
Information and Computation 259 (2018) 191–213
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

On the compressibility of finite languages and formal proofs ✩

Sebastian Eberhard, Stefan Hetzl ∗

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 December 2015
Available online 5 September 2017

We consider the minimal number of productions needed for a grammar to cover a finite 
language L as the grammatical complexity of L. We study this measure for several types 
of word and tree grammars and show that it is closely connected to well-known measures 
for the complexity of formal proofs in first-order predicate logic.
We construct an incompressible sequence of finite word languages and transfer this and 
several other results about the complexity of word and tree languages to formal proofs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In grammar-based compression, context-free grammars that generate exactly one word are used for representing the 
input text. The smallest grammar problem asks for the smallest context-free grammar that generates a given word. Its deci-
sion version is known to be NP-complete [1], see [2] for the case of a bounded alphabet. However, there is a number of fast 
algorithms which are practically useful [3–5] or achieve good approximation ratios [6–10]. Grammar-based compression also 
has the considerable practical advantage that many operations can be performed directly on the compressed representation; 
see [11].

We are interested in the problem of simultaneously compressing a finite set of words by a single grammar. Traditionally, 
the grammatical complexity of a finite language L is defined as the minimal number of productions of a grammar G with 
L(G) = L. Each class of grammars thus gives rise to a measure of descriptional complexity. The study of the grammatical 
complexity of finite languages has been initiated in [12] and continued in [13–16].

Our motivation for investigating this problem is rooted in proof theory and automated deduction: as shown in [17], there 
is an intimate relationship between a certain class of formal proofs (those with �1-cuts) in first-order predicate logic and a 
certain class of grammars (totally rigid acyclic tree grammars). In particular, the number of production rules in the grammar 
characterises the number of certain inference rules in the proof. This relationship has been exploited in a method for proof 
compression whose central combinatorial step is a grammar-based compression of a finite tree language [18–20].

The proof-theoretic application of our work requires a modification of the traditional problem: we are looking for a 
minimal grammar G s.t. L(G) ⊇ L where L is the finite input language. This is the case because L describes a disjunction 
which is required to be a tautology (a so-called Herbrand-disjunction, see [21,22]) and if L′ ⊇ L, then L′ also describes a 
tautology. This condition is similar to (but different from) the one imposed on cover automata [23]: there an automaton A
is sought s.t. L(A) ⊇ L, but in addition it is required that L(A) \ L consists only of words longer than any word in L.

In this paper we consider the minimal number of productions needed for a grammar to cover a finite language L as 
the grammatical complexity of L. We study this measure for several types of word and tree grammars and show that 

✩ Research supported by the Vienna Science Fund (WWTF) project VRG12-004.

* Corresponding author.
E-mail addresses: sebastian.eberhard84@gmail.com (S. Eberhard), stefan.hetzl@tuwien.ac.at (S. Hetzl).
http://dx.doi.org/10.1016/j.ic.2017.09.001
0890-5401/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2017.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:sebastian.eberhard84@gmail.com
mailto:stefan.hetzl@tuwien.ac.at
http://dx.doi.org/10.1016/j.ic.2017.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2017.09.001&domain=pdf


192 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
it is strongly related to well-known measures for the complexity of formal proofs. The central technical results are the 
construction of an incompressible sequence of finite (word) languages and its use for obtaining a lower bound on the 
complexity of proofs with �1-cuts in terms of the complexity of the shortest cut-free proof. The interest in such a result 
is motivated by the experience that the length of proofs with cuts is notoriously difficult to control (for propositional logic 
this is considered the central open problem in proof complexity [24]).

This paper extends [25] in the following respects: we prove the lower bound on an enlarged class of proofs: instead of 
proofs with �1-cuts (i.e., lemmas of the form ∀x A for A quantifier-free) we treat proofs with �1-cuts here (i.e., lemmas 
of the form ∀x1 · · · ∀xn A for A quantifier-free). This necessitates the introduction of a more general class of tree grammars: 
vectorial totally rigid acyclic tree grammars. In this paper, we also carry out a thorough investigation of the various types 
of tree grammars involved, including several results on the relative complexity of them. In contrast to [25], this paper also 
contains an introduction to the proof-theoretic background and complete proofs of the proof-theoretic results.

In Section 2 we introduce some basic notions concerning the grammatical complexity of finite languages. In Section 3 we 
construct an incompressible sequence of word languages. In Section 4 we study tree grammars of proof-theoretic relevance. 
We investigate their relationship to each other and to the word grammars of Section 3. In Section 5 we introduce the basic 
notions and results of proof theory which are relevant to this paper. In Section 6 we establish the relationship between the 
complexity of formal proofs and the grammatical complexity of finite languages. Finally, in Section 7, we transfer several 
results about grammatical complexity, including the incompressibility-result, to proof theory.

2. Grammatical complexity of finite languages

Definition 1. A context-free grammar (CFG) is a 4-tuple G = (N, �, P , S) where N is a finite set of nonterminals, � is a 
finite alphabet, S ∈ N is the starting symbol and P is a finite set of productions of the form A → w where A ∈ N and 
w ∈ (� ∪ N)∗ .

As usual, the one-step derivation relation =⇒G of G is defined by u =⇒G v iff there is a production A → w in G s.t. v is 
obtained from u by replacing an occurrence of A by w . The derivation relation =⇒∗

G is the reflexive and transitive closure 
of =⇒G and the language of G is L(G) = {w ∈ �∗ | S =⇒∗

G w}. We omit the subscript G if the grammar is clear from the 
context.

Definition 2. A right-linear grammar is a context-free grammar (N, �, P , S) s.t. all productions in P are of the form A → v B
or A → v for A, B ∈ N and v ∈ �∗ .

It is well-known, see e.g., [26], that the languages generated by right-linear grammars are exactly the regular languages.

Definition 3. Let G = (N, �, P , S) be a context-free grammar. The relation <1
G on N is defined as follows: A <1

G B iff there 
is a production A → w in P s.t. B occurs in w . The relation <G is defined as the transitive closure of <1

G . We say that G is 
cyclic (respectively acyclic) iff <G is.

We abbreviate “right-linear acyclic grammar” as “RLAG”. Let A ∈ N; then a production whose left hand side is A is called 
A-production. We write P A for the set of A-productions in P . For N ′ ⊆ N we define P N ′ = ⋃

A∈N ′ P A . For a language L and 
a CFG G we say that G covers L if L(G) ⊇ L. The size of a CFG G = (N, �, P , S) is defined as |G| = |P |. The length of a 
right-linear production rule A → w B or A → w for w ∈ �∗ is defined as |w|.

Definition 4. The RLA-complexity of a finite language L is defined as RLAc(L) = min{|G| | G RLA s.t. L(G) ⊇ L}. A finite lan-
guage L is called RLA-compressible if RLAc(L) < |L| and RLA-incompressible otherwise.

Note that RLAc(L) ≤ |L| for all finite languages L since L can be generated by a trivial grammar with |L| production rules. 
All descriptional complexity measures in this paper will be written as Xc(·) for some formalism X , e.g., X = RLA as above.

Definition 5. A sequence (Ln)n≥1 of finite languages is called RLA-incompressible if there is an M ∈ N s.t. for all n ≥ M the 
language Ln is RLA-incompressible. A sequence (Ln)n≥1 of finite languages is called RLA-compressible if for every M ∈ N there 
is an n ≥ M s.t. Ln is RLA-compressible.

We will use the above definition of X-compressibility of a sequence based on the X-compressibility of an element of the 
sequence also for descriptional complexity measures other than X = RLA.

A variant of our measure of grammatical complexity, the equality formulation, consists in asking for a minimal grammar 
G with L(G) = L. As explained in the introduction, the cover formulation is motivated by our proof-theoretic application; 
see Section 6. However, the main result on incompressibility also applies to the equality formulation; see Corollary 1. In-
compressible finite languages in the sense of the equality formulation have been studied before: [13] considers the sequence 



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 193
(Ln)n≥1 induced by an infinite language L by Ln := {w ∈ L | |w| ≤ n}. If L is regular, linear or context-free, then (Ln)n≥1 is 
compressible by the respective formalism. This result is applied in [13] to give a proof that L = {aibici | i ≥ 1} is not context-
free based on the CF-incompressibility of (L3n)n≥1. In [16], the author considers the language L = {aia j | 1 ≤ i, j ≤ n, i 
= j}
in the alphabet {a1, . . . , an} and gives a graph-theoretic characterisation of those K ⊆ L which are CF-incompressible.

3. Incompressible word languages

Note that it is trivial to construct an incompressible sequence of languages of constant size, e.g., Ln = {a} for a letter a. 
It is also trivial to construct a sequence of incompressible languages in an infinite alphabet, e.g., Ln = {a1, . . . , an} for letters 
a1, a2, . . . . Consequently, in this section we will construct an incompressible sequence of languages of unbounded size over 
a finite alphabet.

3.1. Reduced grammars

In this section we will make some preparatory observations on the structure of RLAGs which compress finite languages, 
leading to the notion of strong compressibility.

Definition 6. Let G = (N, �, P , S) be an RLAG. Then a rule A → w is called trivial if A = S and w ∈ �∗ . We define Gt =
(N, �, P t, S) where P t is the set of trivial rules of G .

We say that a word u is a subword of a word w if there are words v1, v2 s.t. w = v1uv2. We say that a word u is a 
prefix of a word w if there is a word v s.t. w = uv .

Definition 7. Let L be a finite language and G be an RLAG that covers L. Then G is called reduced w.r.t. L if for every 
non-trivial production rule A → w B or A → w of G there are distinct u, v ∈ L \ L(Gt) s.t. w is a subword of both u and v .

If the language is clear from the context we will say “reduced” instead of “reduced w.r.t. L”. Intuitively, in a grammar 
which is reduced w.r.t. L all production rules are either trivial or useful for the compression of L. The following lemma 
shows that, for questions of compressibility, it is sufficient to consider reduced RLAGs.

Lemma 1. Let L be a finite language and G be an RLAG which covers L. Then there is a reduced RLAG G∗ which covers L and satisfies 
|G∗| ≤ |G|.

Proof. If G is already reduced we are done. If not, let G = (N, �, P , S). Then P contains a non-trivial production rule 
r : A → w B or r : A → w s.t. w is subword of at most one v ∈ L \ L(Gt). Define P ′ = P \ {r}. If w is subword of no v ∈ L, 
then r cannot be used in a derivation of a word in L and we define G ′ = (N, �, P ′, S). So suppose that w is a subword of 
a v ∈ L. If v ∈ L(Gt), then define G ′ = (N, �, P ′, S). If v ∈ L \ L(Gt), then define G ′ = (N, �, P ′ ∪ {S → v}, S). Then G ′ still 
covers L and satisfies |G ′| ≤ |G|. Iterating this step will terminate (as the number of non-trivial production rules decreases) 
and will finish with a reduced RLAG G∗ which covers L and satisfies |G∗| ≤ |G|. �
Definition 8. A language L is called strongly RLA-compressible if there is a reduced RLAG G without trivial rules s.t. G covers 
L and |G| < |L|. A sequence (Ln)n≥1 of finite languages is called strongly RLA-compressible if for every M ∈ N there is an 
n ≥ M s.t. Ln is strongly RLA-compressible.

Lemma 2. Let L be an RLA-compressible language, then there is a language L′ ⊆ L which is strongly RLA-compressible.

Proof. Let G be an RLAG which covers L and satisfies |G| < |L|. By Lemma 1 there is an RLAG G ′ which is reduced w.r.t. 
L and covers L s.t. |G ′| < |L|. Let G ′

nt be G ′ without trivial production rules and let L′ = L(G ′
nt) ∩ L. Then clearly L′ ⊆ L and 

G ′
nt does not contain trivial rules. It remains to show that G ′

nt is reduced w.r.t. L′ . To that aim, let A → w B or A → w be a 
non-trivial rule of Gnt, then it is also a non-trivial rule of G ′ hence by reducedness of G ′ for L we get distinct u, v ∈ L \ L(G ′

t)

s.t. w is subword of both of them. Now as G ′ covers L and as L(G ′) = L(G ′
t) ∪ L(G ′

nt) (it follows from acyclicity that S cannot 
appear on the rhs of rules) we have u, v ∈ L(G ′

nt) hence u, v ∈ L′ . �
3.2. Segmented languages

From this section on we will frequently use the alphabet � = {0, 1, s}. The letters 0 and 1 will be used for the binary 
representation of natural numbers, while the letter s will serve as a separator. The RLA-incompressible sequence of lan-
guages which we are about to construct is a sequence of segmented languages, a notion which we define now and study in 
this section.



194 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
Definition 9. Let � = {0, 1, s}. A word w ∈ �∗ s.t. w = (sv)k for some k ≥ 1 and some v ∈ {0, 1}+ is called segmented word. 
The word v is called the building block of w . Occurrences of v in w are called segments. A segmented word (sv)k where 
|v| = l is called a (k, l)-segmented word. A language consisting of (k, l)-segmented words is called a (k, l)-segmented language.

The following lemma states the key property of segmented languages: long rules are not useful for compression.

Lemma 3. Let L be a finite (k, l)-segmented language and G be a reduced RLAG that covers L. Then every non-trivial rule of G has 
length at most l.

