⊆

m⋃
i=1

Bi ∪
�+r⋃

j=�+1

T−1
j (Xj)

be an affine condition. We call the affine Horn conditions

A∩
�⋂

i=1

T−1
i (Xi) ⊆ Bi0 , i0 ∈ {1, . . . , m},

A∩
�⋂

i=1

T−1
i (Xi) ⊆ T−1

j0
(Xj0), j0 ∈ {� + 1, . . . , � + r}

projections of C.
2. Let S be a set of affine conditions. We call a set of affine Horn conditions a projection of

S if it consists of exactly one projection of each element of S. We write Pr(S) for the set of
projections of S.

3. Let ϕ be an affine formula equation. We abbreviate Pr(AC(ϕ)) as Pr(ϕ) and call its elements
affine projections of ϕ.

EXAMPLE 3.13
Let AC(ϕ) be the affine conditions of ϕ from Example 3.8. Since the latter two affine conditions
each have 2 projections, there are four affine projections of ϕ:

T1(Q
2) ⊆ X

T2(S
−1(X)) ⊆ X

X⊆ B1

(P1)

T1(Q
2) ⊆ X

T2(S
−1(X)) ⊆ X

X⊆ B2

(P2)

T1(Q
2) ⊆ X

T3(S
−1(X)) ⊆ X

X⊆ B1

(P3)

T1(Q
2) ⊆ X

T3(S
−1(X)) ⊆ X

X⊆ B2

(P4)
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708 Decidability of affine solution problems

The following lemma lets us make the step from affine conditions to projections. Its proof is
elementary.

LEMMA 3.14
Let V be a vector space over Q and let A1, . . . ,An be proper affine subspaces of V . Then

⋃n
i=1 Ai �

V .

COROLLARY 3.15
Let V be a vector space over Q and A1, . . . ,An,B affine subspaces of V . If B ⊆ ⋃n

i=1 Ai, then
B ⊆ Ai0 for some i0.

PROOF. Apply Lemma 3.14 to B and A1 ∩ B, . . . ,An ∩ B. �
THEOREM 3.16
Let C be an affine condition with dimensions 〈n; k1, . . . , k�+r〉 and F̄ ∈ AffQk1× . . . × AffQk�+r.
Then F̄ is a solution of C iff it is a solution of some projection of C.

PROOF. Let W,Z1, . . . ,Zm be such that C[X̄\F̄] = W ⊆ ⋃m
i=1 Zi. If F satisfies C, then W ⊆⋃m

i=1 Zi. By Corollary 3.15, this implies that W⊆ Zi0 for some i0; hence, F̄ satisfies a projection
of C. The other direction is obvious. �
COROLLARY 3.17
Let S be a set of affine conditions with dimensions 〈n; k1, . . . , k�+r〉 and F̄∈ AffQk1× . . . × AffQk�+r.
Then F̄ is a solution of S iff it is a solution of some element of Pr(S).

Theorem 3.16 shows that the solvability of affine formula equations reduces to the solvability of
sets of affine Horn conditions. In the next sections, we will show that the latter question is decidable.

3.4 Finding a fixed point by iteration

DEFINITION 3.18 (Upper and lower bound conditions).
Let ψ be a set of affine Horn conditions. As per Definition 3.11, ψ contains elements of the forms

A∩
m⋂

i=1

S−1
i (Xi) ⊆ B

and

A∩
m⋂

i=1

S−1
i (Xi) ⊆ T−1(Y) ≡ T

(
A∩

m⋂
i=1

S−1
i (Xi)

)
⊆ Y.

We call the former upper bound conditions and the latter lower bound conditions of ψ .

Let ψ be a set of affine Horn conditions with dimensions 〈k0; k1, . . . , kn〉. Recall that this means
that the unknown Xi ranges over AffQki . It follows that the candidate solutions of ψ are elements of
AffQk1× . . . × AffQkn .

