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The Computational Content of Arithmetical Proofs

Stefan Hetzl

Abstract For any extension T of IΣ1 having a cut-elimination prop-
erty extending that of IΣ1, the number of different proofs that can be
obtained by cut-elimination from a single T -proof cannot be bound by
a function which is provably total in T .

1 Introduction

The notion of computational content of a proof is pervasive in proof the-
ory. It can for example be found in the characterisation of the provably
total functions of a theory (Kreisel [14]), in consistency proofs like Gödel’s
Dialectica interpretation [9] and Girard’s system F [8] as well as in more re-
cent applications in other mathematical areas (Kohlenbach [12]) or in proof
complexity (Kraj́ıček [13]). In this article we will concentrate on theories
of classical first-order arithmetic. There are many different methods for ex-
tracting computations from arithmetical proofs, some of them like Gentzen’s
cut-elimination [7], the ε-substitution method of Ackermann [1] or term cal-
culi such as Parigot [16] work directly in a classical system. Others like the
Dialectica interpretation [9] or realisability (Kleene [11]) with Friedman’s A-
translation [5] typically require a translation to an intuitionistic system first,
see Avigad [2] for a recent survey. Many of these methods extract a (program
that implements a) function from a proof.

The possibility of extracting different programs from one and the same
proof is well-known, see Ratiu and Trifonov [17] or Baaz et al. [4] for recent
case studies and Urban and Bierman [18] for an interpretation of classical logic
as non-deterministic computation. It is not clear however how far this non-
canonicity goes. In Baaz and Hetzl [3] it has been shown that the number of
(significantly different) cut-free proofs obtainable by cut-elimination in pure
first-order logic can grow as fast the hyper-exponential function 2n (where
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20 � 1 and 2i�1 � 22i) while the length of the original proof is polynomial
in n. This function is exactly the growth rate of cut-elimination. In this
paper we show an analogous result for arithmetical theories. To that aim
we define the notion of computational theory – essentially – by the ability
of computing witnesses from proofs of existential statements. We then show
that for any computational theory T extending IΣ1 the number of different
cut-free proofs obtainable by cut-elimination from a single T -proof cannot be
bound by a function in the size of the proof which is provably total in T .

2 Computational Theories

In this paper we will rely on several results of [3]. Let LK denote the sequent
calculus (for first-order classical logic without equality) used there with the
additional restriction that in the quantifier inferences

Γ Ñ ∆, Arxzts

Γ Ñ ∆, DxA
Dr and

Arxzts,Γ Ñ ∆

@xA,Γ Ñ ∆
@l

the term t contains only such variables that appear free in the conclusion
sequent of the inference. A proof not fulfilling this condition can easily be
transformed into one that does by replacing the violating variables by a con-
stant symbol. This condition has the technically convenient consequence that
cut-free proofs of Σ1-sentences are variable-free. We will work in the language
of arithmetic L � t0, S,�, �,�,¤u. For n P N we write sn for the term Snp0q.
When writing down concrete proofs we often omit structural inferences.

Definition 2.1. Let Seq denote the set of sequents in L, a k-ary inference
rule is a subset of Seqk�1. A sequent calculus presentation of an arithmetical
theory T is a set of inference rules R s.t. T $ A iff the sequent Ñ A is provable
in the calculus LK�R.

Q will denote the presentation of the theory of minimal arithmetic obtained
from extending LK by the unary inference rules defined by

F,Γ Ñ ∆

Γ Ñ ∆
F

for every sentence F in: reflexivity, symmetry, transitivity and compatibility
of equality w.r.t. L as well as the universal closures of the axioms (Q1)-(Q8)
in Hájek and Pudlák [10, Definition 1.1].

Definition 2.2. Let R be a sequent calculus presentation of an arithmetical
theory. An R-reduction rule is a set C P Π�Π where Π is the set of LK�R -
proofs and pπ, π1q P C implies that the end-sequent of π1 equals that of π. For
a set C of reduction rules write ÑC for its reflexive, transitive and compatible
(w.r.t. the inference rules LK�R) closure. A normal form of C is a proof π
s.t. π ÑC π1 implies π � π1.