Proof. Suppose that G contains a non-trivial rule A → w B or A → w with |w| > l and let w ′ be the prefix of w of length 
l + 1. As G is reduced there are distinct (k, l)-segmented words u, v s.t. w , and hence also w ′ , is subword of both u and v . 
Since |w ′| = l + 1, there are w1, w2 ∈ {0, 1}∗ s.t. w ′ = w ′

1sw ′
2 and |w ′

1| + |w ′
2| = l. But as w ′ is a subword of u, the building 

block of u is w ′
2 w ′

1 and analogously: as w ′ is a subword of v , the building block of v is w ′
2 w ′

1. Since both, u and v , are 
(k, l)-segmented words we have u = v . Contradiction. �
Lemma 4. Let L be a finite (k, l)-segmented language that is strongly RLA-compressible. Then k < |L| − 1.

Proof. Note that we have |w| = k(l + 1) for all w ∈ L. Let G be a reduced RLAG which compresses L. Then by Lemma 3
every rule in G has length at most l. Hence for deriving a single w ∈ L the grammar G needs at least |w|

l >
|w|
l+1 = k rules. 

Since L is compressible we have |G| < |L| and L 
= ∅. So, since there is a w ∈ L, we have k < |G| < |L|. �
Lemma 5. Let (Ln)n≥1 be an RLA-compressible sequence of finite languages s.t. Ln is (kn, ln)-segmented and (kn)n≥1 is unbounded. 
Then there is a sequence of finite languages (L′

n)n≥1 s.t.

1. L′
n ⊆ Ln for all n ≥ 1,

2. (L′
n)n≥1 is strongly RLA-compressible, and

3. (|L′
n|)n≥1 is unbounded.

Proof. The pointwise application of Lemma 2 to an infinite subsequence of (Ln)n≥1 that consists of RLA-compressible lan-
guages yields a sequence (L′

n)n≥1 satisfying 1 and 2. By Lemma 4 we have ki < |L′
i | for infinitely many i ∈ N, which, together 

with the assumption that (kn)n≥1 is unbounded, entails 3. �
The following Lemma 6 applies the uselessness of long rules for compression to provide an upper bound on the number 

of segments which a strongly compressing RLAG covers. This upper bound is a key ingredient of the proof of the incom-
pressibility result.

Definition 10. Let G = (N, �, P , S) be an RLAG. Let w ∈ L(G) be a (k, l)-segmented word with building block v and let 
i ∈ {1, . . . , k}. Let w0 = (sv)i−1 and w1 = (sv)k−i , then w = w0sv w1. Let δ be a derivation of w w.r.t. G; then it is of the 
form

S =⇒∗ w ′
0 A1 =⇒ w0sv ′ A2 =⇒ · · · =⇒ w0sv ′′ An =⇒ w0sv w ′

1 An+1 =⇒∗ w

for some A1, . . . , An, An+1 ∈ N with v ′ , v ′′ being prefixes of v , w ′
0 a prefix of w0 and w ′

1 a prefix of w1. We define 
nonterms(w, i, δ) = {A j | 1 ≤ j ≤ n}.

So, informally, nonterms(w, i, δ) is the set of non-terminals which is involved in the derivation of the i-th segment of 
w in δ. For a finite (k, l)-segmented language L, we can consider L × {1, . . . , k} as the segments of L. We will now, for an 
arbitrary set of nonterminals N0, prove an upper bound on the number of segments (w, i) of L which can be covered using 
nonterminals from N0.

Lemma 6. Let L be a finite (k, l)-segmented language that is strongly compressed by an RLAG G = (N, �, P , S). For each w ∈ L fix 
a derivation δw of w w.r.t. G. Let N0 ⊆ N, let P0 = P N0 and let S0 = {(w, i) ∈ L × {1, . . . , k} | nonterms(w, i, δw) ⊆ N0}. Then we 
have |S0| ≤ 2|P0| · |P0|.

Proof. For w ∈ L define S w,0 = {i ∈ {1, . . . , k} | nonterms(w, i, δw) ⊆ N0}. By Lemma 3 every rule of G has length at most l. 
Due to acyclicity, each A ∈ N0 can be used at most once in a derivation. Therefore by using all A ∈ N0 in a derivation one 
can generate at most |N0| · l terminal symbols, and hence at most |N0| segments. We thus obtain |S w,0| ≤ |N0|.

Furthermore, define L0 = {w ∈ L | ∃i s.t. (w, i) ∈ S0}. Let P∗ ⊆ P0 s.t. P∗ contains exactly one production for each nonter-
minal of N0 and note that there are at most 2|P0| such P∗ . If P∗ permits deriving a word that contains a subword v ∈ {0, 1}l , 
then the choice of P∗ uniquely determines a word w ∈ L. If P∗ does not allow deriving such a word, then P∗ may be used 



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 195
in the derivations δw of several w ∈ L; however, it does not contribute to any of its S w,0. Therefore we have |L0| ≤ 2|P0| . 
Putting these two results together, we obtain |S0| = ∑

w∈L0
|S w,0| ≤ |L0| · |N0| ≤ 2|P0| · |P0|. �

3.3. Ordered grammars

In an RLAG G the ordering <G is acyclic but, in general, not linear. For technical purposes it will be useful to fix a 
linearisation of <G and a corresponding linear order of the productions of G . To that aim we introduce the notion of 
ordered grammar.

Definition 11. A right-linear ordered grammar (RLOG) is a tuple G = (N,�, P , A1) where N is a list A1, . . . , An of nonterminals, 
P is a list p1, . . . , pm of productions s.t.

1. G ′ = ({A1, . . . , An}, �, {p1, . . . , pm}, A1) is an RLAG,
2. if Ai <G ′ A j then i < j, and
3. p1, . . . , pm are grouped by their left-hand sides, i.e.: p1, . . . , pm = q1,1, . . . , q1,k1 , . . . , qn,1, . . . , qn,kn where

{qi,1, . . . , qi,ki } = P Ai for all i ∈ {1, . . . , n}.

We say that a RLOG compresses a language L, is reduced w.r.t. L, etc., if the underlying RLAG satisfies the respective 
property.

Definition 12. Let G = ((A1, . . . , An), �, P , S) be a RLOG. Let w ∈ L(G) be a (k, l)-segmented word, let i ∈ {1, . . .k} and let δ
be a derivation of w w.r.t. G . Let

m1 = min{ j ∈ {1, . . . ,n} | A j ∈ nonterms(w, i, δ)},
m2 = max{ j ∈ {1, . . . ,n} | A j ∈ nonterms(w, i, δ)},

and cost(w, i, δ) = ∑m2
j=m1

|P A j |.

Note that the cost of the i-th segment of a word w also takes those nonterminals into account which are not used in 
the derivation δ of w . The following lemma shows that in a strongly compressed segmented language, many segments are 
cheap.

Lemma 7. Let L be a finite (k, l)-segmented language and let G be a RLOG that strongly compresses L. Let w ∈ L and δ be a derivation 
of w w.r.t. G. Then for at least half of the i ∈ {1, . . . , k}, we have cost(w, i, δ) < 4|L|

k .

Proof. As G compresses L, it covers L, so by Lemma 3 every rule of G has length at most l. Hence each rule of G can 
contribute to the costs of at most two segments of w , so we have 2|G| ≥ ∑k

i=1 cost(w, i, δ). Now suppose that � k
2 � segments 

of w have cost at least 4|L|
k each, then 

∑k
i=1 cost(w, i, δ) ≥ � k

2 � · 4|L|
k ≥ 2|L|, which is a contradiction to |G| < |L|. �

Definition 13. Let G = (N, �, (p1, . . . , pm), A1) be a RLOG and let s < m. For A ∈ N define

pmin(A) = min{ j | p j ∈ P A} and pmax(A) = max{ j | p j ∈ P A}.
Furthermore, for j ∈ {1, . . . , �m

s � − 1} define

N j = {A ∈ N | ( j − 1)s ≤ pmin(A) and pmax(A) < ( j + 1)s}.
We say that (N j)

� m
s �−1

j=1 is the s-covering of G .

Note that N j and N j+1 can overlap, but N j and N j+2 can not. Furthermore, note that |P N j | ≤ 2s for all j ∈
{1, . . . , �m

s � − 1}. The following lemma applies Lemma 7 to obtain a lower bound on the number of segments covered 
by the productions of a single N j . This lower bound is another key ingredient of the proof of the incompressibility result.

Lemma 8. Let L be a finite (k, l)-segmented language, let G = (N, �, P , S) be a RLOG which strongly compresses L and let |G| >
s ≥ 4|L|

k . Let N1, . . . , N� |G|
s �−1 be the s-covering of G. Let w ∈ L and δ be a G-derivation of w. Then for at least half of the i ∈ {1, . . . , k}

there is a j ∈ {1, . . . , � |G|
s � − 1} s.t. nonterms(w, i, δ) ⊆ N j .

Proof. By Lemma 7 at least half of the i ∈ {1, . . . , k} have cost(w, i, δ) < 4|L|
k . Let i be s.t. cost(w, i, δ) < 4|L|

k , then 
cost(w, i, δ) < s. Let A0 ∈ N be the nonterminal used for entering the i-th segment of w in δ and let j0 = max{ j ∈



196 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
{1, . . . , � |G|
s � − 1} | A0 ∈ N j}. If j0 = � |G|

s � − 1, then nonterms(w, i, δ) ⊆ N j0 because 
⋃� |G|

s �−1
j=1 N j = N , N j0 is the last 

element of this list, and all A ∈ nonterms(w, i, δ) \ {A0} occur later than A0 in the list N . If j0 < � |G|
s � − 1, then 

pmin(A0) < j0s, for if pmin(A0) ≥ j0s, then A0 ∈ N j0+1. Therefore pmin(A0) + cost(w, i, δ) < pmin(A0) + s < ( j0 + 1)s; 
hence nonterms(w, i, δ) ⊆ N j0 . �
3.4. An incompressible sequence of languages

For n ≥ 1 and k ∈ {0, . . . , 2n − 1} we write bn(k) ∈ {0, 1}n for the n-bit binary representation of k.

Definition 14 (Incompressible sequence). For all n ≥ 1 define

l(n) = �log(n)�,
k(n) = � 9n

l(n) + 1
�, and

Ln = {(sbl(n)(i))k(n) | 0 ≤ i ≤ n − 1}.

Note that l(n) is the number of bits required to represent all elements of {0, . . . ,n − 1} in binary. Note furthermore that 
for every n ≥ 1, we have |Ln| = n and all words in Ln have the same length k(n)(l(n) + 1). The number of segments k(n) has 
been chosen s.t. k(n)(l(n) + 1) is 9n padded up to the next multiple of l(n) + 1; hence the length of the words in Ln grows 
linearly in n.

Example 1. For n = 5 we have l(5) = 3, k(5) = 12 and L5 = {(s000)12, (s001)12, (s010)12, (s011)12, (s100)12}.

Theorem 1. (Ln)n≥1 is RLA-incompressible.

The proof strategy for this theorem is as follows: both Lemmas 6 and 8 assume a strongly compressed segmented 
language. But while Lemma 6 states an upper bound on the number of segments covered by a certain part of a strongly 
compressing grammar, Lemma 8 provides a lower bound on the number of segments covered by the productions of a 
single N j . The following proof will show these two bounds to be inconsistent, thus deriving the incompressibility of (Ln)n≥1.

Proof. Suppose that (Ln)n≥1 is RLA-compressible. Then by Lemma 5 there is a sequence (L′
n)n≥1 which is strongly compress-

ible by a sequence (Gn)n≥1 of RLAGs. We consider Gn as RLOG G ′
n by fixing an arbitrary linear order satisfying Definition 11. 

Let us fix for every n ≥ 1 and every w ∈ L′
n a derivation δw of w w.r.t. G ′

n . This is well-defined, since the L′
n are disjoint, 

and hence δw does not depend on n.
First note that for all n ≥ 1 we have k(n) = � 9n

�log(n)�+1 � ≥ 9n
log(n)+2 , and since n ≥ |L′

n| we have

k(n) ≥ 9|L′
n|

log(|L′
n|) + 2

. (1)

Therefore 4|L′
n|

k(n)
≤ 4

9 (log(|L′
n|) + 2) =: sn . Let N1, . . . N� |G′

n |
sn

�−1
be the sn-covering of G ′

n and define

Un := |{(w, i) ∈ L′
n × {1, . . . ,k(n)} | ∃ j s.t. nonterms(w, i, δw) ⊆ N j}|.

By Lemma 8 we have Un ≥ |L′
n|·k(n)

2 , which, together with (1), entails

Un ≥ 9|L′
n|2

2(log(|L′
n|) + 2)

. (2)

On the other hand, applying Lemma 6 to all N j for j = 1, . . . , � |G ′
n|

sn
� − 1 and summing up yields

Un ≤
� |G′

n |
sn

�−1∑
j=1

2|P N j | · |P N j | ≤ (� |G ′
n|

sn
� − 1) · 22sn · 2sn.

