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Abstract. We consider the notion of cover complexity of finite lan-
guages on three different levels of abstraction. For arbitrary cover com-
plexity measures, we give a characterisation of the situations in which
they collapse to a bounded complexity measure. Moreover, we show for
a restricted class of context-free grammars that its grammatical cover
complexity measure w.r.t. a finite language L is unbounded and that the
cover complexity of L can be computed from the exact complexities of
a finite number of covers L′ ⊇ L. We also investigate upper and lower
bounds on the grammatical cover complexity of the language operations
intersection, union, and concatenation on finite languages for several dif-
ferent types of context-free grammars.

1 Introduction

The grammatical complexity of a formal language in the classical sense is the
complexity of a minimal grammar generating this language. Depending on the
type of grammar and the notion of complexity, one obtains a variety of different
grammatical complexity measures. The study of the grammatical complexity of
context-free languages can be traced back to [12], where, among other things,
it was shown that context-free definability with n nonterminals forms a strict
hierarchy. This line of research has been continued in [7,13–15], where, among
others, the number of productions of a grammar has been considered as complex-
ity measure. In [4], a theory of the grammatical complexity of finite languages
in terms of production complexity was initiated by giving a relative succinctness
classification for various kinds of context-free grammars. Investigations along
these lines have been continued in, e.g., [1–3,8,9,21].

We are interested in the cover complexity of a finite language L, i.e., the
minimal number of productions of a grammar G such that L(G) is finite
and L(G) ⊇ L. Note that this condition is similar to (but different from) the
one imposed on cover automata [5,6]: there, an automaton A is sought such
that L(A) ⊇ L, but in addition it is required that L(A) \ L consists only of
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words longer than any word in L. Our interest in this problem is primarily moti-
vated by applications in proof theory. As shown in [16], there is an intimate
relationship between a certain class of formal proofs (those with Π1-cuts) in
first-order predicate logic and a certain class of grammars (totally rigid acyclic
tree grammars). In particular, the number of production rules in the grammar
characterises the number of certain inference rules in the proof. This relation-
ship has been exploited for a number of results in proof theory and automated
deduction [17–19]. In particular, [10,11] shows a non-trivial lower bound on the
complexity of cut-introduction. The interest in such a result is partially moti-
vated by the experience that the length of proofs with cuts is notoriously difficult
to control (for propositional logic this is considered the central open problem in
proof complexity [20]). The combinatorial center of this result is the construction
of a sequence of finite word languages which are incompressible in the sense of
the cover formulation of grammatical complexity.

In this paper, we investigate the notion of cover complexity of finite languages
on three different levels. First, in Sect. 3, we consider the cover complexity from
an abstract point of view for arbitrary complexity measures and we characterise
the situations in which it collapses to a bounded measure. Secondly, in Sect. 4,
we consider the cover complexity of a finite language as the minimal number of
productions a context-free grammar needs to cover the language with a finite
language. In particular, we show that a cover complexity measure is unbounded
if it is induced by a class of context-free grammars with a bounded number of
nonterminals on the right-hand side of their productions. Moreover, unbounded-
ness allows to reduce the cover complexity of a finite language L to the minimum
of the exact complexities over a finite number of supersets L′ of L. Thirdly, and
yet more specifically, in Sect. 5, we investigate the grammatical cover complex-
ity of the language operations intersection, union, and concatenation on finite
languages for context-free, (strict) linear, and (strict) regular grammars.

2 Cover Complexity

In this section, we introduce the basic definitions of the notion of cover complex-
ity from both an abstract and grammatical point of view. Moreover, in order
to fix notation and terminology, we also introduce the basic notions of formal
language theory.

For a set A, we write Pfin(A) for the set of finite subsets of A. Let Σ be an
alphabet, then a function μ : Pfin(Σ∗) → N is called Σ-complexity measure. If
the alphabet is irrelevant or clear from the context, we will just speak about a
complexity measure. Let μ be a Σ-complexity measure. The cover complexity
measure induced by μ is the Σ-complexity measure μc defined as

μc(L) = min{μ(L′) | L ⊆ L′ ∈ Pfin(Σ∗) }.