A pair pR, Cq is called computational theory if i) for every proof π in LK�R
of a Σ1-sentence there is a cut-free Q-proof π1 with π ÑC π1 and ii) cut-free
Q-proofs are normal forms.

A computational theory thus allows to compute a witness for a Σ1-sentence
from a given proof (by obtaining a cut-free Q-proof from C and then evaluat-
ing the matrix of the Σ1-sentence for all witnesses of the existential quantifier
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present in that proof). This extends to proofs of Π2-sentences in the straight-
forward way by applying the Σ1-procedure to instances of the Π2-proof.
IΣ1 will denote the computational theory whose inference rules extend

those of Q defined above by the unary inference rule

F pαq,Γ Ñ ∆, F pSpαqq

F p0q,Γ Ñ ∆, F ptq
ind

for F being a (not necessarily prenex) Σ1-formula. The reduction rules of
IΣ1 consist of i) the local reduction rules of pure first-order logic as listed
in Appendix A of [3] (which are those of Gentzen [6] adapted to the version
of LK used here), ii) the permutation of cut upwards over any of the newly
introduced rules F of Q or ind of IΣ1 provided the cut formula is not active
in that inference and iii) the reduction of

pπq
F pαq,Γ Ñ ∆, F pSpαqq

F p0q,Γ Ñ ∆, F ptq
ind

to

pπrαz0sq
F p0q,Γ Ñ ∆, F pSp0qq

pπrαzSp0qsq
F pSp0qq,Γ Ñ ∆, F pSpSp0qqq

F p0q,Γ Ñ ∆, F pSpSp0qqq
cut

....
F p0q,Γ Ñ ∆, F psnq

pωpsn, tqq
F psnq Ñ F ptq

F p0q,Γ Ñ ∆, F ptq
cut

where π is any proof, t is a variable-free term whose value is n and ωpsn, tq
denotes the straightforward proof of F psnq Ñ F ptq in Q.

Definition 2.3. Let pR, Cq be a computational theory, another computational
theory pR1, C1q is called computational extension of pR, Cq if R � R1 and
C � C1.

These notions are very general as we do not require decidability, neither of
the inference rules nor of the reduction rules. Even the set of true sentences
qualifies as computational theory in the above sense by adding all true sen-
tences as axioms (nullary inference rules) and relying on the Σ1-completeness
of Q for defining the reduction rules.

3 Translation to Arithmetic

From now on, and for the rest of this paper, let T � pR, Cq be a computational
extension of IΣ1 and let Σ be any first-order language, disjoint from the lan-
guage L of arithmetic, and containing at least one constant and one function
symbol. The work of [3] has been carried out in the language LY td, 2u Y Σ
where d is a unary function symbol whose intended interpretation is the depth
of a Σ-term and 2 is a unary function symbol whose intended interpretation
is the exponential function with base 2. The function symbol 2 will not be
used here so it is enough to treat the language L Y tdu Y Σ. We will now
briefly describe how to translate formulas, proofs and reduction sequences
from LY tdu Y Σ to L.



4 Stefan Hetzl

Using standard coding techniques, see e.g. [10], we arithmetise Σ-terms and
write #t for the natural number representing the Σ-term t. We obtain Σ1-
formulas defining the set of Σ-terms, the depth of a Σ-term and the relation of
one term being at the i-th position of another term which allows to translate
any atom in L Y Σ Y tdu to a formula in L. If π is an LK-proof and σ a
substitution replacing each k-ary atom by a formula with k free variables,
then πσ is an LK-proof too. Furthermore, the reduction rules of first-order
logic have the property that π ÑC π1 implies πσ ÑC π1σ. Therefore this
translation of formulas extends to a translation of proofs and of reduction
sequences.