DEFINITION 3.19 (Lat(ψ)).
Let ψ be a set of affine Horn conditions with dimensions 〈k0; k1, . . . , kn〉. We write Lat(ψ) for the
lattice AffQk1× . . . × AffQkn of candidate solutions of ψ .
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Decidability of affine solution problems 709

The order on Lat(ψ) is defined by

(U1, . . . ,Un) ≤ (V1, . . . ,Vn) if U1 ⊆ V1 ∧ . . . ∧ Un ⊆ Vn.

Its least element is 0 := (Ø, . . . , Ø).

As the finite product of lattices of finite height, Lat(ψ) has finite height as well.

DEFINITION 3.20 (Φ).
Let ψ be a set of affine Horn conditions. Let X1, . . . ,Xn be the variables in ψ and k1, . . . , kn
their respective dimensions. We define an operator Φψ on Lat(ψ) in the following manner: let
1 ≤ α ≤ n and

T1

(
A1 ∩

m1⋂
i=1

S−1
1,i (Xj1,i)

)
⊆ Xα

...

T�

(
A� ∩

m�⋂
i=1

S−1
�,i (Xj�,i)

)
⊆ Xα

be the lower bound conditions in ψ whose right-hand side is Xα . Then

Φψ(F)α := Fα ∨
�∨

i′=1

Ti′

(
Ai′ ∩

mi′⋂
i=1

S−1
i′,i (Fji′ ,i)

)
.

It is immediate from the definition that Φψ is monotone. Φψ can be viewed as a procedure for
improving an approximate solution of the lower bound conditions in ψ . Indeed, the fixed points of
Φψ are precisely the solutions of the lower bound conditions.

LEMMA 3.21
Let ψ be a set of affine Horn conditions with dimensions 〈m; k1, . . . , kn〉. Then a tuple F̄∈ Lat(ψ)

solves ψ iff Φψ(F̄) = F̄.

PROOF. Assume F̄solves all lower bound conditions in ψ . Let

T1

(
A1 ∩

m1⋂
i=1

S−1
1,i (Xj1,i)

)
⊆ Xα

...

T�

(
A� ∩

m�⋂
i=1

S−1
�,i (Xj�,i)

)
⊆ Xα
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710 Decidability of affine solution problems

be the lower bound conditions in ψ whose right-hand side is Xα . Then by assumption,

T1

(
A1 ∩

m1⋂
i=1

S−1
1,i (Fj1,i)

)
⊆ Fα

...

T�

(
A� ∩

m�⋂
i=1

S−1
�,i (Fj�,i)

)
⊆ Fα

are all true. This implies that

Φψ(F)α = Fα ∨
�∨

i′=1

Ti′(Ai′ ∩
mi′⋂
i=1

S−1
i′,i (Fji′ ,i))︸ ︷︷ ︸

⊆Fα

= Fα ,

so F̄ is a fixed point of Φψ .
Conversely, assume that F̄ is a fixed point of Φψ , i.e. for every j,

Fα ∨
�∨

i′=1

Ti′

(
Ai′ ∩

mi′⋂
i=1

S−1
i′,i (Fji′ ,i)

)
= Φψ(F)α = Fα .

This implies that
⋃�

i′=1 Ti′
(
Ai′ ∩⋂mi′

i=1 S
−1
i′,i (Fji′ ,i)

)
⊆ Fα , so F̄ solves all lower bound conditions

whose right-hand side is Xα . Since this works for all α, F̄solves all lower bound conditions. �
THEOREM 3.22 (Kleene’s fixed point theorem).
Let L be a lattice with least element 0 in which all chains have suprema. Let f : L → L be continuous
on chains, i.e. for any chain M , f (sup M) = sup f (M). Then f has a least fixed point m and m =
sup
{
f i(0)

∣∣ i ∈ N
}
.

DEFINITION 3.23 (F̄
ψ

).
Let ψ be a set of affine Horn conditions with dimensions 〈k0; k1, . . . , kn〉. Then F̄

ψ ∈ Lat(ψ)

denotes the least fixed point of Φψ .