Note that the minimum is well-defined even though there are infinitely many L′ ∈
Pfin(Σ∗) with L ⊆ L′, since μ maps to the natural numbers. We have μc(L) ≤
μ(L), for all L ∈ Pfin(Σ∗). Moreover, for every L ∈ Pfin(Σ∗), there is an L′ ⊇ L
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such that μc(L) = μ(L′). A Σ-complexity measure μ is called bounded if there
is a k ∈ N such that μ(L) ≤ k, for all L ∈ Pfin(Σ∗), and unbounded otherwise.

A context-free (CF) grammar is a quadruple G = (N,Σ,P, S), where N
and Σ are disjoint finite sets of nonterminals and terminals, respectively, S ∈ N
is the start symbol, and P is a finite set of productions of the form A → α,
where A ∈ N and α ∈ (N ∪ Σ)∗. Let A be a nonterminal, then a produc-
tion with A on its left-hand side is called A-production. The set of all words
of length at most k, for k ≥ 0, over Σ is denoted by Σ≤k. We also con-
sider further restrictions of context-free grammars: a context-free grammar is
called linear context-free (LIN) if all productions in G are of the form A → α,
where α ∈ Σ∗(N∪{ε})Σ∗; a context-free grammar is called right-linear or regular
(REG) if all productions in G are of the form A → α, where α ∈ Σ∗(N ∪ {ε}).
Moreover, a context-free grammar is called strict linear (SLIN) if all produc-
tions are of the form A → aBb or A → c, where B ∈ N and a, b, c ∈ Σ≤1.
Similarly, a context-free grammar is called strict regular (SREG) if all produc-
tions are of the form A → aB or A → b, where B ∈ N and a, b ∈ Σ≤1.
We will also write SREG, REG, . . . for the set of strict regular, regular,
. . . grammars and define Γ = {SREG,REG,SLIN,LIN,CF}. As usual, the
derivation relation of G is denoted by ⇒G and the reflexive and transitive
closure of ⇒G is written as ⇒∗

G. If the grammar is clear from the context,
we will often omit the subscript G. The language of a grammar G is defined
as L(G) = {w ∈ Σ∗ | S ⇒∗

G w }. We say that a context-free grammar G covers
a language L if L(G) ⊇ L. The size of a context-free grammar G = (N,Σ,P, S)
is defined as |G| = |P |. Let L ∈ Pfin(Σ∗) and X ∈ Γ . Then the X-complexity
of L is

Xc(L) = min{ |G| | G ∈ X,L = L(G) }.

Clearly, Xc is a complexity measure and induces the cover complexity measure

Xcc(L) = min{Xc(L′) | L ⊆ L′ ∈ Pfin(Σ∗) }.

Consequently, we say that G is a minimal X-grammar covering (or generating,
respectively) the finite language L if L(G) is finite, L ⊆ L(G) (or L = L(G),
respectively), and |G| = Xcc(L) (or |G| = Xc(L), respectively). Note that, in
general, there may be more than one minimal X-grammar for a given language L.
The following result shows the existence of regular-incompressible sequences of
finite languages and has been proved in [10,11].

Theorem 1. For all n ≥ 1, there is a language Ln with |Ln| = n = REGcc(Ln).

On the other hand, for every finite language L, there is a trivial context-free
grammar covering L with a constant number of productions:

Theorem 2. Let L ∈ Pfin(Σ∗), then CFcc(L) ≤ |Σ| + 2.

Proof. Let Σ = {a1, a2, . . . , an}, l = max{ |w| | w ∈ L }, and consider the
grammar G consisting of the productions S → Al, A → a1 | a2 | · · · | an | ε.
Then L(G) = Σ≤l ⊇ L. 
�
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3 Unboundedness of Cover Complexity Measures

Motivated by the above Theorems 1 and 2, in this section, we will characterise
the situations in which a cover complexity measure collapses to a bounded com-
plexity measure. Before we can give this characterisation, we need some auxiliary
results on “almost inverting” functions from N to N. These will be provided in
Lemmas 1 and 2. A function f : N → N is called bounded if there is a k ∈ N

such that f(n) ≤ k, for all n ∈ N, and unbounded otherwise. The function f is
called monotone if n ≤ m implies f(n) ≤ f(m).

Lemma 1. Let f : N → N be monotone and unbounded, define g : N → N, n �→
min{ i ∈ N | n ≤ f(i) }, then g is well-defined, monotone, unbounded, and, for
all x, y ∈ N: g(x) ≤ y iff x ≤ f(y).

