
Boolean unification with predicates
SEBASTIAN EBERHARD, STEFAN HETZL and DANIEL WELLER, Institute
of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner
Hauptstrasse 8-10, AT-1040 Wien, Austria.
Email: eberhard@iam.unibe.ch; stefan.hetzl@tuwien.ac.at; weller@logic.at

Abstract
In this article, we deal with the following problem which we call Boolean unification with predicates: For a given formula
F[X] in first-order logic with equality containing an n-ary predicate variable X , is there a quantifier-free formula G[x1,...,xn]
such that the formula F[G] is valid in first-order logic with equality? We obtain the following results. Boolean unification
with predicates for quantifier-free F is �P

2 -complete. In addition, there exists an EXPTIME algorithm which for an input
formula F[X], given as above, constructs a formula G such that F[G] being valid in first-order logic with equality, if such
a formula exists. For F of the form ∀yF ′[X ,y] with F ′ quantifier-free, we prove that Boolean unification with predicates is
already undecidable. The same holds for F of the form ∃yF ′[X ,y] for F ′ quantifier-free. Instances of Boolean unification with
predicates naturally occur in the context of automated theorem proving. Our results are relevant for cut-introduction and the
automated search for induction invariants.

Keywords: Boolean unification, second-order unification, quantifier elimination, decidability, complexity.

1 Introduction

Unification is the problem of finding for an input set M of terms {t1,...,tm} a substitution of the
variables x1,...,xn occurring in M such that all substituted terms of M are syntactically equal. Such
a substitution is called a unifier of {t1,...,tm}. This problem was first formulated and treated by
Robinson [19] in the context of resolution. Efficient polynomial time algorithms exist which given
an input set {t1,...,tm} of terms either construct a unifier or prove that no unifier exists (see e.g.
Baader and Snyder [4]).

The syntactical unification problem as described above was generalized to equational unification.
Here, the problem is to find for an input set M of terms {t1,...,tm} a substitution of its free variables
such that all substituted terms of M are equal with respect to a given equational theory. Equational
unification is computationally much more complex than plain unification, for some natural equational
theories it is even undecidable (see [4]).

Boolean unification is an important special case of equational unification where the equational
theory is given as the theory of Boolean algebras. It was analysed by several authors [2, 5, 16, 17].
Boolean unification has a close connection to propositional logic since finding a unifier for {t1,...,tm}
means to substitute the variables in {t1,...,tm} such that the substituted terms represent equivalent
formulas. The following results for the complexity of Boolean unification have been obtained by
Baader in [2]:

(1) Boolean unification is NP-complete if the terms {t1,...,tm} are built exclusively from variables
and the logical symbols ∧,∨,¬,�,⊥.

(2) Boolean unification is �P
2 -complete if the terms {t1,...,tm} are allowed to additionally contain

free constant symbols.
(3) If the terms {t1,...,tm} are unrestricted, i.e. if they are allowed to contain free function symbols,

then Boolean unification is PSPACE-complete.

Vol. 27 No. 1, © The Author, 2015. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
Published online September 8, 2015 doi:10.1093/logcom/exv059

110 Boolean unification with predicates

We will henceforth refer to the 2nd problem in this list as Boolean unification (BU). In this article,
we extend the research on BU by analysing the following more general problem:

Problem (Boolean unification with predicates (BUP))
For an input formula F[X] in first-order logic with equality containing predicate variables X , are
there quantifier-free formulas Gi[x1,...,xki] (where ki is the arity of Xi) such that the formula F[G]
is valid in first-order logic with equality?

The vector of formulas G above will be called a witness. Simple instances of BUP are, e.g. the
formulas X (a)∧X (b) and X (a)∧¬X (b). In the first example, the formula G[x] :=x≈a∨x≈b is a
witness, and in the second example, no witness exists since a,b might denote the same object. More
complicated instances of BUP naturally occur in the context of proof compression by introducing a
cut [13–15]. The instances arising in this context are of the form ∀x.(X (x)→∧

t∈T X (t))→F (for a
set of terms T and quantifier-free F), and a solution to BUP yields a cut-formula that can be used
to prove F . Also for the approach in [7], where an algorithm automatically producing induction
invariants is presented, the solution of instances of BUP is essential.

The main aim of our article is to analyse the complexity of BUP. As indicated above, BUP contains
BU since {t1,...,tm} is a positive instance of BU iff t1 ↔ t2 ↔···↔ tm is a positive instance of BUP,
where the variables of the ti are considered as 0-ary predicate variables, and the constants of the ti are
considered as 0-ary predicate constants, and therefore BUP is �P

2 -hard. The first main result of this
article will be to show that the following problem, which lies strictly between Boolean unification
and BUP, is still in �P

2 :

Problem (QFBUP)
For a quantifier-free input formula F[X] in first-order logic with equality, are there quantifier-free
formulas Gi[x1,...,xki] such that the formula F[G] is valid in first-order logic with equality?

On the other hand, note that BUP is undecidable since it contains the validity problem for first-order
logic with equality. Towards analysing the transition from �P

2 -completeness to undecidability, we
introduce the following restricted versions of BUP.

Problem (EBUP)
For an input formula F[X]=∃y H [X ,y] in first-order logic with equality, where H [X ,y] is quantifier-
free, are there quantifier-free formulas Gi[x1,...,xki] such that the formula F[G] is valid in first-order
logic with equality?

Problem (UBUP)
For an input formula F[X]=∀y H [X ,y] in first-order logic with equality, where H [X ,y] is quantifier-
free, are there quantifier-free formulas Gi[x1,...,xki] such that the formula F[G] is valid in first-order
logic with equality?

Theorem 1
EBUP is undecidable.

Proof. We give a computable reduction from the validity problem of first-order logic with equality
to EBUP. First, note that this validity problem reduces to the validity problem for formulas of the
form ∃x F , with F quantifier-free: let F be an arbitrary first-order formula, then we can compute
a formula ∃x1∀y1 ...∃xn∀ynF ′(x,y) with F ′(x,y) quantifier-free that is logically equivalent to F by
prenexification. Let f1,...,fn be functions symbols not occuring in F ′ and define ti := fi(x1,...,xi).
Then ∃x1 ···xn F ′(x,t1,...,tn) is valid exactly if F is valid (since Skolemization of universal quantifiers

Boolean unification with predicates 111

preserves validity). Finally, if EBUP is decidable, then we can decide the validity problem for ∃x F
by giving it as input to the Turing machine deciding EBUP. �

On the other hand, the validity problem for formulas of the form ∀x G, with G quantifier-free, is
decidable, so this proof does not apply to UBUP. The second main aim of this article is therefore
the development of an undecidability proof for UBUP by reduction from a different well-known
problem, the Post Correspondence Problem.

2 Related research

2.1 Second-order unification

Instead of working modulo an equational theory, the standard (i.e. syntactic first-order) unification
problem has also been extended to allow for higher-order variables. Second-order unification permits,
in addition to individual variables, also function variables and asks for a substitution resulting in
syntactic equality of the terms to be unified. An n-ary function variable can then be substituted by a
term of the form λx1 ...xn.t where the β-reduction is considered part of the substitution. The term t
is built from the original signature and may contain any number of occurrences of any of the xi. This
problem has been shown to be undecidable in [12].