Definition 3.23 is justified because Lat(ψ) and Φψ satisfy the prerequisites of Theorem 3.22:
since Lat(ψ) has finite height, every chain must have a supremum (in fact, a maximum). From the
monotonicity of f , we obtain Φψ(max{F̄1 < . . . < F̄m}) = Φψ(F̄m) = max Φψ({F̄1 < . . . <

F̄m}). Moreover, there is some k ∈ N such that F̄
ψ = Φk

ψ(0).

THEOREM 3.24
Let ψ be a set of affine Horn conditions. If there is a solution of ψ , then F̄

ψ
is its least solution.

Conversely, if F̄
ψ

is not a solution of ψ , then ψ has no solution.

PROOF. Let Ḡ be a solution of ψ . In particular, Ḡ must satisfy all lower bound conditions of ψ ,
so F̄

ψ ≤ Ḡ by Lemma 3.21. As a solution, Ḡ must also satisfy all upper bound conditions, and it
follows that F̄

ψ
does as well. �
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THEOREM 3.25
The function ψ �−→ F̄

ψ
is computable. Moreover, it is decidable whether F̄

ψ
solves ψ .

PROOF. Computability of ψ �−→ F̄
ψ

: let ψ be a set of affine Horn conditions. As remarked
previously, there is a k ∈ N such that F̄

ψ = Φk
ψ(0). Thus, we have to establish that we can compute

Φψ . The proof hinges on the fact that given finite representations of affine spaces A,B and an
affine transformation Tit is possible to compute finite representations of A∩ B,A∨ B,T(A) and
T−1(A). This is an elementary result of affine geometry and linear algebra, cf. [21].

Decidability: by Theorem 3.24, it is sufficient to check whether F̄
ψ

is a solution of all upper
bound conditions in ψ . To do this, we need to decide whether an affine subspace is contained within
another. The fact that this can be done is, again, a basic result. �

We are now able to define the algorithm MINIMALSOLUTION and prove it is correct.

Algorithm 1 MinimalSolution

Require: A set S of affine conditions
Ensure: An element of Lat S or failure .

1: Sol := Ø
2: for ψ ∈ Pr(S) do
3: compute F̄

ψ

4: if F̄
ψ

satisfies the upper bound conditions in ψ

5: add F̄
ψ

to Sol
6: end if
7: end for
8: if Sol 	= Ø then
9: return a minimal element of Sol

10: else
11: return failure
12: end if

THEOREM 3.26
Let S be a set of affine conditions. If S is solvable, then MINIMALSOLUTION(S) is a minimal
solution of S. If S is unsolvable, then MINIMALSOLUTION(S) = failure.

PROOF. By Theorems 3.24 and 3.25, after the end of the for loop in line 7, Sol contains exactly
the minimal solutions of the solvable ψ ∈ Pr(S). By Corollary 3.17, Sol is nonempty iff S is
solvable, and if Sol 	= Ø, then each of its elements is a solution of S. It immediately follows that
MINIMALSOLUTION outputs a solution of S if S is solvable and failure otherwise. It only remains
to show that in the positive case, the returned solution is minimal.

Assume Sol 	= Ø and let F̄ ∈ Sol be minimal. If Ḡ is any solution of S, then Ḡ is a solution of
some projection of S (again by Corollary 3.17) and hence Ḡ is above some element of Sol. Since F̄

is minimal in Sol, this shows that Ḡ 	< F̄. So F̄ is in fact a minimal solution of S. �
We are now able to prove the following.
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712 Decidability of affine solution problems

THEOREM 3.27 (Main result).
The affine solution problem is decidable.

PROOF. Let ϕ be an affine formula equation. By Corollary 3.10, we have that ϕ is solvable iff AC(ϕ)

is solvable. The latter is decidable by Theorem 3.26, provided that we can supply a coordinate system
of each subspace occurring in the affine conditions of ϕ. Every such subspace A is the interpretation
of some linear equation system A in ϕ, so solving A results in a basis of A. �

EXAMPLE 3.28
Let P1, P2, P3 and P4 be the affine projections defined in Example 3.13. Each projection Pi induces
an operator Φi on AffQ3:

Φ1,2 : F �→ F∨ T1(Q
2) ∨ T2(S

−1(F))

Φ3,4 : F �→ F∨ T1(Q
2) ∨ T3(S

−1(F)).