Let A denote the translation of the (finite) set of axioms of [3] to L. The
axioms containing d and symbols of Σ are

dpcq � 0

for every constant symbol c in Σ and

T j
f � @x@y1 . . .@yrp dpy1q ¤ x � . . . � dpyj�1q ¤ x � dpyjq � x

� dpyj�1q ¤ x � . . . � dpyrq ¤ x � dpfpy1, . . . , yrqq � Spxq q

for every function symbol f of arity r in Σ and every j P t1, . . . , ru. Along
the lines of [10] it is easy to check that the translations of these axioms are
provable in IΣ1. All other axioms of [3] that are used here are L-sentences
and a quick check shows that they are also provable in IΣ1. This will later
allow to obtain a T -proof of F from a T -proof of AÑ F by appending a cut
on
�

APAA.

4 Non-Confluence

The central idea for the construction of a proof with many normal forms is to
modify a proof of the existence of a large number s.t. i) it proves the existence
of a deep Σ-term instead and ii) it does so in a way that permits reduction to
any Σ-term of that depth. Denote with Epuq the translation of Dx dpxq � u
to arithmetic, with Lpuq the translation of Dx dpxq ¤ u and with F puq the
formula Lpuq ^ Epuq. The central construction will be an induction on F
using non-confluent constructors of Σ-terms for the induction base and step.
We use F here in order to allow for reduction to any term of the desired
depth which necessitates the ¤-part of the induction hypothesis. The slightly
simpler proof using induction on E instead would allow reduction to any term
of the desired depth all of whose branches are of equal depth.

Let τ0 be the translation of the proof of A Ñ F p0q defined in Section 5.2.
of [3]. As shown there, this proof possesses for any constant symbol of Σ and
for both of the existential quantifiers in Lp0q and Ep0q respectively a normal
form having this constant symbol as witness of that quantifier. This property
carries over to the present setting as described in the previous section. Let
τ 1spuq be the translation of the proof of A, F puq Ñ F pspuqq defined in Section
5.3. of [3]. This proof has the analogous property for function symbols, i.e. it
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allows the reduction to any top-level symbol as witness. Let ψpuq be

pτ0q
AÑ F p0q

pτ 1spγqq
A, F pγq Ñ F pspγqq

A, F p0q Ñ F puq
ind

AÑ F puq
cut

Epuq Ñ Epuq

F puq Ñ Epuq
^l1

AÑ Epuq
cut

which is a proof in IΣ1 as F is a Σ1-formula.

Lemma 4.1. Let n P N and t be any variable-free L-term with value n. Then
for every Σ-term s of depth n there is a proof ψs s.t. ψptq ÑC ψs and the
only witness of the existential quantifier in Eptq in the end-sequent of ψs is
an L-term with value #s.

Proof By reduction of induction and shifting the cut on F p0q upwards using
the reduction rules of pure logic we obtain ψptq ÑC

pτ0q
AÑ F p0q

pτ 1sp0qq
A, F p0q Ñ F pSp0qq

AÑ F pSp0qq
cut

....
AÑ F psnq

pωq
F psnq Ñ F ptq

AÑ F ptq
cut

Eptq Ñ Eptq

F ptq Ñ Eptq
^l1

AÑ Eptq
cut

which is a proof whose form is slightly simpler than that of an F -chain from [3].
Therefore the proof of Lemma 10 from there readily adapts to this situation,
in brief: use a bottom-up reduction of the τ 1spsiq making the right choices for
obtaining s at each level and duplicating the proof of the assumption, thereby
transforming the linear structure of the above proof to the tree structure of s.
Finish the construction of s by appropriate reduction of the copies of τ0 and
finally reduce the two cuts at the bottom observing that they do not change
the witness. �

Theorem 4.2. Let g : NÑ N be a function provably total in T and let Gpx, yq
be its definition. Then there is a T -proof χpuq of Dy pGpu, yq ^ Epyqq s.t. for
every n P N and every Σ-term s of depth gpnq there is a normal form χs of
χpsnq s.t. every witness r of the existential quantifier in some Eptq where t is
an L-term with value gpnq has the value #s.