Context unification is the restriction of this problem to terms λx.t where t is still in the original
signature but — in contrast to second-order unification — may contain only one occurrence of x. This
restriction of permitting at most one occurrence of x turns the second-order variables into context
variables (into which a substitution inserts a context, i.e. a term with a hole). Several subclasses of
context unification are known to be decidable, see e.g. [20, 21]. In particular, the restriction of this
problem to the class containing at most one context variable has been shown NP-complete in [11].

The second-order aspect of these problems is conceptually similar to the problems treated in
this article: the problem QFBUP could be described as a second-order unification problem modulo
logical equivalence. But in the light of results on first-order equational unification, see e.g. [4], it is
not surprising that working modulo logical equivalence instead of syntactical equality constitutes an
essential difference, and hence the techniques and results from second-order and context unification
are not applicable to the problems studied in this article.

2.2 Quantifier elimination

If L is a language and T a theory in L, we say that T has quantifier elimination if for every formula
F in L, there exists a quantifier-free formula G in L such that F ↔G holds in T . Clearly, quantifier
elimination is conceptually related to the BUP problem: if, e.g. we are able to solve the BUP problem
for F[X] by providing quantifier-free formulas G such that ∃X F[X]↔F[G] is valid, then this also
yields a method for the elimination of second-order predicate quantifiers.

On the other hand, quantifier elimination does not necessarily yield witnesses: the first-order theory
of real closed fields in the language L={=,≤,+,−,·,0,1}, e.g. famously has first-order quantifier
elimination, but the valid formula ∃x x ·x=1+1 does not have a witness since there is no term of L
representing

√
2.

Still, some quantifier elimination methods may yield the witnesses we require in our context.
Since we are looking for witnesses of predicate variables, the most relevant quantifier elimination
procedures are those for second-order predicate quantifiers. The SCAN algorithm introduced in [9]
(see also [10]) is such a quantifier elimination algorithm based on the resolution calculus. SCAN

112 Boolean unification with predicates

is known to be correct but incomplete on the class of formulas ∃X1 ···Xn F , where F is a first-order
formula. SCAN improves a similar algorithm introduced by Ackermann in [1].

More recently, the DLS algorithm was developed [6] (see also [10]). Analogously to the SCAN
algorithm, the DLS algorithm computes, given a second-order formula, a logically equivalent formula
that is free of second-order quantifiers if it terminates succesfully. In contrast to the SCAN algorithm,
DLS does not involve the construction of a resolution derivation, but is based on a more direct
application of a central lemma of [1]. It turns out that in the context of QFBUP, the DLS algorithm
always terminates successfully, and that it can be used to compute the witnesses we require. Hence,
we will use (a specialization of) the DLS algorithm for obtaining the �P

2 -completeness result for
QFBUP in Section 5.1.

3 Outline of the article

We start by recalling basic definitions of logic relevant to our problems in Section 4. We then turn
our attention to the QFBUP problem: in Section 5.1, we give an EXPTIME algorithm which from
an input instance P of QFBUP produces a witness if it exists, thereby reducing the QFBUP problem
to the validity problem of formulas of the form ∃X F[X] with F[X] quantifier-free. We complete the
study of QFBUP by determining the complexity of this validity problem in Section 5.2. Finally, we
turn to UBUP and show its undecidability in Section 6 by a reduction from Post’s Correspondence
Problem.

4 Preliminaries

The logical formalism we work in is that of classical first-order logic with equality extended by
quantification over predicates. More precisely, we assume given a language L containing, for every
n∈N, countably many function and predicate symbols of arity n. In particular, we assume that L
contains a distinguished binary predicate symbol for equality denoted by ≈. Terms are defined as
usual from individual variables, usually denoted by x,y,z,..., and function symbols from L. Atomic
formulas are defined as usual from terms, the predicate symbols from L, as well as n-ary predicate
variables, usually denoted by X ,Y ,Z,..., for every n∈N. Formulas are defined as usual from atomic
formulas, the propositional connectives ∧,∨,¬, as well as first- and second-order quantifiers ∃x,∃X .
A formula or term is called ground if it does not contain variables. The size of a formula is defined
as the number of symbols it contains.

We will use the following notation to indicate substitution: if we introduce a formula as
F[x1,...,xn] and first-order terms t1,...,tn, then by F[t1,...,tn] we denote the formula F[x1,...,xn]
after simultaneous substitution of xi by ti. For a k-ary predicate variable X , if we introduce a formula
as F[X] and another formula as G[x1,...,xk], then by F[G] we denote the formula obtained from F[X]
by substituting X (t1,...,tk) by G[t1,...,tk]. An analogous notation is used for formulas introduced
as F[X1,...,Xn].

A structure is a pair M= (M ,I) where M is a set and I is an interpretation of L, i.e. I (P)⊆M k

for k-ary predicates P ∈L, and I (f) :M k →M for k-ary function symbols f ∈L. In particular, for
0-ary predicates P, I (P) is either the empty set, which we denote by I (P)=⊥, or I (P) is the singleton
set containing the empty tuple, which we denote by I (P)=�. An environment is an interpretation
of the set of variables. If θ is an interpretation, x a variable, and m∈M , then θ [x :=m] is defined
by θ [x :=m](x)=m and θ [x :=m](y)=θ (y) for x �=y. θ [X :=S] is defined analogously for k-ary
predicate variables X and S ⊆M k . For a structure M= (M ,I), an environment θ , and a formula F ,

Boolean unification with predicates 113

the relation M,θ |=F is defined as usual. In particular, for a k-ary predicate variable X , we have the
clause M,θ |=∃X F[X] iff there is a S ⊆M k such that M,θ [X :=S] |=F[X]. We define M |=F iff
M,θ |=F for all environments θ , and say that F holds in M.

A formula F is valid in first-order logic without equality if M |=F for all structures M. We say
that M= (M ,I) is a structure for first-order logic with equality if I (≈)={(m,m) |m∈M }. A formula
F then is valid in first-order logic with equality if M |=F for all structures for first-order logic with
equality M. If it is clear from the context which notion of validity we refer to, we will simply write
‘structure’ and ‘F is valid’.

5 The quantifier-free Boolean unification problem

The complexity-theoretic characterization of QFBUP will be obtained in two steps:

Theorem 2
There exists an EXPTIME function wit from quantifier-free formulas to quantifier-free formulas such
that

(∃X F[X])↔F[wit(F[X])]
is valid in first-order logic with equality for all quantifier-free formulas F[X].
Theorem 3
QFBUP is �P

2 -complete.

The proofs of these results are presented in the two subsequent sections.