Lemma 2. Let g : N → N be monotone and unbounded, let f : N → N, n �→
max{ i ∈ N | g(i) ≤ n }. Then f is well-defined, monotone, unbounded, and, for
all x, y ∈ N: g(x) ≤ y iff x ≤ f(y).

A complexity measure ρ : Pfin(Σ∗) → N is called reference complexity mea-
sure if ρ is unbounded and L1 ⊆ L2 implies ρ(L1) ≤ ρ(L2). For reference com-
plexity measures, what we have in mind are, e.g., the number of words |L| in
a language or their cumulated lengths ‖L‖ =

∑
w∈L |w|. Let μ be a complexity

measure, then a reference complexity measure ρ is called reference complexity
measure for μ if μ(L) ≤ ρ(L), for all finite languages L. Typical examples for
the above definition include: μ = REGc,CFc, . . . and ρ(L) = |L|, or μ is the
minimal size, that is, symbolic complexity of a regular, context-free, . . . gram-
mar and ρ(L) = ‖L‖. The following theorem provides a characterisation of the
unboundedness of a cover complexity measure.

Theorem 3. Let μ be an unbounded Σ-complexity measure and ρ be a reference
complexity measure for μ, then the following are equivalent:

1. μc is unbounded
2. there is a monotone and unbounded function f : N → N s.t. ρ(L) ≤ f(μ(L)),

for all L ∈ Pfin(Σ∗).
3. there is a monotone and unbounded function g : N → N s.t. g(ρ(L)) ≤ μ(L),

for all L ∈ Pfin(Σ∗).

Proof. 2. ⇒ 3. has been shown in Lemma 1, and 3. ⇒ 2. in Lemma 2.
For 3. ⇒ 1., let L ∈ Pfin(Σ∗), then there is some L′ ∈ Pfin(Σ∗) s.t. L ⊆ L′

and μc(L) = μ(L′). Therefore, μc(L) = μ(L′) ≥3. g(ρ(L′)) ≥mon. g(ρ(L)), which
shows unboundedness of μc based on the unboundedness of g and ρ.

For showing 1. ⇒ 3., we prove the contrapositive. Assume that every
g : N → N s.t. g(ρ(L)) ≤ μ(L), for all L ∈ Pfin(Σ∗), is bounded or not monotone.
Consider h : N → N, n �→ min{μ(L) | ρ(L) ≥ n,L ∈ Pfin(Σ∗) } and note that,
due to the unboundedness of ρ, h is well-defined. Moreover, h(ρ(L)) ≤ μ(L).
For monotonicity, let n ≤ m. Then we have {L ∈ Pfin(Σ∗) | ρ(L) ≥ m ≥ n }
⊆ {L ∈ Pfin(Σ∗) | ρ(L) ≥ n }. Therefore, h(n) = min{μ(L) | ρ(L) ≥ n } ≤
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min{μ(L) | ρ(L) ≥ m } = h(m). So h is bounded, i.e., there is a k ∈ N

and (Ln)n∈N such that n �→ ρ(Ln) is unbounded, but μ(Ln) ≤ k, for all n ∈ N.
Since μc(Ln) ≤ μ(Ln) ≤ k, μc is bounded too. 
�
Theorem 4. Let μ be a complexity measure and ρ be a reference complexity
measure for μ. Then, for every finite language L, there is some b ∈ N such that

μc(L) = min{μ(L′) | L ⊆ L′ ∈ Pfin(Σ∗) and ρ(L′) ≤ b }.

Proof. If μc is bounded by k, let b = k. If μc is unbounded, then, by Theorem 3,
there is an unbounded and monotone function g : N → N s.t. g(ρ(K)) ≤ μ(K),
for all finite languages K, and, by Lemma 2, there is an unbounded and monotone
function f : N → N such that g(x) > y iff x > f(y), for all x, y ∈ N. Let b =
f(ρ(L)) and L′′ ⊇ L with ρ(L′′) > f(ρ(L)), then g(ρ(L′′)) > ρ(L), and, since
we have μ(L′′) ≥ g(ρ(L′′)), we obtain μ(L′′) > ρ(L). Moreover, since ρ(L) ≥
μ(L) ≥ μc(L), we have μ(L′′) > μc(L). 
�

The above theorem expresses μc in terms of μ and ρ. Depending on ρ, the
set of covers L′ of L that is used to determine μc(L) may or may not be a finite
set. We will analyse the reduction of μc(L) to the value of μ(·) on a finite set
more thoroughly in the next section.