Before proving this theorem, a remark on its formulation is appropriate: a
cut-free Q-proof of Dy pGpsn, yq ^ Epyqq must contain some term t with value
gpnq as instance of Dy and hence it also contains Eptq. However, it might also
contain other (irrelevant) instances of Dy with the same or other numerical
values. In principle, it would be possible to rule those out by imposing an
(intuitionistic) restriction on C. As this option would render the reduction
relation somewhat artificial we have opted for the more natural definition
(and the more cumbersome theorem).
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Proof Let ξ be any T -proof of Ñ @xDy Gpx, yq, let

ξpuq �

pξq
Ñ @xDy Gpx, yq

Dy Gpu, yq Ñ Dy Gpu, yq

@xDy Gpx, yq Ñ Dy Gpu, yq
@l

Ñ Dy Gpu, yq
cut

,

χ0puq �
Gpu, βq Ñ Gpu, βq

pψpβqq
AÑ Epβq

A, Gpu, βq Ñ Gpu, βq ^ Epβq
^r

A, Dy Gpu, yq Ñ Dy pGpu, yq ^ Epyqq
Dl, Dr

and χpuq �

pπq
Ñ
�

APAA

pξpuqq
Ñ Dy Gpu, yq

pχ0puqq
A, Dy Gpu, yq Ñ Dy pGpu, yq ^ Epyqq

AÑ Dy pGpu, yq ^ Epyqq
cut

�
APAAÑ Dy pGpu, yq ^ Epyqq

^�

l

Ñ Dy pGpu, yq ^ Epyqq
cut

.

As T is a computational extension of IΣ1, there is a cut-free Q-proof ξ1 of
Ñ Dy Gpsn, yq with ξpsnq ÑC ξ1 having terms t1, . . . , tk as witnesses of Dy. Using
reductions rules from pure logic we obtain a proof ξ� with χpsnq ÑC ξ� from
ξ1 by successively replacing

pπiq
Γi Ñ ∆i, Gpsn, tiq

Γi Ñ ∆i, Dy Gpsn, yq
Dr

by
pπiq

Γi Ñ ∆i, Gpsn, tiq
pψptiqq

AÑ Eptiq

A,Γi Ñ ∆i, Gpsn, tiq ^ Eptiq
^r

A,Γi Ñ ∆i, Dy pGpsn, yq ^ Epyqq
Dr

for i P t1, . . . , ku. For all ti with value gpnq we apply Lemma 4.1 to obtain a
cut-free ψi with ψptiq Ñ

C ψi having an L-term with value #s as only witness.
For all ti whose value is not gpnq we reduce to an arbitrary cut-free proof.
Finally, the reduction of the cut on

�
APAA does not change the witnesses

and finishes with a cut-free Q-proof because variable-freeness of the ti ensures
that we can reduce the inductions coming from π. This cut-free Q-proof is χs

and has the desired property. �

Corollary 4.3. The number of normal forms of a proof in a computational
extension T of IΣ1 cannot be bound by a function in the size of the proof
which is provably total in T .

5 Conclusion

It should be emphasised that apart from the theory-specific part (which is
arbitrary) the above reduction sequences consist exclusively of the natural
standard reductions of a sequent calculus for IΣ1. Furthermore, the proofs
with cut are completely symmetric w.r.t. their normal forms in the sense that
there is no reason for preferring one normal form over another.
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The central technical insight is that the non-determinism of classical logic
can be isolated in a manner that permits the cut-elimination process to dis-
tribute it throughout a large proof it generates. Consequently an analogous
result should be expected for every calculus containing even the slightest non-
determinism.

The contribution of this work to the discussion of the computational content
of classical logic is a new demonstration that, in a strikingly strong sense, the
computational content of an arithmetical proof is not a function. As useful it
is, from both a theoretical and a practical point of view, to extract a function
from a proof, such extraction methods in general fall short of doing justice to
the notion of computational content, as they cannot satisfy the unambiguity
suggested by the term content.

The above results and remarks refer to formal proofs. As pointed out e.g.
in [2] and Kreisel [15] there is another, more fundamental, reason for the
ambiguity of the computational content of a mathematical proof, which is
that a given mathematical proof allows many different formalisations which
in turn may induce different computations.
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