5.1 The DLS′ algorithm

In this section, ‘valid’ always means ‘valid in first-order logic with equality.’ The DLS algorithm,
see [10], is a quantifier elimination algorithm for formulas ∃X F[X], where F may be an arbitrary
first-order formula. If it terminates successfully on such a formula, it yields a first-order formula G
such that ∃X F[X]↔G is valid. Here, we study the specialization DLS′ of the DLS algorithm to the
setting of formulas ∃X F[X] with F[X] quantifier-free, which is defined as follows:

(1) Given such a formula ∃X F[X], compute a DNF C1[X]∨···∨Cn[X] of F[X].
(2) Write each Ci[X] in the form αi[X]∧βi[X], where αi[X] contains exactly the positive

occurrences of X in Ci[X].
(3) Let αi[X] be X (t1)∧···∧X (tk). Define Gi[x] :=x≈ t1 ∨···∨x≈ tk (where t ≈s := t1 ≈s1 ∧···∧

tm ≈sm as usual).
(4) Output

S[x] :=(β1[G1]→G1[x])∧
(¬β1[G1]∧β2[G2]→G2[x])∧
···
(¬β1[G1]∧···∧¬βn−1[Gn−1]∧βn[Gn]→Gn[x]).

Let us consider an examplary run of the algorithm.

114 Boolean unification with predicates

Example 4
Consider the formula ∃X F[X] with

F[X]= ([X (a)∧¬X (f (b))]∨[X (f (b))∧¬X (a)]).

F[X] is already in a DNF of the form C1[X]∨C2[X]. We have G1[x]=x≈a and G2[x]=x≈ f (b),
and therefore

S[x]= (¬f (b)≈a→x≈a)∧(¬¬f (b)≈a∧¬a≈ f (b)→x≈ f (b))

It is easily seen that in first-order logic with equality, the equivalences

F[S]↔¬f (b)≈a↔∃X F[X]

are valid.

To prove Theorem 2, it suffices to prove the following.

Theorem 5
The DLS′ algorithm terminates on every input ∃X F[X] in exponential time in the size of F[X] and
outputs a formula S[x] such that ∃X F[X]↔F[S] is valid.

Towards the proof of this result, we need the following two results. The first is a specialization of
Ackermann’s Lemma [1, 10]:

Lemma 6
Let A[x],B[X] be formulas such that A[x] contains no occurrences of X , and B[X] contains only
negative occurrences of X . Then the following is valid:

∃X (∀x(A[x]→X (x))∧B[X])↔B[A].

The second result shows how to obtain witnesses for the individual disjuncts of the DNF.

Lemma 7
Let Ci[X],βi[X],Gi[x] be as above. Then the following are valid:

Ci[Gi]↔βi[Gi] and ∃X Ci[X]↔Ci[Gi].

Proof. Note that Ci[Gi]↔βi[Gi] is valid since αi[Gi] is valid. Furthermore, we have validity of

αi[X]↔∀x(Gi[x]→X (x))

and hence by Lemma 6

∃X Ci[X]↔∃X (∀x(Gi[x]→X (x))∧βi[X])↔βi[Gi].

�
It remains to show that the combination S[x] of these single witnesses are a witness for the whole
disjunction.

Boolean unification with predicates 115

Proof of Theorem 5
Assume M |=∃X F[X]. Then

M |= (∃X C1[X])∨···∨(∃X Cn[X])

by logic. Let i∈{1,...,n} be the least such that M |=∃X Ci[X]. Then for all j< i we have M |=
¬∃X Cj[X] and hence by Lemma 7

(∗) M |=¬β1[G1]∧···∧¬βi−1[Gi−1]∧βi[Gi].

We claim that M |=∀x(S[x]↔Gi[x]):
(1) If M |=S[x], then M |=Gi[x] by (∗).
(2) Assume M |=Gi[x]. Note that all antecedents in the conjuncts of S[x] are false in M except

for the i’th antecendent. The i’th succedent is also true in M by assumption, hence M |=S[x].
Hence by Lemma 7 we have M |=∃X Ci[X]⇒M |=Ci[Gi]⇒M |=Ci[S]⇒M |=F[S]. The
exponential run-time of DLS′ is trivial (all steps take at most quadratic time in the size of a DNF of
F[X]). �

We formulate the following corollary, since the fact that a single witness suffices to establish
validity of an existential formula is a well-known property in logic (see e.g. [8]).

Corollary 8
The set F of formulas of the form ∃X F[X] for a quantifier-free formula F[X] has the EXPTIME
existence property; i.e. if ∃X F[X] is valid, then a witness of F can be computed in exponential time
in F[X].

5.2 �P
2 -completeness of QFBUP

The aim of this section is to establish Theorem 3, i.e. the complexity theoretic characterization of the
QFBUP problem. QFBUP is �P

2 -hard: the hardness proof of BUP from Section 1, showing that BU
is contained in BUP, applies already to QFBUP.

It therefore suffices for �P
2 -completeness to give a polynomial time reduction to a problem which

is in �P
2 . We choose the validity problem of quantified boolean formulas (QBFs): a formula F is

called a QBF if F contains no predicate constants, no first-order quantifiers, and all predicate variables
in F are 0-ary. Then the following problem is well-known to be �P

2 -complete (see [18]):

Problem (�2−TQBF)
Given a closed QBF F =∀X ∃Y G[X ,Y], with G[X ,Y] quantifier-free, is F valid?

Note that for QBFs, the notions of validity with/without equality coincide since formulas do not
contain ≈. Furthermore, if F is a QBF and (M ,I),θ |=F then (M ′,I ′),θ |=F for any set M ′ and any
interpretation I ′ since there are no terms, no predicate constants nor first-order variables in F . Hence
we will always simply write θ |=F for QBFs F .

Towards our reduction, we introduce two validity problems corresponding to QFBUP: by 2QFV≈
we will denote the problem of determining, given a quantifier-free formula F[X], whether ∃X F[X]
is valid in first-order logic with equality. By 2QFV we denote the analogous problem for first-order
logic without equality.

116 Boolean unification with predicates

Corollary 9
QFBUP is p-equivalent to 2QFV≈.

Proof. Let F[X] be a positive instance of QFBUP, i.e., there are G1,...,Gn s.t. F[G] is valid in
first-order logic with equality. Then also the formula ∃X F[X] is valid and hence F[X] is a positive
instance of 2QFV≈.

For the other direction, let F[X] be a positive instance of 2QFV≈, then ∃X F[X] is valid and
by repreated application of Theorem 5 we obtain formulas G1,...,Gn s.t. ∃X F[X]↔F[G] is valid.
Hence F[G] is valid in first-order logic with equality, i.e., F[X] is a positive instance of QFBUP. �
Let us introduce some notions that will be used in the following proofs. Let R,S be sets of atomic
formulas, and let τ :S →R. By abuse of notation, we denote by τ also the map from formulas over
S to formulas over R defined by τ (A◦B)=τ (A)◦τ (B) for propositional connectives ◦. We will often
make use of the fact that if M,N are structures, then M,σ |=A iff N ,θ |=τ (A) for all A∈S implies
M,σ |=B iff N ,θ |=τ (B) for all formulas B over S.

For predicate symbols P, function symbols f , vectors of terms s,t, and terms r,u,v, define the
formulas

EqAx1(P,t,s) := t ≈s∧P(t)→P(s)

EqAx2(f ,t,s) := t ≈s→ f (t)≈ f (s)

EqAx3(r,u,v) :=r ≈u∧u≈v→r ≈v

EqAx4(r,u) :=r ≈u→u≈r

EqAx5(r) :=r ≈r.