P1 and P2 induce the same operator because they contain the same lower bound conditions, and so
do P3 and P4.

Iterating Φ1,2 on Ø ∈ AffQ2 results in the sequence

Ø,
{(

1
0

)}
,
(

1
0

)
+
[(

1
1

)]
=: F∗

1.

Since
(

1
0

)
	∈ B1 and

(
1
1

)
	∈ �B2, F∗

1 solves neither upper bound conditions, so P1 and P2 are

unsolvable.
On the other hand, Φ3,4 results in the iteration sequence

Ø,
{(

1
0

)}
,
(

1
0

)
+
[(

1
0

)]
=: F∗

2.

F∗
2 ⊆ B1 is false and F∗

2 ⊆ B2 is true, so P3 is unsolvable and P4 has the solution F∗
2.

3.5 Backwards translation

Let ϕ be an affine formula equation. In the previous sections, we have shown that it is decidable
whether ϕ has a solution in linear equation systems. In fact, we can effectively compute a maximally
strong solution F1, . . . , Fn of ϕ, in the following sense: if G1, . . . , Gn is another solution of ϕ such
that for all i = 1, . . . , n, Gi → Fi, then for all i = 1, . . . , n, Gi ↔ Fi. First, we show that any solution
of AC(ϕ) translates back to a solution of ϕ.

Let F̄be a solution of AC(ϕ). For each Fi ⊆ Qmi , we need a linear equation system Fi such that
Fi = FQ

i . If Fi = Ø, then we let Fi ≡ ⊥. Otherwise, let 〈a0; a1, . . . , aki〉 be a coordinate system of
Fi. We obtain mi − ki + 1 independent linear equations by solving the linear equation system⎛

⎜⎜⎜⎜⎜⎝
1 aT

0

0 aT
1

...
...

0 aT
ki

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎝

c0
...

cmi

⎞
⎟⎠ = 0̄.

By Corollary 3.10, F̄ is a solution of ϕ.
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Decidability of affine solution problems 713

Note that if F ⊆ G, then F → G. In other words, smaller spaces translate to stronger formulas.
Since we can compute a minimal solution of AC(ϕ) by Theorem 3.26, we also obtain a maximally
strong solution of ϕ.

EXAMPLE 3.29
Let F∗

2 be the solution of the projection P4 computed in Example 3.28. We can translate F∗
2 back to

the linear equation system F(x, y) ≡ y = 0. This gives us the solved formula equation ϕ[X\F]:

0 = 0 ∧ (y = 0 → x = 0 ∨ −y = 0) ∧ (y = 0 → x = y ∨ y = 0).

4 Conclusion and future work

On the logical level, formula equations capture classic problems like the Auflösungsproblem. On
the level of formal verification, they are a significant generalization of the established concept
of constrained Horn clauses. We have shown that a specific loop invariant generation method
that operates on the equivalent of linear constrained Horn clauses can be generalized to arbitrary
quantifier-free formula equations. To this end, we have exploited specific properties of linear
subspaces of Qk .

The two most obvious avenues for generalizing our result are nonlinearity and inequalities.
Extending our language with inequalities means that the sets under investigation are polyhedra, and
consequently one cannot rely on a disjunction property like the one expressed in Corollary 3.15 for
affine spaces. This raises the question of how one would deal with non-Horn clauses.

One does not have to contend with this problem in the case of nonlinearity: the solution sets of
polynomial equalities are already closed under disjunction, due to the fact that p(x̄) = 0 ∨ q(x̄) = 0
iff pq(x̄) = 0. Therefore, it may be possible to extend the result of [12] with relatively little difficulty.

We can already say that in the presence of both nonlinearity and inequalities, the solution problem
becomes undecidable. This follows from [18]. Moreover, [7] implies that allowing arbitrary first-
order quantifiers and adding a single unary predicate to the language results in undecidability as
well.
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