
Algorithmic structuring and compression of proofs

Stefan Hetzl
hetzl@logic.at

Vienna University of Technology

Introduction

Computer-generated proofs are typically ana-
lytic: they consist only of formulas which are
present in the theorem that is shown.
In contrast, mathematical proofs written by
humans almost never are: they are highly
structured due to the use of lemmas.
This project aims at developing algorithms and
software which structure and abbreviate ana-
lytic proofs by computing useful lemmas.
We employ proof-theoretic methods, in partic-
ular a recently discovered connection between
proof theory and formal language theory.

Aims

Computer-generated proofs are often hard to
understand, among other reasons, because
they are analytic.
However, even inscrutable analytic proofs do
carry mathematical knowledge, after all they
show that a theorem is true. But they carry
this knowledge only in an implicit form which
renders it inaccessible to a human reader.

390 x + (0 * x) = x.

[para(207(a,1),11(a,1,2)),

rewrite([389(8),221(5),5(3),

18(3),10(2),11(2)]),flip(a)].

Fig. 1. Line in ATP output

We want to make this mathematical know-
ledge explicit by structuring and compres-
sion of proofs. To that aim we generate lem-
mas which allow a new – more readable – proof
of the same theorem.

A ⊢ ∃y (x · x) · y = y · (x · x) ... ⊢ F
A ⊢ F

Fig. 2. Lemma in the sequent calculus

The intended application of our algorithms
is as post-processing of automated deduction
systems in order to obtain more meaningful
proof output.

Methods – Overview

For the generation of new lemmas we
strongly rely on theoretical notions and re-
sults: the sequent calculus, cut-elimination,
Herbrand’s theorem, representation of proofs
by Herbrand-disjunctions, etc. Of particular
importance is a recently discovered connec-
tion between proof theory and formal
language theory [1].

Proof Theory and
Formal Language Theory

An analytic (cut-free) proof π can be rep-
resented by its Herbrand-disjunction H(π)
consisting of the information which instances
are picked for which quantifiers.
This form of representation has been extended
to proofs with cuts (lemmas) of the form ∃x A
or ∀x A where A is quantifier-free [1, 3] using
totally rigid acyclic tree grammars. Rigid
tree languages have been introduced in [4],
originally with applications in verification in
mind.

proof π with cuts
cut-elimination→ cut-free proof π∗

↓ ↓
grammar G(π)

defines→ L(G(π)) = H(π∗)

Fig. 3. Proofs and Grammars

On the right level of abstraction, cut-
elimination is the process of computing the
language of the grammar.

Algorithmic Cut-Introduction

The close relationship between proofs and
grammars allows to reverse cut-elimination
as follows:

1.Given a cut-free proof, carry out a struc-
tural analysis of the term set H of its
Herbrand-disjunction.

• • • • • •
g(r(c , d))
g(g(c))
b(r(c , d))
b(g(c))

Fig. 4. A set of terms H

By identification of appropriate regularities,
write the terms of the Herbrand-disjunction
as a grammar.

•
• •

τ → g(α), b(α)
α → r(c , d), g(c)

Fig. 5. A tree grammar G with L(G ) = H

2.Generate a proof with cut that realises
this grammar – this is always possible, the
cut-formulas are induced by the structure of
the grammar. Apply simplifications as post-
processing.

A proof-of-concept algorithm based on this ap-
proach is described in [2].

Implementation

Based on:

GAPT
Generic Architecture for Proof Theory
http://code.google.com/p/gapt/

•Supports first-order logic, higher-order logic
•Standard data structures and algorithms
from proof theory

•Resolution Prover

•Cut-Elimination
•Graphical User Interface
•Command-Line Interface
• ...
• Implemented in Scala

•GNU GPL

Outlook

•Develop full implementation

•Large-scale tests (TPTP, SMT-LIB)

•Extension of theoretical basis

•Cover larger classes of proofs with cut

•Work modulo theories

•From lemma generation to invariant genera-
tion for inductive theorem proving

References

[1] S. Hetzl. Applying Tree Languages in Proof The-
ory. In A.-H. Dediu and C. Mart́ın-Vide, editors,
Language and Automata Theory and Applications
(LATA) 2012, volume 7183 of Lecture Notes in Com-
puter Science, pages 301–312. Springer, 2012.

[2] S. Hetzl, A. Leitsch, and D. Weller. Towards Algo-
rithmic Cut-Introduction. In Logic for Programming,
Artificial Intelligence and Reasoning (LPAR-18), vol-
ume 7180 of Lecture Notes in Computer Science,
pages 228–242. Springer, 2012.

[3] S. Hetzl and L. Straßburger. Herbrand-Confluence
for Cut-Elimination in Classical First-Order Logic. In
Computer Science Logic (CSL) 2012. to appear.

[4] F. Jacquemard, F. Klay, and C. Vacher. Rigid tree
automata and applications. Information and Com-
putation, 209:486–512, 2011.