It is an elementary result of logic that a formula F is valid in first-order logic with equality iff
EqAx→F is valid in first-order logic without equality, where EqAx is a conjunction of universal
closures of instances of the formulas given above. The following result is proven by strengthening
this observation for the class of formulas under consideration: in our setting, it is not necessary to
use the universal closure, and the number of instances required is polynomially bounded.

Lemma 10
2QFV≈ ptime reduces to 2QFV.

Proof. Fix a quantifier-free formula F[X]. Denote by Rel the set of predicate symbols occuring in
F[X] (including the predicate variable X as well as the symbol ≈ in case it does not occur in F[X])
and by Fun the function symbols occuring in F[X]. Furthermore set Terms :={t | t a term in F[X]},
and denote by At the set of atomic formulas built from Terms and Rel. Define

EqAx :=
∧

P ∈Rel,
f ∈Fun,

t,s∈Termsn,

r,u,v∈Terms

EqAx1(P,t,s)∧EqAx2(f ,t,s)∧EqAx3(r,u,v)∧EqAx4(r,u)∧EqAx5(r).

Note that the formula F ′[X] :EqAx→F[X] can be computed in polynomial time in F[X]. We will
show that ∃X F[X] is valid in first-order logic with equality iff ∃X F ′[X] is valid in first-order logic
without equality.

Boolean unification with predicates 117

Let M �|=∃X F[X]. It suffices to show that M |= (∀X EqAx)∧(∀X ¬F[X]). Since M interprets
≈ as real equality on M , we have M |=∀X EqAx, and since M is a countermodel to ∃X F[X], we
have M |=∀X ¬F[X].

Now let M= (M ,I) be such that M,σ �|=∃X (EqAx→F[X]). Define an equivalence relation ∼
on Terms by s∼ t :⇔M |=s≈ t and a structure N = (N ,J) where N :={[t]∼ | t ∈Terms} and for f a
function symbol of arity n and P a predicate symbol of arity n (where c is some arbitrary but fixed
constant symbol from F[X] which we w.l.o.g. assume to exist)

J (f) :=[t1]∼,...,[tn]∼ �→
{ [f (t1,...,tn)]∼ if f (t1,...,tn)∈Terms,

[c]∼ if f (t1,...,tn) /∈Terms

J (P) :={([t1]∼,...,[tn]∼) |M,σ |=P(t1,...,tn)}.

Note that, since M,σ |=∀X EqAx, J (f) is well-defined for all f ∈Fun. Furthermore, J (≈) is real
equality on N . It remains to show that N ,θ |=∀X ¬F[X], where θ is an arbitrary environment. For a
contradiction, assume that N ,θ [X :=S] |=F[X] for some S ={([ti,1]∼,...,[ti,n]∼) |1≤ i≤k}. Define
R :={(I (ti,1),...,I (ti,n)) |1≤ i≤k}, then M,σ [X :=R] |=F[X] iff N ,θ [X :=S] |=F[X]:

(1) M,σ [X :=R] |=P(t1,...,tn)⇔ ([t1]∼,...,[tn]∼)∈J (P)⇔N ,θ [X :=S] |=P(t1,...,tn),
(2) M,σ [X :=R] |=X (t1,...,tn)⇔ (I (t1),...,I (tn))∈R⇔ ([t1]∼,...,[tn]∼)∈S ⇔N ,θ [X :=S] |=

X (t1,...,tn).

Hence M,σ |=∃X F[X], contradiction. �
Example 11
Consider the formula a≈b. This formula is not valid in first-order logic with equality; the structure
(M ,I) with M ={a,b} and I (≈)={(a,a),(b,b)} is a countermodel. The formula EqAx constructed
in the proof of Lemma 10 is equivalent to (in first-order logic without equality) (a≈b↔b≈a)∧a≈
a∧b≈b. Note that the structure given above is also a countermodel for EqAx→a≈b.

Lemma 12
2QFV ptime reduces to �2−TQBF.

Proof. Fix a quantifier-free formula G[X], denote by At :=ConsAt∪VarAt the set of atomic
formulas in G[X], where ConsAt contains the atoms with constant head and VarAt contains
the atoms with variable head, and fix any injection τ from At to the set of 0-ary predicate
variables. Let τ (ConsAt)={Y1,...,Yn} and τ (VarAt)={Z1,...,Zm}. We show that ∃X G[X] is valid
iff ∀Y1 ···∀Yn∃Z1 ···∃Zm τ (G[X]) is valid.

Let M= (M ,I) be a countermodel of ∃X G[X]. It suffices to give an interpretation J of the Yi
such that J |=∀Z1 ···∀Zm ¬τ (G[X]). Define

J (Yi)=
{� if M |=τ−1(Yi),

⊥ otherwise.

For contradiction, assume that J |=∃Z1 ···∃Zm τ (G[X]), i.e. there exists an extension J ′ of J sucht that
J ′ |=τ (G[X]). Let τ−1(Zi)=X (t1,i,...,tk,i) and define S :={(I (t1,i),...,I (tk,i)) |J ′(Zi)=�}. Then
M[X :=S] |=G[X] iff J ′ |=τ (G[X]):

(1) Let τ (P(t1,...,tn))=Yk . Then M[X :=S] |=P(t1,...,tn)⇔J (Yk)=�⇔J ′ |=Yk .
(2) Let τ (X (t1,...,tn))=Zk . Then M[X :=S] |=X (t1,...,tn)⇔ (I (t1),...,I (tn))∈S ⇔J ′(Zk)=

�⇔J ′ |=Zk .

118 Boolean unification with predicates

Hence M[X :=S] |=G[X], contradiction.
For the other direction, assume that there exists a function I : {Y1,...,Yn}→{�,⊥} such that I |=

∀Z1 ···∀Zm¬τ (G[X]). Let Terms be the set of terms occuring in G[X], and define the interpretation

J (s) :=
{

(t1,...,tn) �→s(t1,...,tn) if s a function symbol of arity n,

{(t1,...,tn) | I |=τ (s(t1,...,tn))} if s a predicate symbol of arity n.

Then M := (Terms,J) is a structure such that J (t)= t for all t ∈Terms. We claim that M |=∀X ¬G[X].
For contradiction, assume that M[X :=S] |=G[X] for some S ⊆Termsk . Define

I ′ :
⎧⎨
⎩

Yi �→ I (Yi)
τ (X (t1,...,tk)) �→ � if (t1,...,tk)∈S
τ (X (t1,...,tk)) �→ ⊥ if (t1,...,tk) /∈S.

Then M[X :=S] |=G[X] iff I ′ |=τ (G[X]):
(1) Let τ (P(t1,...,tn))=Yk . Then M[X :=S] |=P(t1,...,tn)⇔ (J (t1),...,J (tn))∈J (P)⇔

(t1,...,tn)∈{(t1,...,tn) | I |=τ (P(t1,...,tn))}⇔ I |=Yk .
(2) Let τ (X (t1,...,tn))=Zk . Then M[X :=S] |=X (t1,...,tn)⇔ (J (t1),...,J (tn))∈S ⇔ I ′ |=Zk .