We have

22sn · 2sn ≤ C |L′
n|

8
9 (log(|L′

n|) + 2) for some C ∈N

and



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 197
� |G ′
n|

sn
� − 1 ≤ |L′

n|
sn

= 9|L′
n|

4(log(|L′
n|) + 2)

and therefore

Un ≤ D|L′
n|

17
9 for some D ∈N. (3)

Putting (2) and (3) together we obtain

|L′
n|2 ≤ E|L′

n|
17
9 (log(|L′

n|) + 2) for some E ∈N. (4)

But by Lemma 5 the function n �→ |L′
n| is unbounded. Hence there is an M ∈ N s.t. for all n ≥ M the inequality (4) is not 

satisfied; contradiction. �
3.5. Remarks

Every sequence of languages which is incompressible in the cover formulation is also incompressible in the (more re-
stricted) equality formulation. Therefore we immediately obtain the following corollary from Theorem 1.

Corollary 1. There is no sequence (Gn)n≥1 of RLAGs and M ∈ N s.t. L(Gn) = Ln and |Gn| < |Ln| for all n ≥ M.

On the other hand, the sequence (Ln)n≥1 can be compressed by stronger formalisms:

Proposition 1. There is a sequence (Gn)n≥1 of acyclic CFGs which compresses (Ln)n≥1 .

Proof. Let Gn = ({S, A1, . . . , Al(n)}, {0, 1, s}, Pn, S) where

Pn = {S → (sA1)
k(n), A1 → 0A2 | 1A2, . . . , Al(n) → 0 | 1}.

Then L(Gn) ⊇ Ln for all n ≥ 1 and |Gn| = 2�log(n)� + 1 < n = |Ln| for all n ≥ M for a certain M . �
The length of the words in Ln grows linearly. Under the condition that |Ln| = n this is the best possible:

Proposition 2. Let (L′
n)n≥1 be a sequence of finite languages over a finite alphabet � = {a1, . . .ak} s.t. |L′

n| = n and s.t. there is a 
sublinear function that bounds the maximal length ln of a word in L′

n. Then (L′
n)n≥1 is RLA-compressible.

Proof. Let Gn = ({A1, . . . , Aln }, �, Pn, A1) where

Pn = {A1 → a1 A2 | · · · | ak A2 | A2, . . . , Aln → a1 | · · · | ak | ε}.
Then L(Gn) = �≤ln ⊇ L′

n and |Gn| = (k + 1) · ln which, from a certain M ∈N on, is less than |L′
n| = n. �

4. Tree languages

4.1. Vectorial grammars

Rigid tree languages, a class of tree languages with equality constraints, have been introduced in [27] with applications 
in verification in mind. A presentation of this class of languages based on grammars has been given in [17]. Their relevance 
in the present context stems from the fact that, on the one hand, they describe formal proofs in a sense that will be made 
precise in Section 6 and, on the other hand, their compression strength equals that of RLAGs in the sense of the below 
Lemma 12.

For a ranked alphabet (i.e., a term signature) � we write T (�) for the set of all terms built from function and constant 
symbols of �. In what follows, we will also consider vectors of symbols, written as c . The union of vectors is the union of 
their elements, i.e., if c = (c1, . . . , ck) and d = (d1, . . . , dl), then c ∪ d = {c1, . . . , ck, d1, . . . , dl}.

Definition 15. Let � be a ranked alphabet. A vectorial totally rigid acyclic tree grammar (VTRATG) is given by the tuple 
(α0,1, N, �, P ):

1. α0,1 is the start nonterminal.
2. N = ((α0,1), α1, . . . , αn) is a finite sequence of nonterminal vectors αi = (αi,1, . . . , αi,ki ). The nonterminals are pairwise 

distinct: αi, j 
= αk,l if (i, j) 
= (k, l).
3. � is a ranked alphabet, the terminal symbols of the grammar.



198 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
4. P is a finite set of vectorial productions. A vectorial production is a pair αi → t , where t = (t1, . . . , tki ) is a vector of 
terms s.t. t j ∈ T (� ∪ αi+1 ∪ · · · ∪ αn). P is required to contain at least one vectorial production for every nonterminal 
vector αi .

Note that G is acyclic in the sense that for each vectorial production αi → t , the right hand side t only contains nonter-
minals from the nonterminal vectors αi+1, . . . , αn .

Definition 16. Let G = (α0,1, N, �, P ) be a VTRATG with nonterminals N = ((α0,1), α1, . . . , αn). The language of G is defined 
as L(G) = {α0,1[α0\s0] · · · [αn\sn] | αi → si ∈ P }.

The property that the language L(G) of a VTRATG does not contain any nonterminals is a consequence of this definition.

Example 2. Let G = (α0,1, N, �, P ) where N = ((α0,1), (α1,1, α1,2), (α2,1)), � = {a/0, b/0, c/0, f /3, g/1} and P consists of the 
following production rules:

(α0,1) → ( f (α1,1,α1,2,α2,1))

(α1,1,α1,2) → (g(α2,1),a) | (α2,1,α2,1)

(α2,1) → (b) | (c)

Then L(G) = { f (g(b), a, b), f (g(c), a, c), f (b, b, b), f (c, c, c)}.

The following lemma shows that the language of a VTRATG can be computed by progressively reducing the grammar 
from the left.

Lemma 9. Let G = (α0,1, N, �, P ) be a VTRATG with nonterminals N = ((α0,1), α1, . . . , αn) with n ≥ 1. Define G ′ = (α0,1, N ′, �, P ′)
where

N ′ = ((α0,1,α2, . . . ,αn)), and

P ′ = {(α0,1) → s0[α1\s1] | (α0,1) → s0 ∈ P ,α1 → s1 ∈ P } ∪ {αi → si | 2 ≤ i ≤ n}.
Then L(G ′) = L(G).

Proof. We have

L(G ′) = {α0,1[α0\s0[α1\s1]][α2\s2] · · · [αn\sn] | αi → si ∈ P }
= {α0,1[α0\s0][α1\s1][α2\s2] · · · [αn\sn] | αi → si ∈ P }
= L(G). �

The type of a VTRATG G as in Definition 15 is the vector (1, k1, . . . , kn) where the leading 1 indicates that the vector α0
has length 1 and is included for technical convenience. The cotype of G is the vector (l0, . . . , ln) where li is the number of 
vectorial productions in G whose left-hand side is αi .

Proposition 3. Let G be a VTRATG with cotype (l0, . . . , ln). Then |L(G)| ≤ ∏n
i=0 li .

Proof. By induction on n. If n = 0, then trivially |L(G)| = l0. For the induction step, let G = (α0,1, ((α0,1), α1, . . . , αn), �, P )

be a VTRATG and let Pn = {αn → t1, . . . , αn → tln } be the productions in P with left-hand side αn . For k ∈ {1, . . . , ln} define 
the VTRATG Gk = (α0,1, ((α0,1), α1, . . . , αn−1), �, (P \ Pn)[αn\tk]). Then we have L(G) = ⋃ln

k=1 L(Gk). By induction hypothesis 
|L(Gk)| ≤ ∏n−1

i=0 li and therefore |L(G)| ≤ ∑ln
k=1 |L(Gk)| ≤ ∏n

i=0 li . �
As a first attempt at a complexity measure of a VTRATG one may be tempted to count the number of vectorial produc-

tions, i.e., to define 
∑n

i=0 li as the complexity of G . However, this measure trivialises in the following sense.

Proposition 4. Let L be a finite tree language and let l0, . . . , ln ∈ N s.t. |L| ≤ ∏n
i=0 li . Then there is a VTRAT grammar G with cotype 

(l0, . . . , ln) and L(G) = L.

Proof. For i ∈ {0, . . . , n} define l∗i = ∏
0≤ j<i l j (hence l∗0 = 1) and αi = (αi,1, . . . , αi,l∗i ). Furthermore, for i ∈ {0, . . . , n − 1} let

Pi = {αi → (αi+1, j·l∗+1, . . . ,αi+1,( j+1)·l∗) | 0 ≤ j < li}.
i i



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 199
Define the VTRAT grammar G0 = (α0,1, (α0, . . . , αn−1), �, P0 ∪ · · · ∪ Pn−1). We first claim that for all k ∈ {0, . . . , n − 1} we 
have

{α0,1[α0\s0] · · · [αk\sk] | αi → si ∈ P0 ∪ · · · ∪ Pk} = {αk+1,1, . . . ,αk+1,l∗k+1
}

and show this by induction on k: for k = 0 we have {α0,1[α0\s0] | α0 → s0 ∈ P0} = {α1,1, . . . , α1,l∗1}. For the induction step 
assume k > 0. Then we have

{α0,1[α0\s0] · · · [αk\sk] | αi → si ∈ P0 ∪ · · · ∪ Pk}
= {αk,l[αk\sk] | 1 ≤ l ≤ l∗k ,αk → sk ∈ Pk}
= {αk+1, j·l∗k +l | 1 ≤ l ≤ l∗k ,0 ≤ j < lk}
= {αk+1,1, . . . ,αk+1,l∗k+1

}.
Finally, let L = {t1, . . . , tm} = {t j·l∗n+1, . . . , t( j+1)·l∗n | 0 ≤ j < ln} including duplicates of tm in case |L| < l∗n+1. Define

Pn = {αn → (t j·l∗n+1, . . . , t( j+1)·l∗n ) | 0 ≤ j < ln}
and G = (α0,1, (α0, . . . , αn), �, P0 ∪ · · · ∪ Pn). Then the cotype of G is (l0, . . . , ln) and we have

L(G) = {αn,l[αn\(t j·l∗n+1, . . . , t( j+1)·l∗n )] | 1 ≤ l ≤ l∗n,0 ≤ j < ln}
= {t1, . . . , tm}. �

Therefore we define the complexity of a VTRATG in a way that also takes the lengths of vectors into account.

Definition 17. Let T be a finite set of vectors of length k, i.e., T = {(t1,1, . . . , t1,k), . . . , (tn,1, . . . , tn,k)}. If k ≥ 2, we define 
T ′ = {(t1,2, . . . , t1,k), . . . , (tn,2, . . . , tn,k)}. Furthermore, we define the tree complexity ‖T ‖ of T by induction on k as follows: 
if k = 1, then ‖T ‖ = |T |. If k ≥ 2, let T = T1 � · · · � Tm be the partition of T s.t. t, s ∈ T are in the same Ti iff t and s have 
the same first component and define ‖T ‖ = m + ∑m

i=1 ‖Ti‖.

Note that ‖T ‖ is the number of vertices in the tree representation of the finite set T of vectors.

Definition 18. Let G be a VTRATG with nonterminals (α0, . . . , αn) and vectorial productions P . We define the complexity of 
G as

|G| =
n∑

i=0

‖{t | αi → t ∈ P }‖.

For a finite tree language L we define

VTRATc(L) = min{|G| | G VTRATG s.t. L(G) ⊇ L}
and for a type τ ∈ {1} ×Nn we define

VTRATcτ (L) = min{|G| | G VTRATG of type τ s.t. L(G) ⊇ L}.

4.2. Flattening vectorial grammars

Definition 19. A totally rigid acyclic tree grammar (TRATG) is a VTRATG of type (1, . . . , 1). For a finite tree language L we 
define TRATc(L) = min{|G| | G TRATG s.t. L(G) ⊇ L}.

The type of a VTRATG being (1, . . . , 1) means that all vectors have length 1; hence the name TRATG. Note that, for a 
TRATG G , the complexity |G| of G is just the number of production rules of G . On the one hand, every TRATG is a VTRATG 
and therefore VTRATc(L) ≤ TRATc(L). On the other hand, a VTRATG can be flattened to a TRATG in the sense of the following 
lemma.

Lemma 10. Let G be a VTRATG, then there is a TRATG G f s.t. L(G f) ⊇ L(G) and |G f| ≤ |G|.

Proof. Let (1, k1, . . . , kn) be the type of G . We proceed by induction on the number of i ∈ {1, . . . , n} s.t. ki > 1. If there is no 
such i, then G is a TRATG. Assume ki > 1 and define

G ′ = (α0,1, ((α0,1),α1, . . . ,αi−1, (αi,1), . . . , (αi,ki ),αi+1, . . . ,αn),�, P ′)
where P ′ is defined from P by replacing every production of the form αi → (t1, . . . , tki ) by the productions (αi,1) →
(t1), . . . , (αi,k ) → (tk ). Then we have L(G ′) ⊇ L(G), |G ′| ≤ |G| and G ′ has a type with less elements greater than 1. �
i i



200 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
Proposition 5. VTRATc(L) = TRATc(L) for every finite tree language L.

Proof. VTRATc(L) ≤ TRATc(L) is obvious since every TRATG is a VTRATG. The other direction follows directly from 
Lemma 10. �

The flattening-transformation used in Lemma 10 for obtaining a TRATG G f from a VTRATG G without increasing its 
complexity increases the number of nonterminal vectors. At this point, it is unclear whether this is necessary and one may 
ask whether there is a flattening-transformation which keeps the number of nonterminal vectors constant but increases the 
number of productions instead (that is, so to say, to increase the width instead of the height of the grammar). We will now 
show that this is impossible by exhibiting languages which are (1, 2)-VTRAT-compressible but (1, 1)-VTRAT-incompressible. 
To that aim, we work in the ranked alphabet � = { f /2, s/1, 0/0}.

Definition 20. For n ≥ 1 define Tn = { f (sk(0), sl(0)) | k + l = n}.

Lemma 11. Let α be a variable which occurs in a term u as strict subterm, let s1, s2 be terms. If u[α\s1], u[α\s2] ∈ Tn, then s1 = s2 .