4 Computing Cover Complexity from Exact Complexity

After dealing with complexity measures in an abstract sense in the previous
section, we now come back to applications in the realm of context-free grammars.
In particular, we now focus on the number of productions in various types of
grammars. Hence, we will fix ρ(L) = |L| as reference complexity measure.

The subsequent lemma was already shown in [4] and implies that Xcc, for X ∈
{SREG,REG,SLIN,LIN}, is an unbounded complexity measure.

Lemma 3. Let G be a linear grammar with n productions generating a finite
language, then |L(G)| ≤ 2n−1.

Corollary 1. The measures SREGcc, REGcc, SLINcc, and LINcc are unbounded.

Proof. Define the function f : N → N, n �→ 2n−1. Clearly, f is both mono-
tone and unbounded. By Lemma 3, for all finite languages L ∈ Pfin(Σ∗), we
have ρ(L) = |L| ≤ 2LINc(L)−1 = f(LINc(L)). Hence, by Theorem 3, LINcc is
unbounded. The unboundedness of SREGcc, REGcc, and SLINcc follows from the
fact that LINcc(L) ≤ SLINcc(L) ≤ SREGcc(L) and LINcc(L) ≤ REGcc(L), for all
finite languages L ∈ Pfin(Σ∗). 
�
Definition 1. A set X of context-free grammars is called class of context-free
grammars if 1. (N,Σ,P, S) ∈ X and p ∈ P implies that (N,Σ,P \ {p}, S) ∈ X
and 2. X is closed under identifying two nonterminals.
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A context-free grammar G = (N,Σ,P, S) is called self-embedding if there is
some A ∈ N such that A ⇒+

G w1Aw2, for w1, w2 ∈ (N ∪ Σ)∗; otherwise G is
called non self-embedding.

Lemma 4. Let X be a class of context-free grammars. If G ∈ X and L(G) is
finite, then there is a non self-embedding G′ ∈ X with |G′| ≤ |G| and L(G′) =
L(G).

The following result shows that Lemma 3 can be generalised from linear to
context-free grammars that contain only a bounded number of nonterminals on
the right-hand side of each of their productions:

Lemma 5. Let G be a grammar with n productions generating a finite language
such that every production of G contains at most k nonterminals on its right-
hand side. Then |L(G)| ≤ n(k+1)n .

Proof Sketch. Since G generates a finite language, by Lemma 4, we can assume,
without loss of generality, that it is non self-embedding. Thus, there is a non-
terminal A whose productions are A → w1 | w2 | . . . | wm with wi ∈ Σ∗,
for 1 ≤ i ≤ m ≤ n. Replacing each occurrence of A by all of the wi yields
a grammar with less nonterminals. By iterating this operation, one obtains a
trivial grammar with the above mentioned bound. 
�
Corollary 2. Let X be a class of CFGs with a bounded number of nonterminals
occurring on the right-hand side of each production. Then Xcc is unbounded.

Proof. Let G ∈ X contain n production rules and let k be the bound on the
number of nonterminals occurring on the right-hand side of each production.
Define f : N → N, n �→ n(k+1)n . Clearly, f is both monotone and unbounded.
By Lemma 5, for all finite languages L ∈ Pfin(Σ∗), we have ρ(L) = |L| ≤
Xc(L)(k+1)Xc(L)

= f(Xc(L)). Hence, by Theorem 3, Xcc is unbounded. 
�
An immediate consequence of Corollary 2 is that for the class CNF of gram-

mars in Chomsky normal form1, CNFcc is an unbounded complexity measure.
Moreover, by Lemma 5, the number of words generated by a grammar G in CNF
with n productions is bounded above by n3n , i.e., |L(G)| ≤ n3n .

Now, we show that the right-hand side of each production in a minimal
context-free grammar covering a language whose longest word has length � con-
tains at most � terminals.

Lemma 6. Let X be a class of CFGs, L be a finite language, � := max{ |w| |
w ∈ L }, and G be a minimal X-grammar with L(G) ⊇ L. Then for all produc-
tions of the form A → u0B1u1B2 · · · Bnun of G with u0, u1, . . . , un ∈ Σ∗, we
have |u0u1 · · · un| ≤ �.