Therefore I ′ |=τ (G[X]), contradiction. �
Example 13
Consider the formula X (a)↔P(a). Let Y ,Z be a 0-ary predicate variables and let τ (X (a))=Y and
τ (P(a))=Z . Then ∃X (X (a)↔P(a)) and ∀Y∃Z(Z ↔Y) are both valid; in the first case we may take
the witness G[x] :=P(x), and in the second case we may take Y as the witness for Z .

Lemmas 10 and 12 complete the proof of Theorem 3. In fact, we have shown that all problems
considered in this section are �P

2 -complete:

Theorem 14
QFBUP, 2QFV≈, and 2QFV are all �P

2 -complete.

6 The universal Boolean unification problem

Having established the decidability and complexity of the quantifier-free BUP problem in the previous
section, as well as the undecidability of the BUP problem when restricted to purely existential
formulas in Section 1, we now turn to the investigation of the BUP problem for purely universal
formulas, i.e. the UBUP problem. Our aim is to prove that this problem is undecidable as well. Our
proof will proceed by reducing the modified Post’s Correspondence Problem1 (in the following:
PCP) to UBUP by computing, from an instance P of PCP, a quantifier-free formula FP [X ,y] such
that ∀yFP [X ,y] has a witness exactly if P has a solution. Note that a single predicate variable X in
FP [X ,y] is sufficient for undecidability.

Let us begin by defining PCP in detail.

1Modified Post’s Correspondence Problem differs from the ‘usual’ Post’s Correspondence Problem by requiring solutions
to end with index 1, see [22, section 5.2].

Boolean unification with predicates 119

Definition 15
A binary word is a (possibly empty) string over the alphabet {0,1}. The empty string is denoted by ε.
For strings s1 =a1 ···an,s2 =b1 ···bm, we define the concatenation s1 ◦s2 :=a1 ···anb1 ···bm. In the
following, we will simply write s1s2 instead of s1 ◦s2.

Definition 16 (Modified Post’s Correspondence Problem)
An instance P of PCP is defined as a finite sequence of pairs of binary words

〈w1,v1〉,··· ,〈w|P|,v|P|〉
for |P|∈N where |P|≥2, w1 �=v1, and w1,v1 �=ε.

A sequence q1,...,qn ∈N is called a solution to P if 1≤qi ≤|P| and

wq1wq2 ···wqnw1 =vq1vq2 ···vqnv1.

PCP is a standard example for an undecidable problem.

Theorem 17
It is undecidable whether an input instance P of PCP has a solution.

Proof. See e.g. [22, section 5.2] for a proof. �
For the rest of the section, we fix an arbitrary instance P of PCP using the notation from Definition 16.
Towards giving FP [X ,y], we first distinguish the language the formula will be in.

Definition 18 (Language of FP)
The language of FP contains the equality predicate ≈ together with the constant symbols

0,ε

and the unary function symbols

s,s0,s1,lw,rw,p1,...,p|P|

and the unary predicate symbol
P,

all taken from our given language L. All symbols are assumed to be pairwise different. By T we
denote the set of ground terms in this language.

Regarding the notation of terms, we will often write ft instead of f (t) for f a unary symbol and t a
term. Furthermore, for n∈N, f a function symbol, and t a term we define f n(t) by f 0(t)= t,f n+1(t)=
f (f n(t)).

To make the relation between objects on the meta-level and terms in our language clear, we
introduce a function · defined as follows:

n = sn(0) for n∈N

a1 ···an = sa1 ···sanε for a binary word a1 ···an

(q1,...,qn) = pq1 ···pqn0 for q1,...,qn ∈{1,...,|P|}
The first part of FP we will present is the axiomatization of the intended meaning of our language,
together with an axiom asserting that P does not have a solution. To conveniently write down FP ,
we introduce some notation for formulas.

120 Boolean unification with predicates

Definition 19
If
,� are sets of formulas, the expression
⇒� is called a sequent and denotes the formula∧

→∨
�. For a variable x, if we introduce a set of formulas as
[x]={Fi[x]}i∈I , then for a term t

we define
[t] :={Fi[t]}i∈I and for sets of terms T we define
[T] :=⋃
t∈T
[t]. For a sequent S[x]=

[x]⇒�[x], we define S[t] :=
[t]⇒�[t] and S[T]=
[T]⇒�[T]. In the context of sequents,
set-theoretic union is denoted by comma.

Let s=a1 ···an be a binary word and t a term. Then by s∗t we denote the term sa1 ···san t. Note that
for binary words s1,s2 we have s1 ∗s2 =s1s2.

Definition 20 (Background Theory)
For a variable x, we define the following sets of formulas:

lw-Ax[x] :={ lw(p1x)≈w1 ∗(lwx),
···

lw(p|P|x)≈w|P| ∗(lwx),
lw(0)≈w1 }.

rw-Ax[x] :={ rw(p1x)≈v1 ∗(rwx),
···

rw(p|P|x)≈v|P| ∗(rwx),
rw(0)≈v1 }.

ns-Ax[x] :={ lw(x) �≈ rw(x) }.

Before we turn to defining the formula FP we use to reduce PCP to UBUP, we introduce a notion of
standard model for our background theory, and study some properties of standard models. Towards
the definition of standard model, we will study the rewrite relation induced by the background theory.
We will thus use some basic notions and results on term rewriting systems, see e.g. [3]. Being able to
assume that equalities are derived in a directed way will allow us to give simple proofs of properties
about equalities which hold in the standard models.

Definition 21
By R we denote the rewrite relation on T obtained from the formulas in lw-Ax[x],rw-Ax[x] by
orienting the equations from left to right.

Note that since all function symbols in our language are unary, every t ∈T is of the form t = f1 ···fnc,
where the fi are unary function symbols and c∈{0,ε}. We define the size of t as n. For a strongly
normalizing and confluent rewrite relation R on T , we denote by ∼R the induced equivalence relation
on T , and by [t]R ={s | t ∼R s} the equivalence class of a term t.

Lemma 22
R is strongly normalizing and confluent. P has a solution exactly if there exists a term t such that
lw(t)∼R rw(t).

Proof. By definition of R, we have: if t is not in normal form w.r.t. R, then t contains a term of
the form lw(t′) or rw(t′) for some t′. For strong normalization, it therefore suffices to consider only
terms of the form lw(t),rw(t); induction on the size of t suffices. For confluence, we observe that
there are no critical pairs.

Boolean unification with predicates 121

Furthermore, by induction on n it is easy to show that lw((q1,...,qn))∼R wq1 ···wqnw1, analogously
for rw. Hence q1,...,qn is a solution to P exactly iff lw((q1,...,qn))∼R rw((q1,...,qn)). It suffices to
observe by induction on the length of a normalizing R-reduction sequence of lw(t) that if lw(t)∼R
rw(t), then t = (q1,...,qn) for some q1,...,qn ∈N. �
Based on R, we can now define our notion of standard model.

Definition 23 (Standard models)
Let M= (M ,I) be a structure. M is called a standard model if M ={[t]R | t ∈T } and for all t ∈T ,
I (t)=[t]R. A formula F is called standard valid if it holds in all standard models.