Proof. If α is a strict subterm of u and u[α\s1], u[α\s2] ∈ Tn , then u = f (u′, u′′) and s1 = sm1 (0), s2 = sm2 (0) for some 
m1, m2 ∈N.

If u′ contains α but u′′ does not, then u′ = sn′
(α) and u′′ = sn′′

(0) for some n′, n′′ ∈ N. As u[α\s1] ∈ Tn we have n′ +m1 +
n′′ = n and as u[α\s2] ∈ Tn we have n′ +m2 +n′′ = n hence m1 = m2. If u′′ contains α but u′ does not, proceed symmetrically. 
If both u′ and u′′ contain α an analogous argument leads to the equations n′ + n′′ + 2m1 = n and n′ + n′′ + 2m2 = n and 
hence to the same conclusion m1 = m2. �
Theorem 2. VTRATc(1,2)(Tn) = O (

√|Tn|) but VTRATc(1,1)(Tn) ≥ |Tn|.

Proof. We start with the proof of the upper bound. For m ≥ 1 define the VTRATG Gm of type (1, 2) as follows: Gm =
(α0,1, ((α0,1), (α1,1, α1,2)), { f , s, 0}, P ) where

P = {(α0,1) → ( f (skm(α1,1), slm(α1,2)) | k + l = m − 1} ∪
{(α1,1,α1,2) → (sk(0), sl(0)) | k + l = m − 1}.

We claim that L(Gm) = Tm2−1. In order to show that, first let f (sr1 (0), sr2 (0)) ∈ L(Gm). Then r1 = km + k′ , r2 = lm + l′ with 
k + l = m − 1 and k′ + l′ = m − 1. Therefore r1 + r2 = (k + l)m + (k′ + l′) = m2 − 1 and hence f (sr1 (0), sr2 (0)) ∈ Tm2−1. For the 
other direction, let f (sr1 (0), sr2 (0)) ∈ Tm2−1, then r1 + r2 = m2 − 1. From the base m representations of r1 and r2 we obtain 
k, k′, l, l′ ∈ {0, . . . , m − 1} s.t. r1 = km + k′ and r2 = lm + l′ . We thus have m2 − 1 = (k + l)m + (k′ + l′). Then k + l < m (since 
otherwise (k + l)m ≥ m2 and (k + l)m + (k′ + l′) > m2 − 1) and k + l > m − 2 (since otherwise (k + l)m ≤ (m − 2)m and as 
k′ + l′ ≤ 2(m − 1) we would have (k + l)m + (k′ + l′) ≤ m2 − 2), so k + l = m − 1. Then k′ + l′ = m2 − 1 − (m − 1)m = m − 1 and 
therefore f (sr1(0), sr2 (0)) ∈ L(Gm). We have |Gm| = 2m and |Tm2−1| = m2 which concludes the proof of the upper bound.

For the proof of the lower bound, it will be convenient to write a (1, 1)-VTRATG as a pair (U , S) of finite sets of terms 
s.t. the only nonterminal α is only allowed to occur in U . The language of (U , S) is U [α\S] = {u[α\s] | u ∈ U , s ∈ S} and 
its complexity is |(U , S)| = |U | + |S|. We will consider (U , ∅) to denote a (1)-VTRATG. The language of (U , ∅) is U and its 
complexity is |U |.

Let (U , S) be a VTRATG of type (1, 1) or (1) which covers Tn , let #U be the number of terms in U that contain α. We 
show that there is a VTRATG (U ′, S ′) of type (1, 1) or (1) which covers Tn s.t.

#U ′ < #U and |(U ′, S ′)| ≤ |(U , S)|
To that aim let u0 ∈ U s.t. u0 contains α.

If u0 = α, let S = S1 ∪ S2 with S1 ⊆ Tn and S2 ∩Tn = ∅. As S1 ⊆ Tn , all s1 ∈ S1 must be of the form f (s′
1, s

′′
1). Furthermore, 

all u ∈ U \ {α} s.t. there is s ∈ S with u[α\s] ∈ Tn must be of the form f (u′, u′′). So, given u ∈ U \ {α} which contains α
and s1 ∈ S1 the term u[α\s1] contains at least two occurrences of f hence u[α\s1] /∈ Tn . Therefore ((U \ {α}) ∪ S1, S2) is a 
VTRATG of type (1, 1) or (1) which covers Tn and is smaller than (U , S) both in terms of | · | and #·.

If u0 
= α (but α occurs in u0) write

U [α\S] ∩ Tn = (u0[α\S] ∩ Tn) ∪
⋃

u∈U\{u0}
(u[α\S] ∩ Tn).

Define U ′ = (U \ {u0}) ∪ (u0[α\S] ∩ Tn) and observe that

U ′[α\S] ∩ Tn = (u0[α\S] ∩ Tn) ∪
⋃

(u[α\S] ∩ Tn).
u∈U\{u0}



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 201
By Lemma 11, |u0[α\S] ∩ Tn| ≤ 1 hence (U ′, S) is a VTRATG of type (1, 1) or (1) which covers Tn with #U ′ < #U and 
|(U ′, S ′)| ≤ |(U , S)|.

Therefore, among all VTRAT grammars of type (1, 1) or (1) with minimal complexity there is one with #U = 0, i.e., a 
(1)-VTRATG. But the only minimal (1)-VTRATG is (Tn, ∅) which is of complexity |Tn| and therefore VTRATc(1,1) ≥ |Tn|. �
4.3. Relating word and tree languages

Definition 21. For an alphabet � define the ranked alphabet �T = { fa/1 | a ∈ �} ∪ {e}. For w ∈ �∗ define the term wT

recursively by εT = e, and (av)T = fa(vT). For L ⊆ �∗ define LT = {wT | w ∈ L}.

Lemma 12. For every finite language L: TRATc(LT) = RLAc(L).

Proof. Let G be a minimal RLAG with L(G) ⊇ L. By applying ·T to the production rules of G we obtain a regular tree 
grammar G ′ in the terminals �T with L(G ′) ⊇ LT and |G ′| = |G|. Since �T is unary, the interpretation of G ′ as a TRATG G ′′
satisfies L(G ′′) = L(G ′) ⊇ LT and |G ′′| = |G|.

For the other direction let � be the alphabet of L and let G be a minimal TRATG with L(G) ⊇ LT, then G = (N, �T, P , S). 
Therefore every production rule in P is of the form A → fx1 (· · · · · · ( fxn (B)) · · · ) or A → fx1 (· · · · · · ( fxn (e)) · · · ) for some 
B ∈ N , n ≥ 0 and x1, . . . , xn ∈ �. We define an RLAG G ′ = (N, �, P ′, S) by replacing each A → fx1 (· · · · · · ( fxn (B)) · · · ) by 
A → x1 · · · xn B and each A → fx1 (· · · · · · ( fxn (e)) · · · ) by A → x1 · · · xn . Then |G ′| = |G|. �
Corollary 2. The sequence of tree languages (LT

n)n≥1 is TRAT-incompressible.

Proof. This follows directly from Lemma 12 and Theorem 1. �
5. Proof theory

In this section we introduce the basic notions and results from proof theory which are relevant to this paper. For a 
thorough introduction to proof theory, the interested reader is referred to [28], for a textbook on the subject to [29].

5.1. The cut-elimination theorem

We will consider formulas and proofs in first-order predicate logic without equality. Formulas are built up inductively 
from atoms using ∧, ∨, →, ¬, ∀ and ∃. The semantics of first-order predicate logic is defined as usual: a structure is a pair 
M = (D, I) where D , the domain, is an arbitrary set and I , the interpretation, maps constant symbols to elements of D , 
function symbols to functions over D and predicate symbols to predicates over D . We write M � ϕ if ϕ is true in M. This 
relation is defined as usual by induction on the structure of ϕ . A formula is called valid if it is true in all structures. For a 
more detailed introduction to first-order predicate logic, the reader is referred to [30].

A sequent is an expression of the form 	 � 
 where 	 and 
 are finite multisets of formulas. The intended interpretation 
of a sequent 	 � 
 is the formula (

∧
ϕ∈	 ϕ) → (

∨
ψ∈
 ψ). A sequent is said to be valid if its interpretation as a formula 

is. Note that a formula ϕ can be identified with the sequent ∅ � {ϕ}. Usually, multiset-notation is omitted, so the above 
sequent is just written as � ϕ . Thus, a sequent has a syntactic structure which generalises that of a formula.

Example 3. P (0), ∀x (P (x) → P (s(x))) � P (s(s(0))) is a sequent.

We define 	1 � 
1 ⊆ 	2 � 
2 as 	1 ⊆ 	2 and 
1 ⊆ 
2. Analogously, we also use the union ∪ and disjoint union �
on sequents component-wise. When we speak about a minimal sequent, we mean minimal w.r.t. ⊆. The size of a sequent 
is |	 � 
| = |	| + |
|. The logical complexity ‖ϕ‖ of a formula ϕ is the number of logical connectives and atoms it con-
tains. Analogously, the logical complexity ‖	 � 
‖ of a sequent 	 � 
 is the number of logical connectives and atoms it 
contains. We write ∀x A as abbreviation for ∀x1 · · · ∀xn A and analogously for the existential quantifier ∃. A �1-sequent is a 
sequent 	 � 
 where all formulas in 	 are of the form ∀x A with A quantifier-free and all formulas in 
 are of the form 
∃x A with A quantifier-free. Every sequent can be transformed into a validity-equivalent �1-sequent by Skolemisation and 
prenexification, see, e.g., [31].

Example 4. The sequent S defined in Example 3 is a �1-sequent and satisfies |S| = 3 and ‖S‖ = 6.

A proof in the sequent calculus is a finite tree whose nodes are labelled with sequents and that is built according to the 
following logical inference rules. The leaves are of the form A � A. The inference rules are:



202 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
• The propositional rules:

A ∧ B,	 � 


A, B,	 � 

∧l

	 � 
, A � � �, B
	,� � 
,�, A ∧ B

∧r

A,	 � 
 B,� � �

A ∨ B,	,� � 
,�
∨l

	 � 
, A, B
	 � 
, A ∨ B

∨r

	 � 
, A B,� � �

A → B,	,� � 
,�
→l

A,	 � 
, B
	 � 
, A → B

→r

¬A,	 � 


	 � 
, A
¬l

	 � 
,¬A
A,	 � 


¬r

• The quantifier rules:

A[x\t],	 � 


∀x A,	 � 

∀l

	 � 
, A[x\α]
	 � 
,∀x A

∀r

A[x\α],	 � 


∃x A,	 � 

∃l

	 � 
, A[x\t]
	 � 
,∃x A

∃r

The ∀r- and ∃l-rules are called strong quantifier rules and are subject to the usual condition: α must not appear in the 
sequent below the rule. The variable α is called eigenvariable. The ∀l- and ∃r-rules are called weak quantifier rules.

• The structural rules:

A, A,	 � 


A,	 � 

cl

	 � 
, A, A
	 � 
, A

cr
	 � 


A,	 � 

wl

	 � 


	 � 
, A
wr

• The cut:

	 � 
, A A,� � �

	,� � 
,�
cut

A formula A, B , etc. mentioned explicitly in one of the above definitions of a rule is called active formula of its respective 
rule. In contrast, the multiset 	, 
, etc. is called context of its respective rule. The structural rules cl and cr are called 
contractions. The structural rules wl and wr are called weakenings. An active formula of a rule is called auxiliary formula if 
it is in the sequent above the rule and main formula if it is in the sequent below the rule. The auxiliary formula of a cut is 
also called cut formula of that cut. The lowest sequent in a proof is called end-sequent of that proof.

The soundness and completeness theorems of the sequent calculus state that a sequent is valid iff it is provable.

Example 5. A proof of the sequent S defined in Example 3 is:

P (0) � P (0)

P (s(0)) � P (s(0)) P (s(s(0))) � P (s(s(0)))

P (s(0)), P (s(0)) → P (s(s(0))) � P (s(s(0)))
→l

P (s(0)),∀x (P (x) → P (s(x))) � P (s(s(0)))
∀l

P (0), P (0) → P (s(0)),∀x (P (x) → P (s(x))) � P (s(s(0)))
→l

P (0),∀x (P (x) → P (s(x))),∀x (P (x) → P (s(x))) � P (s(s(0)))
∀l

P (0),∀x (P (x) → P (s(x))) � P (s(s(0)))
cl

Thus, the sequent S is valid.

Since a single formula ϕ may occur several times in a proof, we speak about formula occurrences. In the proof of Exam-
ple 5, there are five occurrences of the formula ∀x (P (x) → P (s(x))). An application of a rule in a proof is called inference. 
The length of a proof ψ , written as |ψ | is the number of inferences in ψ . We write |ψ |q for the number of weak quantifier 
inferences in ψ , |ψ |q is called the quantifier complexity of ψ .

The cut rule formalises the use of a lemma in a mathematical proof. A cut is said to be a �1-cut if its cut formula 
is of the form ∀x A for A quantifier-free. There is a procedure for transforming proofs with cuts into cut-free proofs. The 
cut-elimination theorem stated below, which is based on this procedure, is a cornerstone of proof theory. In order to state 
this theorem, define the function (k, n) �→ 2n

k for k, n ∈N by induction on k as follows: 2n
0 = n and 2n

k+1 = 22n
k .