1 A context-free grammar G = (N, Σ, P, S) is said to be in Chomsky normal form if
all productions are of the form A → BC, A → a, or A → ε, where A, B, C ∈ N
and a ∈ Σ.
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Lemma 7. Let L be a finite language, � := max{ |w| | w ∈ L }, and G be a
minimal LIN-grammar with L(G) ⊇ L. Then max{ |w| | w ∈ L(G) } ≤ |L| · �.
Lemma 8. Let X be a class of CFGs such that every production in an X-grammar
contains at most k ≥ 2 nonterminals on its right-hand side, let L be a finite
language, � := max{ |w| | w ∈ L }, and G be a minimal X-grammar with L(G) ⊇
L. Then max{ |w| | w ∈ L(G) } ≤ � · k|L|.

Proof Sketch. Since G generates a finite language, by Lemma 4, we can assume,
without loss of generality, that it is non self-embedding. Thus, the nontermi-
nals A1, A2, . . . , Ap can be ordered such that every production with left-hand
side Ai only contains nonterminals Aj with i > j. Thus, we show by induction
that every derivation consists of at most

∑p−1
i=0 ki ≤ kp steps. Since p ≤ |G| ≤ |L|

and each derivation step can add at most � new terminals, any word derivable
in G has length at most � · k|L|. 
�
Theorem 5. Let X be a class of CFGs such that every production in an
X-grammar contains at most k nonterminals on its right-hand side. Then,
for every finite language L, there is a finite set SL of finite languages such
that Xcc(L) = min{Xc(L′) | L′ ∈ SL }.
Proof. Let G be an arbitrary minimal X-grammar with n productions covering a
finite language L, i.e., Xcc(L) = n, and let � = max{ |w| | w ∈ L }. Clearly, n ≤
|L|. We distinguish two cases. The case k = 1 follows from Lemmas 3 and 7, since
every X-grammar covering L is an X-grammar generating a finite language L′ ⊇
L that satisfies Xc(L′) ≤ |L′| ≤ 2|L|−1 and max{ |w| | w ∈ L′ } ≤ �·|L|. Similarly,
the case k ≥ 2 follows from Lemmas 5 and 8. Hence, the sets

SL,1 = {L′ ∈ Pfin(Σ∗) | L ⊆ L′, |L′| ≤ 2|L|−1,max{|w| | w ∈ L′} ≤ � · |L| }
and, for k ≥ 2,

SL,k = {L′ ∈ Pfin(Σ∗) | L ⊆ L′, |L′| ≤ |L|(k+1)|L|
,max{|w| | w ∈ L′} ≤ � · k|L| }

are finite. 
�
So, for a class of CFGs as in Theorem 5, determining the cover complexity

of L boils down to computing the exact complexity on the finite set SL.

5 Bounds on Language Operations

In this section, we will prove upper and lower bounds on the cover complexity of
the operations intersection, union, and concatenation. Since the lower bounds are
hard to show in the cover formulation, we have not yet been able to obtain lower
bounds on union and concatenation for fixed alphabets. The only exceptions
are union in the cases of strict regular and strict linear grammars as well as
concatenation in the case of strict regular grammars. The results of this section
are summarised in Fig. 1, where bold font means that we have matching upper
and lower bounds w.r.t. a fixed alphabet and non-bold means that the bounds
are matching w.r.t. a growing alphabet. For the remainder of this section, let
Δ = Γ \ {CF}.
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Xcc(L1 ∩ L2) Xcc(L1 ∪ L2) Xcc(L1L2)

LIN min{ c1, c2 } c1 + c2 min{ d1 + c2, c1 + d2 }
SLIN min{ c1, c2 } c1 + c2 min{ d1 + c2, c1 + d2 }
REG min{ c1, c2 } c1 + c2 c1 + c2

SREG min{ c1, c2 } c1 + c2 c1 + c2

Fig. 1. Summary of results, ci = Xcc(Li) and di = (S)REGcc(Li).

5.1 Intersection

Theorem 6. Let X ∈ Δ and L1 and L2 be finite languages. Then

Xcc(L1 ∩ L2) ≤ min{Xcc(L1),Xcc(L2)}.