Lemma 24
The formulas ∀x

∧
lw-Ax[x] and ∀x

∧
rw-Ax[x] are standard valid. The formula ∀x ns-Ax[x] is

standard valid exactly if P has no solution.

Proof. The first part is immediate by definition, the second part by Lemma 22. �
It is simple to construct standard models with an arbitrary interpretation of the P predicate symbol.

Lemma 25
For all N ⊆{[t]R | t ∈T } there exists a standard model (M ,I) such that I (P)=N .

If S is a set of predicate symbols, then a formula in the language of FP containing only
predicate symbols from S is called an S-formula. We introduce some standard validity preserving
transformations on formulas. In the following result, � denotes a fixed valid {P}-formula (e.g. P(0)∨
¬P(0)), and a formula F is called standard unsatisfiable if it holds in no standard model.

Lemma 26
Let F be a ground quantifier-free formula.

(1) If F is a {≈,P}-formula, and F ′ is the formula obtained from F by replacing standard valid
≈-atoms by �, and standard unsatisfiable ≈-atoms by ¬�, then F ↔F ′ is standard valid and
F ′ is a {P}-formula.

(2) If F is a standard valid {P}-formula, s,t terms, and F ′ the formula obtained from F by replacing
all terms t′ with t′ ∼R t by s, then F ′ is standard valid.

Proof. Note that for any standard model M, if t,s∈T then M |=s≈ t exactly if s∼R t, and M |=
s �≈ t exactly if s �∼R t. Hence every ground ≈-atom is either standard valid or standard unsatisfiable,
yielding item 1. For item 2, let (M ,I) �|=F ′. Note that if a term u becomes u′ by the replacement, then
there is a unique term ru[x] and a unique term vu s.t. u=ru[vu] with vu ∼R t, and u′ =ru[s]. Hence
the set S defined by

[ru[vu]]R ∈S :⇔[ru[s]]R ∈ I (P)

is well-defined, and the model N obtained from S by Lemma 25 fulfills N �|=F . �
Lemma 27
Let s[x],t[x] be terms containing x and d ,n,m∈N with m,n>0.

(1) If s[n]≈q is standard valid for some term q, then q contains n.
(2) s[n]≈ t[m]↔s[n+d]≈ t[m+d] is standard valid.

Proof. By inspection of R, we note that if t ∼R t′ then t contains n iff t′ contains n. This yields
item 1. For item 2, note that if t rewrites to t′ via R, then the redex is not a numeral. Hence we can

122 Boolean unification with predicates

simulate the rewrite sequences which reduce s[n],t[m] to the same normal form on s[n+d],t[m+d]
to reduce them to the same normal form. �
This concludes our study of standard models. We now turn to performing the reduction of PCP to
UBUP.

Definition 28 (Formula FP)
We define the sequents

S1[X ,β] := lw-Ax[β],rw-Ax[β],ns-Ax[β],P(0)⇒X (0,β)

S2[X ,γ,ν] :=
⎧⎨
⎩

lw-Ax[γ],rw-Ax[γ],ns-Ax[γ],P(γ)→P(sγ),
X (ν,γ),X (ν,p1(γ)),··· ,X (ν,p|P|(γ)),X (ν,sγ)⇒
X (sν,γ)

S3[X ,α] :=X (α,0)⇒P(α)

Finally, we define
FP [X ,α,β,γ,ν] :=S1[X ,β]∧S2[X ,γ,ν]∧S3[X ,α].

The intuitive meaning of X (n,s), for n∈N and s= (q1,...,qk)∈N
k , is ‘there are no qk+1,...,qk+n

such that (q1,...,qk+n) is a solution of P’, and the intuitive meaning of P(n) is ‘there is no solution
of P of size n’. Our first main task will be to show the following.

Lemma 29
If ∀αβγ ν FP [X ,α,β,γ,ν] is a positive instance of UBUP, then P has a solution.

The strategy for proving this lemma is to assume that P has no solution, and to argue for contradiction
by using the validity of FP to derive validity of (roughly) P(q) for some q∈N which is large w.r.t. the
witness of FP , contradicting Lemma 25. We start by studying some standard valid sequents.

Definition 30 (Sets Cn(t), sequents �n,�n)
For n∈N and a term t we define the set of terms

Cn(t) :={f1 ···fqt |0≤q≤n,fi ∈{s,p1,...,p|P|}}.

Furthermore, for a formula G[y,z] and variables γ,ν, we define the sequents

�n[G,γ,ν] :={P(t)→P(s(t)) | t ∈Cn−1(γ)},G[ν,Cn(γ)]⇒G[snν,γ]
�n[G,γ] :=P(0),{P(t)→P(s(t)) | t ∈Cn−1(γ)}⇒G[sn0,γ]

where C−1(t) :=∅.

Note that for the second sequent of the definition of FP we have

S2[X ,γ,ν]=
{

lw-Ax[γ],rw-Ax[γ],ns-Ax[γ],P(γ)→P(sγ),
{X (ν,t) | t ∈C1(γ)}⇒X (sν,γ)

.

When reasoning with sequents, we will apply the following well-known inference rule called cut.

Lemma 31 (Cut rule)
Let M be a structure,
,�,�,� sets of formulas, and C a formula. Then M |=
⇒�,C and
M |=C,�⇒� imply that M |=
,�⇒�,�.

Boolean unification with predicates 123

Lemma 32
Assume that P has no solution and that G[y,z] is a witness of ∀αβγ ν FP [X ,α,β,γ,ν]. Then, for all
n∈N, the formulas �n[G,γ,ν] and �n[G,γ] are standard valid.

Proof. By assumption, S2[G,γ,ν] is valid, hence for the sequent

S ′
2[G,γ,ν] :=P(γ)→P(sγ),G[ν,C1(γ)]⇒G[sν,γ]

we have that S ′
2[G,γ,ν] is standard valid by Lemma 24. Hence for all k ∈{1,...,n−1}, the sequent

Sk :=S ′
2[G,Ck (γ),sn−k−1ν]

as well as the sequent T :=S ′
2[G,γ,sn−1ν] is standard valid. Since p1γ,...,p|P|γ,sγ ∈C1(γ) and

C0(γ)⊆C1(γ), we can cut S1 with T to show that the sequent

{P(t)→P(st) | t ∈C1(γ)},G[sn−2ν,C2(γ)]⇒G[snν,γ]
is standard valid. We continue cutting with S2,...,Sn−1 until we eventually obtain that �n[G,γ,ν]
is standard valid.

Furthermore, by assumption and Lemma 24, the sequent

S ′
1[G,γ] :=P(0)⇒G[0,γ]

is standard valid. Cutting S ′
1[G,t], for all t ∈C1(γ), with S ′

2[G,γ,0] yields standard validity of

P(0),{P(t)→P(s(t)) | t ∈C0(γ)}⇒G[s0,γ].
Cutting this sequent under the substitution [γ \t], for t ∈C1(γ), with the sequent S ′

2[G,γ,s0] yields
standard validity of

P(0),{P(t)→P(s(t)) | t ∈C1(γ)}⇒G[s20,γ].
Continuing inductively yields standard validity of �n[G,γ]. �
We are now ready to prove our first main result.