Theorem 3 (Cut-elimination theorem). Let ψ be a proof of a sequent 	 � 
 s.t. ‖ϕ‖ ≤ k for every cut formula ϕ in ψ . Then there is a 
cut-free proof ψ ′ of 	 � 
 s.t. |ψ ′| ≤ 2|ψ | .
O (k)



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 203
This result was originally shown in [32], see [28] for a contemporary exposition in English. Based on this result, one 
can consider a proof with cut as a compressed representation of a cut-free proof, much like a grammar is a compressed 
representation of its finite language. Indeed, it is this point of view which is fundamental for the work presented in this 
paper.

5.2. Complexity of proofs

In this section we discuss complexity measures for proofs and known results about them in order to clarify what kind 
of bounds we will prove in Section 7.

We have already seen two complexity measures for proofs: the length |ψ | of ψ and the quantifier complexity |ψ |q of ψ . 
Another natural measure is the symbolic complexity of ψ , i.e., the number of symbols occurring in ψ , written as ‖ψ‖. Clearly 
we have |ψ |q ≤ |ψ | ≤ ‖ψ‖ for every proof ψ .

A first crucial observation is that there is no computable upper bound for the complexity of the smallest proof (in any 
of the three above senses) of a formula in terms of that formula (and hence in any computable complexity measure for 
formulas). More precisely, writing F for the set of formulas, we have:

Theorem 4. There is no computable function f :F →N s.t. f (ϕ) ≥ min{|ψ |q | ψ is a proof of � ϕ} for all valid formulas ϕ .

This result follows from the undecidability of validity of first-order formulas, the cut-elimination theorem and the tech-
niques used, e.g., in [33] for solving the realisability problem for cut-free proof skeletons. Since this theorem is not required 
for proving other results in this paper but only for justifying our interest in them, we refrain from giving a proof here.

As a corollary of Theorem 4, every computable function is a lower bound in the following sense: for every computable 
function g :F →N, there is an infinite set of valid formulas {ϕn | n ∈N} s.t. any proof ψn of ϕn has |ψn|q > g(ϕn) and hence 
also |ψn| > g(ϕn) and ‖ψn‖ > g(ϕn). Therefore, in this paper we will not be interested in a lower bound on the complexity 
of a proof in terms of the formula it proves. Instead, our results study the complexity of cut-elimination. In one direction, the 
complexity of cut-elimination is well understood: as stated in Theorem 3, the length of the cut-free proof is at most an 
iterated exponential in the length of the proof with cut. In addition, corresponding lower bounds have been proved in [34]
and [35], see [36]. These lower bounds show that the cut-elimination procedure is optimal in the sense that there is a 
sequence of formulas (ϕn)n≥1 which possesses a sequence of proofs with cut of length polynomial in n but every sequence 
of cut-free proofs has a length which grows like the n-fold iteration of the exponential function.

However, the complexity of cut-introduction, i.e., the inversion of cut-elimination, is not at all well understood yet and 
it is this question to which this paper contributes. More precisely: we analyse the complexity of the shortest proof with cut 
of some formula ϕ in terms of the complexity of the shortest cut-free proof of ϕ .

The existing upper bound on the complexity of cut-elimination has one immediate corollary pertaining to the complexity 
of cut-introduction: the iterated exponential function is trivially the maximal compression obtainable by cut-introduction. 
However, to the best of the authors’ knowledge, no sequences of formulas are known whose cut-free proofs have a non-
trivial maximal compression by cut-introduction. This is not surprising, since lower bounds on the complexity of proofs 
with cut are notoriously difficult to show (for propositional logic this is considered the central open problem in proof com-
plexity [24]). In this paper we will prove a non-trivial lower bound on the complexity of the shortest proof with �1-cuts in 
terms of the complexity of the shortest cut-free proof (Theorem 9).

5.3. Cut-free proofs and Herbrand-sequents

An instance of a formula Q x A with A quantifier-free and Q ∈ {∀, ∃} is a formula of the form A[x\t]. We say that A[x\t]
is a ground instance if t is variable-free.

Definition 22. A sequent 	′ � 
′ is called Herbrand-sequent of a �1-sequent 	 � 
 if 	′ consists of ground instances of 
formulas from 	 and 
′ consists of ground instances of formulas from 
 and 	′ � 
′ is a tautology.

Example 6. The sequent

P (0), P (0) → P (s(0)), P (s(0)) → P (s(s(0))) � P (s(s(0)))

is a Herbrand-sequent of the sequent S defined in Example 3.

Herbrand-sequents are named after J. Herbrand who first proved (a stronger form of) the following theorem [21], see [22]
for a contemporary exposition in English.

Theorem 5. Let S be a �1-sequent. Then S is valid iff S has a Herbrand-sequent.

Thus a Herbrand-sequent of S can be considered a proof of S . Consequently, the size of Herbrand-sequents is of interest 
to proof complexity.



204 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
Definition 23. Let S be a valid �1-sequent. Define H(S) to be the set of Herbrand-sequents of S and Hmin(S) to be the set 
of minimal (w.r.t. ⊆) Herbrand-sequents of S . The Herbrand-complexity of S is defined as Hc(S) = min{|H | | H ∈H(S)}.

Note that Hc(S) = min{|H | | H ∈Hmin(S)}.

Example 7. For n ≥ 1 define the sequent

Sn = P (0),∀x (P (x) → P (s(x))) � P (s2n
(0)).

Then Sn has the unique minimal Herbrand-sequent

Hn = P (0), P (0) → P (s(0)), . . . , P (s2n−1(0)) → P (s2n
(0)) � P (s2n

(0)).

Therefore Hc(Sn) = 
(2n).

The Herbrand-complexity plays an important role in proof complexity since it is closely related to the complexity of proof 
systems used in automated theorem proving: it has been used in [37] for analysing the complexity of the ε-elimination 
procedure in Hilbert’s ε-calculus, in [38] for analysing the complexity of a rule of function introduction into the resolution 
calculus, in [39] for analysing the effect of Skolemisation on proof length, in [40] for investigating the effect of preprocessing 
steps on the proof length in a tableau calculus, and in [41] for analysing proof length in the disconnection tableau calculus.

In our setting of the sequent calculus, the Herbrand-complexity is closely related to the number of weak quantifier 
inferences in a cut-free proof. The following Theorem 6 makes this precise by augmenting Theorem 5 with complexity 
bounds. In order to prove this result, we first have to define how to read off the term vectors used for instantiating a 
block of quantifiers in a proof. We will write ε for the empty vector and (t, s) for the vector obtained from the vector s by 
prepending the term t .

Definition 24. Let ψ be a proof and let μ be an occurrence of a prenex formula. We associate a set T(μ) of term vectors 
to μ by induction on the structure of ψ . If μ is a formula occurrence in an axiom or μ is main formula occurrence of a 
propositional inference or of a weakening, then T(μ) = {ε}. If μ is main formula occurrence of an ∃r-inference as in

	 � 
,(A[x\t])ν
	 � 
,(∃x A)μ

∃r

then T(μ) = {(t, s) | s ∈ T(ν)}. The other quantifier rules are handled analogously. If μ is main formula occurrence of a 
contraction as in

	 � 
, Aν1 , Aν2

	 � 
, Aμ
cr

then T(μ) = T(ν1) ∪ T(ν2). If μ occurs in the context of an inference and ν is its predecessor in the sequent above the 
inference, then T(μ) = T(ν).

Example 8. Letting μ be the occurrence of ∀x (P (x) → P (s(x))) in the end-sequent of the proof of Example 5, we have T(μ) =
{(0), (s(0))}. Note that instantiating ∀x (P (x) → P (s(x))) with {(0), (s(0))} and adding the quantifier-free part of the end-sequent of 
the proof of Example 5 gives the Herbrand-sequent of Example 6.

Definition 25. Let S be a valid �1-sequent. Define the cut-free complexity of S as

cfc(S) = min{|ψ |q | ψ cut-free proof of S}.

Theorem 6. Let S be a valid �1-sequent. Then

Hc(S) − |S| ≤ cfc(S) ≤ ‖S‖Hc(S).

Proof. For the lower bound on cfc(S), let ψ be a cut-free proof of S , let S = ∀x F1, . . . , ∀x Fr � ∃x Fr+1, . . .∃x Fm and, for 
i ∈ {1, . . . , m} let μi be the occurrence of Q x Fi in the end-sequent of ψ where Q = ∀ if i ∈ {1, . . . , r} and Q = ∃ if 
i ∈ {r + 1, . . . , m}. Let H be the sequent obtained from S by replacing Q x Fi by {Fi[x\t] | t ∈ T(μi)} for all i ∈ {1, . . . , m}. 
Then H is a sequent which consists of instances of S . For showing that H is a tautology proceed as follows: construct a 
proof ψ ′ by induction on ψ by omitting the quantifier inferences but carrying out all other inferences. Then ψ ′ is a proof 
of H , hence H is a tautology. Let H = H0 � H1 where H0 are the formulas from S which do not contain a quantifier and H1
are the instances of formulas from S which do contain quantifiers. Then we have |H0| ≤ |ψ |q and |H1| ≤ |S| and therefore 
|H | ≤ |ψ |q + |S| which entails the lower bound on cfc(S).



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 205
For the upper bound, let H be a Herbrand-sequent of S . Since H is tautological, there is a proof χ of H consisting only 
of propositional and structural inferences. Since H consists only of instances of the formulas in S , there is a proof χ ′ of S
from H consisting only of weak quantifier inferences and structural inferences. Therefore

ψ =
(χ)
H.... (χ ′)
S

is a cut-free proof of S . Furthermore, if H contains n instances of a formula ϕ of S which starts with k quantifiers, then 
k · n quantifier inferences suffice in χ ′ for deriving ϕ from its instances in H . The quantifier-free formulas of S either occur 
in H or are added in χ ′ by weakening. In either case, they do not contribute to |ψ |q. Therefore |ψ |q ≤ ‖S‖|H |. �
Corollary 3. Let (Sn)n≥1 be a sequence of valid �1-sequents s.t. ‖Sn‖ = O (1), then

Hc(Sn) = 
(cfc(Sn)).

Proof. This follows directly from Theorem 6 and the observation that |S| ≤ ‖S‖ for any sequent S . �
5.4. Proofs with �1-cuts

In this section, we will extend the notion of Herbrand-complexity to cover also proofs with cut. In order to do that, 
we proceed in the spirit of the above Corollary 3: we count the number of weak quantifier inferences in a proof with cut. 
Before defining this complexity measure precisely, we make some preparatory observations.

Lemma 13. Let ψ be a proof with �1-cuts of a sequent S. Then there is a proof ψ ′ with �1-cuts of S s.t. |ψ ′|q ≤ |ψ |q and every cut in 
ψ ′ is of the form

....
	 � 
, A[x\α]
	 � 
,∀x A

∀n
r

....
(∀x A)μ,� � �

	,� � 
,�
cut

where ∀n
r denotes n applications of the ∀r-rule, α = (α1, . . . , αn), and T(μ) consists only of vectors of length n.

Proof. By common proof-theoretic pruning techniques: shift ∀r downwards, possibly identifying different eigenvariables of 
the same xi until the left hand side of the cut is of the required form. For the right hand side of the cut, shift weakenings 
downwards until only such ancestor paths of μ remain which instantiate all xi . �

Therefore, w.l.o.g. we assume that all our proofs are of the shape guaranteed to exist by the above lemma. We then say 
that (α1, . . . , αn) is the eigenvariable vector of this cut. Symmetrically, we say that (t1, . . . , tn) is a term vector of this cut if 
(t1, . . . , tn) ∈ T(μ).

Let C1, . . . , Cn be the cuts of a proof ψ whose cut formulas contain a quantifier. For i ∈ {1, . . . , n} let αi be the eigenvari-
able vector of Ci and ti,1, . . . , ti,li be the term vectors of Ci . We write Ci <1

ψ C j if one of the α j,p appears in one of the ti,q . 
We write <ψ for the transitive closure of <1

ψ . The definition of this order is motivated by the following consideration: 
during cut-elimination the eigenvariable vector α of a cut C will be replaced by the term vectors t of C . So if another cut 
C ′ with eigenvariable vector α′ has a term vector s which contains an αi , then the final value of α′ depends on that of α. 
This dependence is expressed by C ′ <ψ C . The following result has been shown in [42, Lemma 10].

Lemma 14. Let ψ be a proof with �1-cuts. Then <ψ is acyclic.

Let ∀x1 · · · ∀xn A with A quantifier-free be a �1-formula. Then the type of A is τ (A) = n. The type of a �1-cut is the type 
of its cut formula. Let ψ be a proof with �1-cuts C1, . . . , Cn ordered s.t. Ci <ψ C j implies i < j, then we say that ψ is of 
type (τ (C1), . . . , τ (Cn)). Note that the type of a proof is not unique: different linearisations of <ψ may give rise to different 
types.

Definition 26. Let S be a valid �1-sequent and τ ∈Nk . Define



206 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
�1cτ (S) = min{|ψ |q | ψ is proof of S with �1-cuts of type τ }
�1c(S) = min{|ψ |q | ψ is proof of S with �1-cuts}
�1c(S) = min{|ψ |q | ψ is proof of S with �1-cuts of a type (1, . . . ,1)}

Note that cfc is an upper bound on �1c, i.e., for every type τ and every valid �1-sequent S we have �1cτ (S) ≤ cfc(S)

and hence also �1c(S) ≤ cfc(S). This follows from the simple observation that a cut-free proof can be transformed to a 
proof with �1-cuts by introducing useless cuts without increasing the number of weak quantifier inferences.