Proof. Let Gi be a minimal X-grammar with L(Gi) ⊇ Li, for i ∈ {1, 2}; then
L(Gi) ⊇ L1 ∩ L2. Simply choose G = Gi with |Gi| = min{|G1|, |G2|}. 
�
Theorem 7. Let X ∈ Δ. Then there exists a finite alphabet Σ such that for
all m,n ≥ 1, there are L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) ≥ m and Xcc(L2) ≥ n
such that

Xcc(L1 ∩ L2) ≥ min{Xcc(L1),Xcc(L2)}.

Proof. Let Σ be an arbitrary finite alphabet, m,n ≥ 1. From Corollary 1, it
follows that there are L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) ≥ m and Xcc(L2) ≥ n.
Assume, w.l.o.g., Xcc(L1) ≤ Xcc(L2). Define L′

2 = L1 ∪ L2. Then Xcc(L′
2) ≥

Xcc(L2) ≥ Xcc(L1), for otherwise there would be a grammar generating L′
2 ⊇

L2 with less than Xcc(L2) productions. Thus, we clearly have Xcc(L1 ∩ L′
2) =

Xcc(L1) = min{Xcc(L1),Xcc(L′
2) }. 
�

5.2 Union

Theorem 8. Let X ∈ Δ and L1 and L2 be finite languages. Then

Xcc(L1 ∪ L2) ≤ Xcc(L1) + Xcc(L2).

Proof. Let X ∈ Δ and, for i ∈ {1, 2}, Gi = (Ni, Σi, Pi, Si) be a minimal
X-grammar with L(Gi) ⊇ Li and |Gi| = Xcc(Li) s.t. N1 ∩ N2 = ∅. Since Gi

is minimal and non self-embedding, Si does not occur on the right-hand side of
a production in Pi. Let S �∈ N1 ∪ N2 and G = (N1 ∪ N2 ∪ {S}, Σ1 ∪ Σ2, P, S)
where

P = {S → α | S1 → α ∈ P1 or S2 → α ∈ P2 }
∪ {A → α ∈ P1 | A �= S1 } ∪ {A → α ∈ P2 | A �= S2 }.

Clearly, we have L(G) = L(G1) ∪ L(G2) ⊇ L1 ∪ L2 and |G| = |G1| + |G2|, that
is, Xcc(L1 ∪ L2) ≤ Xcc(L1) + Xcc(L2). Moreover, G1, G2 ∈ X implies G ∈ X. 
�
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If we consider growing alphabets, then we can show that the above upper
bound on the cover complexity of union is tight for all considered grammar types.

Theorem 9. Let X ∈ Δ. Then, for all m,n ≥ 1, there exists a finite alphabet Σ
and finite languages L1 and L2 with Xcc(L1) = m and Xcc(L2) = n such that

Xcc(L1 ∪ L2) ≥ Xcc(L1) + Xcc(L2).

Proof. Let m,n ≥ 1. Then define Σ = {a1, a2, . . . , am, b1, b2, . . . , bn}, L1 =
{a1, a2, . . . , am}, and L2 = {b1, b2, . . . , bn}. Consequently, L1 ∪ L2 = Σ and,
clearly, Xcc(L1) = m, Xcc(L2) = n, and the language L1∪L2 can only be covered
by a trivial grammar. Therefore, Xcc(L1 ∪ L2) = m + n = Xcc(L1) + Xcc(L2).
�

Now, we prove—with respect to a fixed alphabet—a lower bound on the
strict regular and strict linear cover complexity of union that matches the upper
bound. To do so, we use the fact that in the case of strict regular and strict
linear grammars, there is a connection between the number of productions and
the length of a longest word in the generated finite language.

Lemma 9. Let L ∈ Pfin(Σ∗) and � = max{ |w| | w ∈ L }. Then

SREGcc(L) ≥ � and SLINcc(L) ≥
⌊

�

2
+ 1

⌋

.

Proof Sketch. First, show by induction on the length k of a derivation of v ∈ Σ∗

that k ≥
⌊

|v|
2 + 1

⌋
. Since in a strict linear grammar all right-hand sides of

productions contain at most one nonterminal, no production can occur twice in
such a derivation, for otherwise the generated language would be infinite. As a
consequence, such a derivation uses k distinct productions in order to derive v.
Thus, for some w ∈ Σ∗ with |w| = �, we have k ≥ ⌊

�
2 + 1

⌋
. The SREG-case can

be shown using similar arguments. 
�
Theorem 10. Let X ∈ {SREG,SLIN}. Then there exists a finite alphabet Σ
such that for all m,n ≥ 1, there are L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) = m
and Xcc(L2) = n such that

Xcc(L1 ∪ L2) ≥ Xcc(L1) + Xcc(L2).