Proof of Lemma 29. Assume that P has no solution. If FP is a positive instance of UBUP, there is
a quantifier-free formula G[y,z] such that ∀αβγ ν FP [G,α,β,γ,ν] is valid. Let m be an upper bound
on the sizes of the terms in G[y,z]. We choose q1,q2,n∈N with q2 >q1 >2n and n>m which ensures
not only q2 >q1 but also that q1 and q2 are sufficiently large to allow replacing q1 by q2 without
destroying standard validity of a formula we are going to construct now. By Lemma 32, the ground
formula

�n[G,0,q1 −n]={P(t)→P(s(t)) | t ∈Cn−1(0)},G[q1 −n,Cn(0)]⇒G[q1,0]
is standard valid. By Lemma 26.1, for all t,s∈T we can associate to G[s,t] a quantifier-free ground
{P}-formula Hs,t such that G[s,t]↔Hs,t is standard valid. Therefore the {P}-formula

{P(t)→P(s(t)) | t ∈Cn−1(0)},{Hq1−n,t | t ∈Cn(0)}⇒Hq1,0

is standard valid. Replacing the term q1 by q2 in this formula yields the formula

T :={P(t)→P(s(t)) | t ∈Cn−1(0)},{Hq1−n,t | t ∈Cn(0)}⇒Hq1,0[q1\q2]
since q1 cannot occur on the left-hand side. This sequent is standard valid by Lemma 26.2. We
have Hq1,0[q1\q2]=Hq2,0 since, by Lemma 27, the atoms t[q1]≈s[q1] in G[q1,0] are standard

124 Boolean unification with predicates

valid (standard unsatisfiable) iff the corresponding atoms t[q2]≈s[q2] in G[q2,0] are standard valid
(standard unsatisfiable).

Furthermore, by Lemma 32 for any t ∈Cn(0) the sequent

�n[G,t]=P(0),{P(u)→P(su) |u∈Cq1−n−1(t)}⇒G[q1 −n,t]

is standard valid. Replacing G[q1 −n,t] by Hq1−n,t in these sequents and cutting with T , we obtain
standard validity of

P(0),{P(u)→P(su) |u∈Cq1−1(0)}⇒Hq2,0

which implies, using validity of S3[G,q2], the standard validity of

P(0),{P(u)→P(su) |u∈Cq1−1(0)}⇒P(q2).

Define N :={[k]R |k <q2}, then the standard model obtained by Lemma 25 is a countermodel to the
latter sequent, contradicting standard validity. �

We now turn our attention to the second direction of our main result.

Lemma 33
If P has a solution, then ∀αβγ ν FP [X ,α,β,γ,ν] is a positive instance of UBUP.

The proof strategy for this Lemma is as follows: remember that the intuitive meaning of the witness
G[n,s] of FP was that ‘there is no solution of P that can be obtained from s by extending it by n
numbers’. Given a solution of P , we will define the formula G[y,z] asserting this by a finite case
distinction—since there exists a solution, G[n,0] for large enough n will be unsatisfiable, making
each sequent of FP valid. For the proof, we will need some sets of formulas.

Definition 34 (Sets Ln,Rn,Nn, formula Wn)
For n∈N we define the sets of formulas

Ln := lw-Ax[Cn(0)], Rn := rw-Ax[Cn(0)], Nn :=ns-Ax[Cn(0)].

For a variable z, we furthermore define the formula Wn[z] by

W0[z] :=P(0)∧ lw-Ax[z]∧rw-Ax[z]∧ns-Ax[z]
Wn+1[z] := (P(z)→P(sz))∧

∧
Wn[C1(z)]

The following properties of Wn[z] follow easily from the definition.

Lemma 35
If m>n then Wm[z]→Wn[z] is valid. For all n∈N, Wn[0]→P(n) is valid. For all n∈N and F ∈
Ln ∪Rn ∪Nn, Wn[0]→F is valid.

Lemma 36
If q1,...,qn is a solution of P , then Ln,Rn,Nn ⇒ is valid.

Proof. From Ln ∪Rn ∪Nn we can derive lw((q1,...,qn))≈wq1 ···wqnw1 and rw((q1,...,qn))≈
vq1 ···vqnv1. Since q1,...,qn is a solution, we can derive lw((q1,...,qn))≈ rw((q1,...,qn)), yielding a
contradiction with Nn since (q1,...,qn)∈Cn(0). �

Boolean unification with predicates 125

Lemma 37
If q1,...,qn is a solution of P , then ¬Wn[0] is valid.

Proof. By Lemmas 35 and 36. �
We can now finish our proof.

Proof of Lemma 33. Assume that i1,i2,··· ,i� is a solution of P , and define the formula G[y,z] as
follows.

y≈0→ W0[z] ∧
y �≈0∧y≈1→ W1[z] ∧
···
y �≈0∧y �≈1∧···∧y≈�−1→ W�−1[z] ∧
y �≈0∧y �≈1∧···∧y �≈�−1→ W�[z]

We claim that G[y,z] is a witness of FP , i.e. that ∀αβγ ν FP [G,α,β,γ,ν] is valid. It suffices to show
that each of the formulas ∀β S1[G,β], ∀γ ν S2[G,γ,ν], and ∀α S3[G,α] are valid. For ∀β S1[G,β],
this is easy to see. For the second sequent, we have to prove G[sν,γ] from assumptions

lw-Ax[γ],rw-Ax[γ],ns-Ax[γ],P(γ)→P(sγ),{G[ν,t] | t ∈C1(γ)}.

We sketch a formal proof. By classical logic, we distinguish:

(1) sν ≈0. Then G[sν,γ] is equivalent to W0[γ]. By classical logic, we distinguish:

(a) ν ≈0. Then G[ν,γ] is equivalent to W0[γ], finishing the proof.
(b) ν ≈m and ν �≈0,...,ν �≈k −1 for some 1≤m<�. Then G[ν,γ] is equivalent to Wm[γ]

which implies W0[γ] by Lemma 35.
(c) ν �≈0, …, ν �≈�−1. Then G[ν,γ] is equivalent to W�[γ], which suffices as in the previous

case.

(2) sν ≈k and sν �≈0,...,k −1 for some 1≤k <�. We derive ν �≈k −2,ν �≈k −3...ν �≈0 from
compatibility and reflexivity of ≈. For every t ∈C1(γ), from these equations and G[ν,t] we
derive

ν ≈k −1→ Wk−1[t] ∧
ν �≈k −1∧ν ≈k → Wk [t] ∧
···
ν �≈k −1∧ν �≈k ∧···∧ν ≈�−1→ W�−1[t] ∧
ν �≈k −1∧ν �≈k ∧···∧ν �≈�−1→ W�[t]

which implies
⇒Wk−1[t],...,W�[t]

which in turn implies Wk−1[t] by Lemma 35. Together with P(γ)→P(sγ) we derive

P(γ)→P(sγ)∧
∧

Wk−1[C1(γ)]

which is exactly Wk [γ]. By Lemma 35 we thus have Wi[γ] for 0≤ i≤k, and hence the first k +1
implications in G[sν,γ] hold. In the other �−k implications, sν �≈k occurs in the antecedent,
hence they follow trivially from our assumption. In total, this yields G[sν,γ].