Also note that any �1-cut can be transformed into a �1-cut without changing the number of weak quantifier inferences 
by replacing

(ψ1)

	 � 
,∃x A
(ψ2)

∃xA,� � �

	,� � 
,�
cut by

(ψ ′
2)

� � �,∀x¬A
(ψ ′

1)

∀x¬A,	 � 


	,� � 
,�
cut

where ψ ′
1 is obtained from ψ1 by suitably replacing ∃r-inferences by ∀l-inferences and adding ¬l-inferences as needed and 

analogously for ψ ′
2 and ψ2.

6. Complexity of proofs and complexity of languages

In this section, we come back to formal language theory in order to describe the connection between the complexity of 
proofs and the complexity of languages. The development in this section follows and extends arguments that can be found 
in [19]. Intuitively, the following correspondences will be established:

cardinality of language ←→ Herbrand complexity

complexity of VTRATG ←→ quantifier complexity of proof with �1-cuts

computation of L(G) ←→ cut-elimination

In order to relate proofs to formal languages, we will identify a Herbrand-sequent with a finite tree language as follows: 
for a �1-sequent 	 � 
 define the ranked alphabet �	�
 = � ∪{ f A� | A ∈ 	} ∪{ f�A | A ∈ 
} where � is the set of function 
and constant symbols appearing in 	 � 
. The Herbrand-sequent 	′ � 
′ of 	 � 
 is then identified with the tree language

{ f A�(t) | A = ∀x B ∈ 	, B quantifier-free, B[x\t] ∈ 	′}∪
{ f�A(t) | A = ∃x B ∈ 
, B quantifier-free, B[x\t] ∈ 
′}.

Example 9. The Herbrand-sequent defined in Example 6 is

{ f P (0)�, f∀x (P (x)→P (s(x))�(0), f∀x (P (x)→P (s(x))�(s(0)), f�P (s(s(0)))}
as tree language, cf. also Example 8.

Note that the size of a Herbrand-sequent is the size of its tree language. Consequently, Hc(S) is the size of the smallest 
tree language representing a Herbrand-sequent of S . Theorem 6 and Corollary 3 show that this size is closely related to the 
cut-free complexity.

The key result for the connection between the complexity of proofs with cut and that of finite languages is the following 
Theorem 7, which is an analogue of Theorem 6 for proofs with �1-cuts. It permits to analyse the proof complexity of S by 
analysing the grammatical complexity of the finite tree languages induced by the Herbrand-sequents of S .

Definition 27. Let ψ be a proof with �1-cuts of a �1-sequent S . We define a VTRATG G(ψ) as follows: let C1, . . . , Cn be 
the cuts of ψ whose cut formulas contain a quantifier, ordered s.t. Ci <ψ C j implies i < j. Let αi be the eigenvariable vector 
of Ci and ti,1, . . . , ti,li the term vectors of Ci . Let S = ∀x F1, . . . , ∀x Fr � ∃x Fr+1, . . .∃x Fm , let μi be the occurrence of Q x Fi

in the end-sequent of ψ and write f i for the function symbol f∀x Fi� if 1 ≤ i ≤ r and for f�∃x Fi if r + 1 ≤ i ≤ m.
Then G(ψ) = (α0,1, N, �, P ) where N = ((α0,1), α1, . . . , αn), � is the signature of ψ together with f1, . . . , fm , and

P = {(α0,1) → ( f i(t)) | t ∈ T(μi),1 ≤ i ≤ m} ∪ {αi → ti, j | 1 ≤ i ≤ n,1 ≤ j ≤ li}.



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 207
Example 10. Let ψ1 =
....

P (α1,1) → P (s(α1,1)), P (s(α1,1)) → P (s(s(α1,1))) � P (α1,1) → P (s(s(α1,1)))

P (α1,1) → P (s(α1,1)),∀x (P (x) → P (s(x))) � P (α1,1) → P (s(s(α1,1)))
→l

∀x (P (x) → P (s(x))),∀x (P (x) → P (s(x))) � P (α1,1) → P (s(s(α1,1)))
∀l

∀x (P (x) → P (s(x))) � P (α1,1) → P (s(s(α1,1)))
cl

∀x (P (x) → P (s(x))) � ∀x (P (x) → P (s(s(x))))
∀r

and ψ2 =
....

P (0) → P (s(s(0)))), P (0) � P (s(s(0)))

∀x (P (x) → P (s(s(x)))), P (0) � P (s(s(0)))
∀l

and ψ =
(ψ1) (ψ2)

P (0),∀x (P (x) → P (s(x))) � P (s(s(0)))
cut

where the vertical dots abbreviate short (and for the purposes of this example: irrelevant) propositional proofs. Omitting vector notation 
since all vectors are of length 1, we have G(ψ) = (α0,1, N, �, P ) where N = (α0,1, α1,1), and P =

α0,1 → f P (0)� | f∀x (P (x)→P (s(x)))�(α1,1) | f∀x (P (x)→P (s(x)))�(s(α1,1)) | f�P (s(s(0))),

α1,1 → 0

The reader is invited to observe that L(G(ψ)) is the Herbrand sequent of Example 9.

Lemma 15. Let S be a �1-sequent and let ψ be a proof of S with �1-cuts, then L(G(ψ)) is a Herbrand-sequent of S.

Proof. We will proceed by induction on the number of cuts in ψ which contain quantifiers. If all cuts in ψ are quantifier-
free, then the nonterminals of G(ψ) are of the form N = ((α0,1)) and therefore L(G(ψ)) = {t | (α0,1) → (t) ∈ P } where P
are the productions of G(ψ). Then an argument as in Theorem 6 shows that L(G(ψ)) is a tautology by transforming ψ into 
a proof ψ ′ of L(G(ψ)) which does not contain quantifier inferences.

Let C1 be a <ψ -minimal cut which contains quantifiers. Let t1, . . . , tn be the term vectors of C1, let α1 be the eigenvari-
able vector of C1, and let α1 be of length k. Then the subproof of ψ which ends with C1 is of the form

(χ)

	 � 
, A[x\α1]
	 � 
,∀xA

∀k
r

....
A1[xk\t1,k],�1 � �1

∀xk A1,�1 � �1
∀l

· · ·
....

An[xk\tn,k],�n � �n

∀xk An,�n � �n
∀l

....
∀x A,� � �

	,� � 
,�
cut

where ∀k
r abbreviates k application of the ∀r-rule, the ∀l-inferences on t1,k, . . . , t1,n may appear in any partial order in the 

subproof on the right above C1, and Ai = A[x1\ti,1, . . . , xk−1\ti,k−1] for i ∈ {1, . . . , n}. Define ψ ′ from ψ by replacing this 
subproof with

(χ [α1\t1])
	 � 
, A1[xk\t1,k]

....
A1[xk\t1,k],�1 � �1

	,�1 � 
,�1
cut

· · ·
(χ [α1\tn])

	 � 
, An[xk\tn,k]
....

An[xk\tn,k],�n � �n

	,�n � 
,�n
cut

....
	,� � 
,�

where the newly introduced cuts replace the ∀l-inferences on t1, . . . , tn of ψ . Since C1 is <ψ -minimal, we are in the 
situation of Lemma 9 and have, in the notation of that Lemma, G(ψ ′) = G ′(ψ) and hence L(G(ψ ′)) = L(G(ψ)). �
Lemma 16. Let S be a �1-sequent and let G be a VTRATG of type (1, τ ) s.t. L(G) is a Herbrand sequent of S. Then there is a proof ψ of 
S with �1-cuts of type τ s.t. |ψ |q ≤ ‖S‖ · |G|.



208 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
Proof. If τ is empty, the result has already been shown in the proof of Theorem 6, so let τ be non-empty. Let N =
((α0,1), α1, . . . , αn) be the nonterminals of G and P the productions of G . Let S = 	 � 
 where 	 = ∀xF1, . . . , ∀xFr and 

 = ∃xFr+1, . . . , ∃xFm . For k ∈ {0, . . . , n} define Tk = {t | αk → t ∈ P } and for i ∈ {1, . . . , m} define T0,i = {t | (α0,i) → f i(t) ∈
P } where f i = f∀x Fi� for i ∈ {1, . . . , r} and f i = f�∃x Fi for i ∈ {r + 1, . . . , m}. Let li be the number of quantifiers in Q xFi . 
Let

Gi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fi if i ∈ {1, . . . , r} and li = 0∧
t∈T0,i

F i[x\t] if i ∈ {1, . . . , r} and li > 0

¬Fi if i ∈ {r + 1, . . . ,m} and li = 0∧
t∈T0,i

¬Fi[x\t] if i ∈ {r + 1, . . . ,m} and li > 0

Furthermore, let

C1 =
m∧

i=1

Gi, and Ck+1 =
∧
t∈Tk

Ck[αk\t] for k ∈ {1, . . . ,n − 1}.

Define the proof ψ(G) as

(χ1)

	 � 
,∀α1 C1

(χ2)

∀α1 C1 � ∀α2 C2

	 � 
,∀α2 C2
cut (χ3)

∀α2 C2 � ∀α3 C3

	 � 
,∀α2 C2
cut

....
	 � 
,∀αn Cn

(χn+1)

∀αn Cn �
	 � 


cut

For i ∈ {1, . . . , n + 1}, the proof χi proceeds by using strong quantifier inferences with identity substitutions and weak 
quantifier inferences on the term vectors in Ti−1. This leads to quantifier-free tautological sequents Hi for i ∈ {1, . . . , n}
because of the definition of Ci and for i = n + 1 because Hn+1 is logically equivalent to L(G) which is tautological by 
assumption. Since all χi are cut-free, ψ is of type τ . Furthermore, we have |χi |q = ‖Ti‖ for i ∈ {2, . . . , n + 1}. The number of 
weak quantifier inferences applied to Q xFi in χ1 is bounded by ‖S‖ · |T0,i | and therefore |χ1|q ≤ ‖S‖ · |T0| and we obtain 
|ψ(G)|q ≤ ‖S‖ · |G|. �

Note that ψ(G) as constructed in the above proof satisfies G(ψ(G)) = G .

Theorem 7. Let S be a valid �1-sequent. Then

min{VTRATc(1,τ )(H) | H ∈ H(S)} − |S| ≤ �1cτ (S), and �1cτ (S) ≤ ‖S‖min{VTRATc(1,τ )(H) | H ∈ H(S)}.

Proof. Let ψ be a proof of S with �1-cuts of type τ with minimal quantifier complexity, i.e., |ψ |q = �1cτ (S). Then L(G(ψ))

is a Herbrand-sequent of S by Lemma 15. Furthermore, Definition 27 directly entails that the type of G(ψ) is (1, τ ) and 
that |G(ψ)| ≤ |ψ |q + |{ϕ ∈ S | ϕ quantifier-free}| ≤ |ψ |q + |S|. Therefore the first in equality holds.

Let G be a VTRATG of type (1, τ ) of minimal complexity s.t. L(G) is a Herbrand-sequent of S . Then by Lemma 16 there 
is a proof ψ of S with �1-cuts of type τ s.t. |ψ |q ≤ ‖S‖|G| which shows the second inequality. �
Corollary 4. Let (Sn)n≥1 be a sequence of valid �1-sequents s.t. ‖Sn‖ = O (1). Then

1. �1cτ (Sn) = 
(min{VTRATc(1,τ )(H) | H ∈H(Sn)}).
2. �1cτ (Sn) = 
(min{VTRATc(1,τ )(H) | H ∈Hmin(Sn)}).
3. �1c(Sn) = 
(min{TRATc(H) | H ∈Hmin(Sn)}).
4. If, for all n ≥ 1, Sn has a unique minimal Herbrand-sequent Hmin

n , then �1c(Sn) = 
(TRATc(Hmin
n )).

Proof. 1 follows directly from Theorem 7 and the observation that ‖S‖ ≥ |S|. 2 follows from 1 and the observation that the 
smallest grammar which covers a Herbrand-sequent is the smallest grammar which covers a minimal Herbrand-sequent. 
3 follows from 2 and Proposition 5. 4 follows directly from 3. �

For 2, 3, and 4 in the above corollary to hold, it is indispensable to use the cover formulation for the grammatical 
complexity of a finite language. Using the equality formulation would not allow the reduction from all to the minimal 
Herbrand-sequents.



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 209
The strength of this result lies in the fact that it is often possible to construct (Sn)n≥1 of constant logical complexity s.t. 
Sn has a unique minimal Herbrand-sequent Hmin

n . For such a sequence, Corollary 4/4 is applicable, thus reducing, for each n, 
the problem of determining the minimal number of weak quantifier inferences needed for proving a sequent with �1-cuts 
to the problem of determining the TRAT-complexity of a single tree language.