(3) sν �≈0,...,sν �≈�−1. We proceed analogously to the previous case.

126 Boolean unification with predicates

It remains to give a formal proof of the third sequent, i.e. a proof of P(α) from the assumption G[α,0].
By classical logic, we distinguish:

(1) α≈0. G[α,0] yields W0[0] which yields P(0).
(2) α≈k for some 1≤k <�, and α �≈0,...,k −1. G[α,0] yields Wk [0] which implies P(k) by

Lemma 35.
(3) α �≈0,...,α �≈�. G[α,0] yields W�[0]. But Lemma 37 yields ¬W�[0], and we may derive P(α).�

Having proven Lemmas 29 and 33 we obtain the main result of this section.

Theorem 38
The UBUP problem is undecidable.

Proof. It suffices to note that FP can be computed from P by a Turing machine. �

7 UBUP in automated theorem proving

As stated in the introduction, instances of UBUP naturally occur in the context of algorithms for
automated theorem proving and proof compression introduced in [7, 13–15].

In [13–15], algorithms are presented which compress analytic proofs by introducing �1-cuts. A
step of the presented algorithm for the case of one cut is the solution of instances of UBUP in order
to obtain the cut-formula (see e.g. [14], section 3.3). In [15], it could be proved that the mentioned
instances of UBUP are always solvable. In [14], some heuristics are defined to find solutions of the
mentioned UBUP instances which have a small logical complexity.

In [7], an algorithm for automated inductive theorem proving is presented. As stated in section 1,
the undecidability of UBUP is relevant for this work: the algorithm IndProof presented there
automatically generates inductive invariants which are in many cases useful to prove a given universal
statement.Analogously to the papers [13–15] where an UBUP problem has to be solved to find suitable
cut-formulas, in [7] such a problem has to be solved to find a suitable induction formula. IndProof
attacks the mentioned UBUP problem using heuristics without giving a guarantee to always find a
witness if one exists. Of course, the undecidability result for UBUP proved in this article does not
justify the use of heuristics instead of a complete algorithm since the instances of UBUP actually
occurring during the computations of IndProof might be decidable as it is the case for the algorithms
presented in the papers [13–15].

Nevertheless, using the same techniques as in the present article, the undecidability result for
UBUP can be slightly strengthened to show that already the restriction of UBUP to those instances
occuring in computations of IndProof is undecidable. The strengthened result justifies the above
mentioned use of heuristics in the search of a witness of UBUP instances.

8 Conclusion

The problem of BUP as defined on page 110 has been fully characterized in our article:

• BUP restricted to quantifier-free formulas (QFBUP) is �P
2 -complete.

• BUP restricted to �1 (UBUP) or �1 (EBUP) first-order formulas is undecidable.

Nevertheless, some interesting closely related questions remain open:

Boolean unification with predicates 127

• In most parts of the present article, we work in first-order logic with equality. Note that the
arguments in sections 5.1 and 6 heavily rely on the use of equations. Therefore, the complexity
of restrictions of BUP in the setting of first-order logic without equality remains open.

• It remains unclear how complicated the underlying logical languages L have to be to
make UBUP restricted to L-formulas F[X] undecidable. For example, the question whether
undecidability already holds for X restricted to predicate variables of arity one remains open.

Acknowledgements

The authors would like to thank the anonymous referees of this article: their suggestion to use the
DLS algorithm to prove Theorem 2, as well as their suggestion to prove �P

2 -membership of QFBUP
via reduction to �2−TQBF, greatly improved the presentation of the results of this article.

Funding

This work was supported by the Vienna Science and Technology Fund (WWTF) as part of the Vienna
Research Group 12-04.

References
[1] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik.

Mathematische Annalen, 390–413, 1935.
[2] F. Baader. On the complexity of boolean unification. Information Processing Letters, 67,

215–220, 1998.
[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[4] F. Baader and W. Snyder. Unification theory. In Handbook of Automated Reasoning,

A. Robinson and A. Voronkov, eds, pp. 445–532, 2001.
[5] W. Büttner and H. Simonis. Embedding boolean exprerssions into logic programming. Journal

of Symbolic Computation, 4, 191–205, 1987.
[6] P. Doherty, W. Łukaszewicz and A. Szałas. Computing circumscription revisited: a reduction

algorithm. Journal of Automated Reasoning, 18, 297–336, 1997.
[7] S. Eberhard and S. Hetzl. Inductive theorem proving based on tree grammars. Annals of Pure

and Applied Logic, 166, 665–700, 2015.
[8] H. Friedman. The disjunction property implies the numerical existence property. In Proceedings

of the National Academy of Sciences of the United states of America, 72, 2877–2878, 1975.
[9] D. M. Gabbay and H. J. Ohlbach. Quantifier elimination in second–order predicate logic. In

Principles of Knowledge Representation and Reasoning (KR92), B. Nebel, C. Rich and W.
Swartout, eds, pp. 425–435. Morgan Kaufmann, 1992.

[10] D. M. Gabbay, R. A. Schmidt and A. Szałas. Second-Order Quantifier Elimination. College
Publications, 2008.

[11] A. Gascón, G. Godoy, M. Schmidt-Schauß and A. Tiwari. Context unification with one context
variable. Journal of Symbolic Computation, 45, 173–193, 2010.

[12] W. D. Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13, 225–230, 1981.

[13] S. Hetzl, A. Leitsch, G. Reis, J. Tapolczai and D. Weller. Introducing quantified cuts in logic
with equality. In IJCAR, Vol. 8562 of Lecture Notes in Computer Science, pp. 240–254, 2014.

128 Boolean unification with predicates

[14] S. Hetzl, A. Leitsch, G. Reis and D. Weller. Algorithmic introduction of quantified cuts.
Theoretical Computer Science, 549, 1–16, 2014.

[15] S. Hetzl, A. Leitsch and D. Weller. Towards Algorithmic Cut-Introduction. In Logic for
Programming, Artificial Intelligence and Reasoning (LPAR-18), Vol. 7180 of Lecture Notes
in Computer Science, pp. 228–242. Springer, 2012.

[16] U. Martin and T. Nipkow. Boolean unification - the story so far. Journal of Symbolic
Computation, 7, 275–293, 1989.

[17] U. Martin and T. Nipkow. Unification in boolean rings. Journal of Automated Reasoning, 4,
381–396, 1989.

[18] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[19] J. A. Robinson. A machine oriented logic based on the resolution principle. Journal of the ACM,

10, 163–174, 1965.
[20] M. Schmidt-Schauß. A decision algorithm for stratified context unification. Journal of Logic

and Computation, 12, 929–953, 2002.
[21] M. Schmidt-Schauß and K. U. Schulz. Solvability of context equations with two context

variables is decidable. Journal of Symbolic Computation, 33, 77–122, 2002.
[22] M. Sipser. Introduction to the Theory of Computation, 2nd edn., Thomson, 2006.

Received 20 June 2014

	Boolean unification with predicates
	1 Introduction
	2 Related research
	3 Outline of the article
	4 Preliminaries
	5 The quantifier-free Boolean unification problem
	6 The universal Boolean unification problem
	7 UBUP in automated theorem proving
	8 Conclusion