Example 11. Letting Sn be the sequents defined in Example 7 note that by using the cut formulas ∀x (P (x) → P (s2i
(x))) for i ∈

{1, . . . , n} one can find a proof πn with cut having only O (n) inferences. Furthermore, the proof πn corresponds to the following 
TRATG Gn. Omitting vector notation since all vectors have length 1 we have Gn = (α0, (α0, α1, . . . , αn), �, Pn) where Pn consists of 
the following rules:

α0 → f P (0)� | f�P (s2n
(0)) | f∀x (P (x)→P (s(x)))�(α1) | f∀x (P (x)→P (s(x)))�(s(α1))

α1 → α2 | s2(α2), . . . , αn−1 → αn | s2n−1
(αn),αn → 0

As the interested reader is invited to verify, the language L(Gn) covers (and is in fact equal to) the minimal Herbrand sequent Hn of 
Sn (see Example 7). So we have TRATc(Hn) = O (n) and hence by Corollary 4/4 that �1c(Sn) = O (n). On the other hand, as shown in 
Example 7, we have Hc(Sn) = 
(2n) and thus, by Corollary 3, also cfc(Sn) = 
(2n).

As a first demonstration of the usefulness of Corollary 4 we show that the complexity of proofs with cut is independent 
on whether blocks of quantifiers are allowed in the following sense:

Corollary 5. If (Sn)n≥1 is a sequence of valid �1-sequents s.t. ‖Sn‖ = O (1), then �1c(Sn) = 
(�1c(Sn)).

Proof. By Corollary 4/1 and Proposition 5. �
Based on a more detailed analysis of the situation in Theorem 7 one can prove a stronger version of this theorem which 

allows to show that even �1c(S) = �1c(S) for every valid �1-sequent S .

7. Lower bounds on the length of proofs

7.1. Incompressibility by one cut with one quantifier

In this section we will describe a non-trivial application of Corollary 4 transferring Theorem 2 to proofs. To that aim, we 
work with the ranked alphabet � = {s/1, 0/0}. Terms in � denote natural numbers. For n ∈ N we write n for the numeral 
sn(0).

Definition 28. For n ≥ 1 let τn be the sequent

P (n,0),∀x∀y (P (s(x), y) → P (x, s(y))) � P (0,n)

We abbreviate the formula ∀x∀y (P (s(x), y) → P (x, s(y))) by A. The first step to analysing the descriptional complexity 
of τn is to understand its set of minimal Herbrand-sequents.

Lemma 17. For every n ≥ 1 the sequent τn has the unique minimal Herbrand sequent Hmin
n =

P (n,0), P (n,0) → P (n − 1,1), . . . , P (1,n − 1) → P (0,n) � P (0,n)

Proof. It is easy to see that Hmin
n is a Herbrand-sequent of τn . For showing that it is the unique minimal Herbrand-sequent, 

let H be a sequent consisting of instances of τn s.t. Hmin
n � H . We will construct a countermodel for H . If P (n, 0) � � H , 

let M be a structure where PM is always false, then M � H . Symmetrically, if � P (0, n) � H , let M be a structure where 
PM is always true, then M � H . So assume P (n, 0) � P (0, n) ⊆ H . Since Hmin(τn) � H we have

X = {(k, l) ∈N×N | k + l = n − 1, P (k + 1, l) → P (k, l + 1) � � H} 
= ∅.

Let (a, b) ∈ X be s.t. b ≤ l for all (k, l) ∈ X . Fix the domain of M to be N and the interpretation of 0 and s to the standard 
interpretation. Define

PM(k, l) =
{

true if k + l = n − 1 and l < b

false otherwise

We will now define H1, H2, H3 s.t. H ⊆ H1 ∪ H2 ∪ H3. Let



210 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
H1 = P (n,0), P (n,0) → P (n − 1,1), . . . , P (a + 2,b − 1) → P (a + 1,b) �
H2 = P (a,b + 1) → P (a − 1,b + 2), . . . , P (1,n − 1) → P (0,n) � P (0,n)

H3 = H \ (H1 ∪ H2)

Now M � H1, M � H2, and M � H3. Therefore M � H . �
The following result shows that cut-free proofs of τn cannot be compressed by the introduction of a single cut with a 

single quantifier.

Theorem 8. For all n ≥ 1: �1c(1)(τn) = 
(cfc(τn)).

Proof. The Herbrand-sequent Hmin
n written as a tree language is

{ f P (n,0)�, f�P (0,n)} ∪ { f A�(k, l) | k + l = n}
which — when identifying f A� with f — contains the language Tn of Definition 20. By Theorem 2 we have VTRATc(1,1)(Tn) ≥
|Tn| and hence VTRATc(1,1)(Hmin

n ) ≥ |Tn|. By Lemma 17 we have Hc(τn) = n + 3 and hence, by Corollary 4/2, that 
�1c(1)(τn) = �(Hc(τn)). But since �1cτ (τn) = O (Hc(τn)) for any type τ we obtain �1c(1)(τn) = 
(Hc(τn)) and finally 
�1c(1)(τn) = 
(cfc(τn)) by Corollary 3. �
7.2. A lower bound on �1-complexity

As main application of Corollary 4 in this paper, we will now use Theorem 1 for obtaining a sequence of sequents 
which cannot be compressed exponentially by �1-cuts (but only at most quadratically). We work with the ranked alphabet 
� = { f0/1, f1/1, f s/1, e/0, s/1, 0/0} whose first part is the translation of the unranked alphabet {0, 1, s} to trees and whose 
second part is used for representing natural numbers.

Definition 29. For n ≥ 1 define the sequent σn :=
∀y∀v P (0, y, v, v), (P1)

∀x∀y∀v (P (x, f s(y), v, v) → P (s(x), y, e, v)), (P2)

∀x∀y∀u∀v (P (x, f0(y), u, v) → P (x, y, f0(u), v)), (P3)

∀x∀y∀u∀v (P (x, f1(y), u, v) → P (x, y, f1(u), v)), (P4)

∀v (P (k(2n), e, v, v) → Q (0, v)), (Q 1)

∀x∀v ((Q (x, f0(v)) ∧ Q (x, f1(v))) → Q (s(x), v)) (Q 2)

�
Q (n, e) (Q 3)

These sequents are designed to force the use of the language L2n of Definition 14 in a Herbrand-sequent. The predicate P
is used for checking whether a term represents a segmented word. In P (x, y, u, v) the argument v is fixed to the reversed 
building block; the term to check is inserted for y. Its current segment is shifted to u by P3 and P4 (which reverses it). If u
winds up equal to v and y starts with a separator, then x (which counts the number of segments encountered so far) can 
be incremented by P2. The predicate Q is used for checking whether a complete binary tree, i.e., all building blocks of L2n , 
is present by the axioms Q 1, Q 2, and Q 3.

Lemma 18. For all n ≥ 1, the sequent σn satisfies Hc(σn) = 
((2n)2) and has a unique minimal Herbrand-sequent which contains

Mn = { f P1(wT, (vR)T) | w ∈ L2n , v building block of w}.

Proof. A word w ∈ L2n has a building block v ∈ {0, 1}n , i.e., w = (sv)k(2n) . Write w = a0a1 · · ·a|w|−1 for ai ∈ {0, 1, s}. Note 
that every i ∈ {0, . . . , |w| − 1} can be written in a unique way as i = q(i)(n + 1) + r(i) where 0 ≤ r(i) < n + 1. Also note that 
r(i) = 0 iff ai = s. For i ∈ {0, . . . , |w| − 1} define

I w,i =

⎧⎪⎨
⎪⎩

f P2(q(i), (ai+1 · · ·a|w|−1)
T, (vR)T) if ai = s

f P3(q(i), (ai+1 · · ·a|w|−1)
T, ((aq(i)(n+1)+1 · · ·ai−1)

R)T, (vR)T) if ai = 0

f (q(i), (a · · ·a )T, ((a · · ·a )R)T, (vR)T) if a = 1
P4 i+1 |w|−1 q(i)(n+1)+1 i−1 i



S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 211
Furthermore, define

I w = { f P1(wT, (vR)T)} ∪ {I w,i | 0 ≤ i < |w|} ∪ { f Q 1((vR)T)}
and

J = { f Q 2(n − |u| − 1, uT) | u ∈ {0,1}<n} ∪ { f Q 3}.
Then we claim that Hn = ⋃

w∈L2n I w ∪ J is the unique minimal Herbrand-sequent of σn . In order to show this, we need to 
show that 1. Hn is a Herbrand-sequent and 2. that every Herbrand-sequent H∗

n of σn satisfies H∗
n ⊇ Hn .

For 1. note that the instances of P1, . . . , P4 in I w form the chain of implications:

f P1(wT, (vR)T) : P (0, wT, (vR)T, (vR)T)

I w,0 : P (0, wT, (vR)T, (vR)T) → P (1, (v(sv)k(2n)−1)T, e, (vR)T)

...

I w,|w|−1 : P (k(2n), fa|w|−1(e), ((b0 · · ·bn−2)
R)T, (vR)T) → P (k(2n), e, (vR)T, (vR)T)

where v = b0 · · ·b|v|−1 for b j ∈ {0, 1}. This chain allows to infer P (k(2n), e, (vR)T, (vR)T) in propositional logic. Hence, from 
the instances of Q 1 in Hn we obtain Q (0, (vR)T) for all v ∈ {0, 1}n , i.e., Q (0, uT) for all u ∈ {0, 1}n . Now, by using the 
instances of Q 2 we can infer

Q (0, uT) for all u ∈ {0,1}n,

Q (1, uT) for all u ∈ {0,1}n−1,

...

Q (n, e)

in propositional logic which — together with Q 3 — shows that Hn is a tautology.
For 2. we proceed as in the proof of Lemma 17. Suppose H is a sequent of instances of Sn s.t. Hn � H . We construct a 

countermodel M of H . Take as domain all variable-free terms in the signature � = { f0, f1, f s, e, s, 0} and define tM = t . 
We can now freely choose the truth values of all variable-free atoms built from � and P and Q .

In order to choose these truth values, we can identify Hn with the unary/binary tree whose root is Q (n, e), whose 
leaves are {P (0, wT, (vR)T, (vR)T) | w ∈ L2n } and whose edges are defined as follows: a variable-free atom A has the two 
variable-free atoms A1 and A2 as parents if (A1 ∧ A2) → A is instance of Q 2 and a variable-free atom A has the single 
parent A0 if A0 → A is instance of P2, P3, P4, or Q 1. It is straightforward to check that this is well-defined, i.e., that every 
node thus reachable from the root Q (n, e) has either 1 or 2 parents.

We define the truth values of atoms as follows: all leaves of Hn which appear in H are set to true. A node of Hn which 
appears in H is set to true iff all its parents are set to true. Since Hn � H , at least one edge from Hn is missing, hence 
the root Q (n, e) is set to false. By setting all atoms of H which do not appear in Hn to true, the sequent H evaluates to 
�, . . . , � � ⊥, i.e., false in M.

Now we have

Hc(σn) = |Hn| = (
∑

w∈L2n

|I w |) + | J |

because I w ∩ J = ∅ for all w and w1 
= w2 implies I w1 ∩ I w2 = ∅. Furthermore,

= 2n(|w| + 2) + |{0,1}<n| + 1 = 2n
(2n) + 2n = 
((2n)2). �
Before we prove the lower bound on the �1-complexity of σn we need to make a simple observation about tree lan-

guages:

Lemma 19. Let L ⊆ T (�) be finite, let w �→ v w be a mapping from L to T (�), let f /∈ � be a binary function symbol and define 
L′ = { f (w, v w) | w ∈ L}. Then TRATc(L′) ≥ TRATc(L).

Proof. Let G ′ be a minimal TRATG which covers L′ . Replace every occurrence of a term f (t1, t2) in a production rule of G ′
by t1. The grammar G thus obtained covers L and satisfies |G| ≤ |G ′|. �
Theorem 9. For all n ≥ 1: �1c(σn) = �(

√
cfc(σn)).



212 S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213
Proof. Applying Lemma 19 to Corollary 2 shows that (Mn)n≥1 is TRAT-incompressible, i.e., there is an M ∈ N s.t. for all 
n ≥ M and every TRATG Gn which covers Mn we have |Gn| ≥ |Mn| = 2n . By Lemma 18, Mn is contained in the unique 
minimal Herbrand-sequent of Sn and hence Corollary 4/4 shows that �1c(Sn) = �(TRATc(Mn)) = �(2n). On the other hand, 
by Lemma 18, we have Hc(Sn) = 
((2n)2) and hence, by Corollary 3, also cfc(Sn) = 
((2n)2). �

This theorem should be considered in the light of Example 11 which shows that there can be an exponential difference 
between the �1-complexity and the cut-free complexity. What Theorem 9 thus provides is a non-trivial lower bound on 
�1c(·) in terms of cfc(·).

Theorem 9 can be strengthened to take the total number of inferences into account: i.e., letting ψn be the shortest (w.r.t. 
|ψn|) proof of σn one can show that �1c(σn) = �(

√|ψn|) by constructing a cut-free proof that follows the informal proof 
that Hn is a tautology in Lemma 18.

In contrast to Section 7.1 and Theorem 8, in this section a square gets lost in the translation from tree languages to 
proofs. In fact, we do not know whether �1c(Sn) = 
(

√
Hc(Sn)). But we conjecture that a �1-incompressible sequence 

exists. More precisely:

Conjecture. There is a sequence (Sn)n≥1 of �1-sequents in a finite signature and of constant logical complexity s.t. �1c(Sn) =

(Hc(Sn)).

8. Conclusion

We have investigated several measures of the grammatical complexity of finite word and tree languages. We have related 
these measures to each other and to well-known measures for the complexity of formal proofs. These results, in particular 
Corollary 4, show that there is a tight connection between the complexity of proofs with cut in first-order predicate logic 
and the grammatical complexity of Herbrand-sequents. We have demonstrated the strength of this connection by transfer-
ring several complexity results from the setting of formal languages to that of proofs. In particular, we have constructed a 
sequence of incompressible word languages and showed that it yields a lower bound on the length of proofs with �1-cuts.

The problem of compressing a finite language by a grammar has received only little attention in the literature so far. 
Consequently there is a number of interesting open questions, for example: what is the complexity of the smallest grammar 
problem in this setting? How difficult is the approximation of the smallest grammar? Can approximation algorithms and 
techniques be carried over from the case of one word to this setting? How does the situation change when we do not 
minimise the number of production rules but the symbol complexity of the grammar?

Fast approximation algorithms for computing a minimal VTRATG that covers a given finite input language are also of 
high practical value for the cut-introduction method [18,19] and its implementation [20].

Furthermore, it would be interesting to extend this connection between the grammatical complexity of Herbrand se-
quents and the length of proofs with cut to larger classes of proofs, e.g., to �2-cuts based on [43,44].

Acknowledgments

The trick underlying the proof of Proposition 4 is due to Giselle Reis. The authors are grateful to the anonymous referees 
for many helpful comments and suggestions which led to a considerable improvement of the paper.

References

[1] J.A. Storer, T.G. Szymanski, The macro model for data compression (extended abstract), in: ACM Symposium on Theory of Computing, STOC, 1978, ACM, 
New York, NY, USA, 1978, pp. 30–39.

[2] K. Casel, H. Fernau, S. Gaspers, B. Gras, M.L. Schmid, On the complexity of grammar-based compression over fixed alphabets, in: I. Chatzigiannakis, 
M. Mitzenmacher, Y. Rabani, D. Sangiorgi (Eds.), 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, in: Leibniz 
International Proceedings in Informatics (LIPIcs), vol. 55, 2016, pp. 122:1–122:14.

[3] C.G. Nevill-Manning, I.H. Witten, Identifying hierarchical structure in sequences: a linear-time algorithm, J. Artif. Intell. Res. 7 (1997) 67–82.
[4] N.J. Larsson, A. Moffat, Offline dictionary-based compression, in: Data Compression Conference, DCC, 1999, IEEE Computer Society, 1999, pp. 296–305.
[5] J.C. Kieffer, E.-H. Yang, Grammar-based codes: a new class of universal lossless source codes, IEEE Trans. Inf. Theory 46 (3) (2000) 737–754.
[6] W. Rytter, Application of Lempel–Ziv factorization to the approximation of grammar-based compression, Theor. Comput. Sci. 302 (1–3) (2003) 211–222.
[7] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat, The smallest grammar problem, IEEE Trans. Inf. Theory 51 (7) (2005) 

2554–2576.
[8] H. Sakamoto, A fully linear-time approximation algorithm for grammar-based compression, J. Discret. Algorithms 3 (2–4) (2005) 416–430.
[9] A. Jez, Approximation of grammar-based compression via recompression, Theor. Comput. Sci. 592 (2015) 115–134.

[10] A. Jez, A really simple approximation of smallest grammar, Theor. Comput. Sci. 616 (2016) 141–150.
[11] M. Lohrey, Algorithmics on SLP-compressed strings: a survey, Groups Complex. Cryptol. 4 (2) (2012) 241–299.
[12] W. Bucher, H.A. Maurer, K. Culik, D. Wotschke, Concise description of finite languages, Theoretical Computer Science 14 (1981) 227–246.
[13] W. Bucher, A note on a problem in the theory of grammatical complexity, Theor. Comput. Sci. 14 (1981) 337–344.
[14] B. Alspach, P. Eades, G. Rose, A lower-bound for the number of productions required for a certain class of languages, Discrete Appl. Math. 6 (2) (1983) 

109–115.
[15] W. Bucher, H.A. Maurer, K. Culik, Context-free complexity of finite languages, Theor. Comput. Sci. 28 (1984) 277–285.
[16] Z. Tuza, On the context-free production complexity of finite languages, Discrete Appl. Math. 18 (3) (1987) 293–304.

http://refhub.elsevier.com/S0890-5401(17)30158-X/bib53746F72657237384D6163726Fs1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib53746F72657237384D6163726Fs1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib436173656C3136436F6D706C6578697479s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib436173656C3136436F6D706C6578697479s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib436173656C3136436F6D706C6578697479s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4E6576696C6C4D616E6E696E6739374964656E74696679696E67s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4C617273736F6E39394F66666C696E65s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4B69656666657230304772616D6D6172s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib52797474657230334170706C69636174696F6Es1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib43686172696B61723035536D616C6C657374s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib43686172696B61723035536D616C6C657374s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib53616B616D6F746F303546756C6C79s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4A657A3135417070726F78696D6174696F6Es1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4A657A31365265616C6C79s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4C6F687265793132416C676F726974686D696373s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4275636865723831436F6E63697365s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib42756368657238314E6F7465s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib416C737061636838334C6F776572s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib416C737061636838334C6F776572s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4275636865723834436F6E74657874s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib54757A613837436F6E74657874s1


S. Eberhard, S. Hetzl / Information and Computation 259 (2018) 191–213 213
[17] S. Hetzl, Applying tree languages in proof theory, in: A.-H. Dediu, C. Martín-Vide (Eds.), Language and Automata Theory and Applications, LATA, 2012, 
in: Lecture Notes in Computer Science, vol. 7183, Springer, 2012, pp. 301–312.

[18] S. Hetzl, A. Leitsch, D. Weller, Towards algorithmic cut-introduction, in: Logic for Programming, Artificial Intelligence and Reasoning, LPAR-18, in: 
Lecture Notes in Computer Science, vol. 7180, Springer, 2012, pp. 228–242.

[19] S. Hetzl, A. Leitsch, G. Reis, D. Weller, Algorithmic introduction of quantified cuts, Theor. Comput. Sci. 549 (2014) 1–16.
[20] S. Hetzl, A. Leitsch, G. Reis, J. Tapolczai, D. Weller, Introducing quantified cuts in logic with equality, in: S. Demri, D. Kapur, C. Weidenbach (Eds.), 

International Joint Conference on Automated Reasoning, IJCAR, 2014, in: Lecture Notes in Computer Science, vol. 8562, Springer, 2014, pp. 240–254.
[21] J. Herbrand, Recherches sur la théorie de la démonstration, Ph.D. thesis, Université de Paris, 1930.
[22] S.R. Buss, On Herbrand’s Theorem, in: Logic and Computational Complexity, in: Lecture Notes in Computer Science, vol. 960, Springer, 1995, 

pp. 195–209.
[23] C. Câmpeanu, N. Santean, S. Yu, Minimal cover-automata for finite languages, Theor. Comput. Sci. 267 (1–2) (2001) 3–16.
[24] P. Pudlák, Twelve problems in proof complexity, in: E.A. Hirsch, A.A. Razborov, A.L. Semenov, A. Slissenko (Eds.), International Computer Science 

Symposium in Russia, CSR, in: Lecture Notes in Computer Science, vol. 5010, Springer, 2008, pp. 13–27.
[25] S. Eberhard, S. Hetzl, Compressibility of finite languages by grammars, in: J. Shallit, A. Okhotin (Eds.), Descriptional Complexity of Formal Systems, 

DCFS, 2015, in: Lecture Notes in Computer Science, vol. 9118, Springer, 2015, pp. 93–104.
[26] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.
[27] F. Jacquemard, F. Klay, C. Vacher, Rigid tree automata and applications, Inf. Comput. 209 (2011) 486–512.
[28] S. Buss, An introduction to proof theory, in: The Handbook of Proof Theory, North-Holland, 1999, pp. 2–78.
[29] G. Takeuti, Proof Theory, 2nd edition, North-Holland, Amsterdam, 1987.
[30] D. van Dalen, Logic and Structure, Springer, 2008.
[31] J. Harrison, Handbook of Practical Logic and Automated Reasoning, Cambridge University Press, 2009.
[32] G. Gentzen, Untersuchungen über das logische Schließen II, Math. Z. 39 (3) (1935) 405–431.
[33] J. Krajíček, P. Pudlák, The number of proof lines and the size of proofs in first order logic, Arch. Math. Log. 27 (1988) 69–84.
[34] R. Statman, Lower bounds on Herbrand’s theorem, Proc. Am. Math. Soc. 75 (1979) 104–107.
[35] V. Orevkov, Lower bounds for increasing complexity of derivations after cut elimination, Zap. Nauč. Semin. LOMI 88 (1979) 137–161.
[36] P. Pudlák, The lengths of proofs, in: S. Buss (Ed.), Handbook of Proof Theory, Elsevier, 1998, pp. 547–637.
[37] G. Moser, R. Zach, The epsilon calculus and Herbrand complexity, Stud. Log. 82 (1) (2006) 133–155.
[38] M. Baaz, A. Leitsch, Complexity of resolution proofs and function introduction, Ann. Pure Appl. Log. 57 (1992) 181–215.
[39] M. Baaz, A. Leitsch, On skolemization and proof complexity, Fundam. Inform. 20 (4) (1994) 353–379.
[40] U. Egly, Quantifiers and the system KE: some surprising results, in: G. Gottlob, E. Grandjean, K. Seyr (Eds.), Computer Science Logic, CSL, 1998, in: 

Lecture Notes in Computer Science, vol. 1584, Springer, 1998, pp. 90–104.
[41] R. Letz, G. Stenz, Generalised handling of variables in disconnection tableaux, in: D.A. Basin, M. Rusinowitch (Eds.), International Joint Conference on 

Automated Reasoning, IJCAR, 2004, in: Lecture Notes in Computer Science, vol. 3097, Springer, 2004, pp. 289–306.
[42] S. Hetzl, On the form of witness terms, Arch. Math. Log. 49 (5) (2010) 529–554.
[43] B. Afshari, S. Hetzl, G.E. Leigh, Herbrand disjunctions, cut elimination and context-free tree grammars, in: T. Altenkirch (Ed.), Typed Lambda Calculi 

and Applications, TLCA, 2015, in: LIPIcs, vol. 38, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 1–16.
[44] B. Afshari, S. Hetzl, G.E. Leigh, Herbrand confluence for first-order proofs with �2-cuts, in: D. Probst, P. Schuster (Eds.), Concepts of Proof in Mathe-

matics, Philosophy, and Computer Science, de Gruyter, 2016, pp. 5–40.

http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C31324170706C79696E67s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C31324170706C79696E67s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C3132546F7761726473s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C3132546F7761726473s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C3134416C676F726974686D6963s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C3134496E74726F647563696E67s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C3134496E74726F647563696E67s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865726272616E64333052656368657263686573s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4275737339354865726272616E64s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4275737339354865726272616E64s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib43616D7065616E7530314D696E696D616Cs1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib5075646C616B30385477656C7665s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib5075646C616B30385477656C7665s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib45626572686172643135436F6D70726573736962696C697479s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib45626572686172643135436F6D70726573736962696C697479s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib486F7063726F66743739496E74726F64756374696F6Es1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4A61637175656D61726431315269676964s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib427573733938496E74726F64756374696F6Es1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib54616B65757469383750726F6F66s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib76616E44616C656E30384C6F676963s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4861727269736F6E303948616E64626F6F6Bs1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib47656E747A656E3335556E74657273756368756E67656Es1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4B72616A6963656B38384E756D626572s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib537461746D616E37394C6F776572s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4F7265766B6F7637394C6F776572s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib5075646C616B39384C656E67746873s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4D6F7365723036457073696C6F6Es1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4261617A3932436F6D706C6578697479s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4261617A3934536B6F6C656D697A6174696F6Es1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib45676C7939385175616E74696669657273s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib45676C7939385175616E74696669657273s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4C65747A303447656E6572616C69736564s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4C65747A303447656E6572616C69736564s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4865747A6C3130466F726Ds1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4166736861726931354865726272616E64s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4166736861726931354865726272616E64s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4166736861726931364865726272616E64436F6E666C75656E6365s1
http://refhub.elsevier.com/S0890-5401(17)30158-X/bib4166736861726931364865726272616E64436F6E666C75656E6365s1

	On the compressibility of ﬁnite languages and formal proofs
	1 Introduction
	2 Grammatical complexity of ﬁnite languages
	3 Incompressible word languages
	3.1 Reduced grammars
	3.2 Segmented languages
	3.3 Ordered grammars
	3.4 An incompressible sequence of languages
	3.5 Remarks

	4 Tree languages
	4.1 Vectorial grammars
	4.2 Flattening vectorial grammars
	4.3 Relating word and tree languages

	5 Proof theory
	5.1 The cut-elimination theorem
	5.2 Complexity of proofs
	5.3 Cut-free proofs and Herbrand-sequents
	5.4 Proofs with Π1-cuts

	6 Complexity of proofs and complexity of languages
	7 Lower bounds on the length of proofs
	7.1 Incompressibility by one cut with one quantiﬁer
	7.2 A lower bound on Π1-complexity

	8 Conclusion
	Acknowledgments
	References