Proof. For X = SREG, let Σ = {a, b} and, for m,n ≥ 1, we define the finite
languages L1 = {am} and L2 = {bn}. Moreover, let L = L1 ∪ L2. Then, from
Lemma 9, we get that SREGcc(L1) ≥ m and SREGcc(L2) ≥ n. It is easy to
see that also SREGcc(L1) ≤ m and SREGcc(L2) ≤ n. Since the words in L1

and L2 do not share a common letter, there can be no production that is used
to derive words from both L1 and L2. Thus, we must have that SREGcc(L) =
SREGcc(L1 ∪ L2) ≥ SREGcc(L1) + SREGcc(L2).

For X = SLIN , let L1 = {a2m−1} and L2 = {b2n−1} and define L = L1∪L2.
Then proceed analogous to the SREG-case using Lemma 9. 
�
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5.3 Concatenation

Theorem 11. Let X ∈ {SREG,REG} and L1, L2 ∈ Pfin(Σ∗). Then

1. Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2),
2. LINcc(L1L2) ≤ min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) },
3. SLINcc(L1L2) ≤ min{SREGcc(L1)+SLINcc(L2),SLINcc(L1)+SREGcc(L2) }.
Proof Sketch. Let Gi = (Ni, Σi, Pi, Si) be a minimal X-grammar with L(Gi) ⊇
Li and |Gi| = Xcc(Li), for i ∈ {1, 2}. Assume, without loss of generality, that
N1 ∩ N2 = ∅. First, note that in a right-linear and left-linear grammar all pro-
ductions of the form A → w with w ∈ Σ∗ are used to derive the postfixes and
prefixes of words, respectively.

For X ∈ {SREG,REG}, we construct an X-grammar covering L1L2 by
taking the union P1 ∪ P2 and replacing all productions of the form A → w ∈ P1

with w ∈ Σ∗ by A → wS2. Consequently, Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2).
For X ∈ {SLIN,LIN}, let G(S)REG,i and G(S)LIN,i be minimal (S)REG-

and (S)LIN -grammars covering Li, for i ∈ {1, 2}. Assume that these grammars
have pairwise disjoint sets of nonterminals. We define two (S)LIN -grammars G1

and G2 covering L1L2 as follows: G1 is obtained by taking the union P(S)REG,1∪
P(S)LIN,2 and replacing all productions of the form A → w ∈ P(S)REG,1 with w ∈
Σ∗ by A → wS(S)LIN,2. Similarly, G2 is obtained by taking the union P(S)LIN,1∪
P(S)REG,2 and replacing all productions of the form A → w ∈ P(S)REG,2 with w ∈
Σ∗ by A → S(S)LIN,1w. Then simply take the grammar with the fewest number
of productions out of G1 and G2. Thus, Xcc(L1L2) ≤ min{(S)REGcc(L1) +
(S)LINcc(L2), (S)LINcc(L1) + (S)REGcc(L2)}. 
�

The following lemma shows that a grammar covering the concatenation of
two disjoint alphabets (where each contains at least two letters) needs at least
as many productions as there are elements in their (disjoint) union. This lemma
will play an important role in the proof of Theorem 12.

Lemma 10. Let Σ = Σ1 � Σ2 with |Σ1|, |Σ2| ≥ 2. Then for all CFGs G
with L(G) ⊇ Σ1Σ2, we have |G| ≥ |Σ1| + |Σ2|.
Proof Sketch. Proceed by induction on |Σ|, making a case distinction in the base
case |Σ| = 4 and reducing the step case to the induction hypothesis by deleting
productions that contain the new letter. 
�
Theorem 12. Let X ∈ {SREG,REG}. Then, for all m,n ≥ 2, there is a finite
alphabet Σ and L1, L2 ∈ Pfin(Σ∗) with Xcc(L1) = m and Xcc(L2) = n s.t.

1. Xcc(L1L2) ≥ Xcc(L1) + Xcc(L2),
2. LINcc(L1L2) ≥ min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2)}.
3. SLINcc(L1L2) ≥ min{SREGcc(L1) + SLINcc(L2),SLINcc(L1) + SREGcc(L2)}.
Proof. Let m,n ≥ 2 and define the alphabet Σ = {a1, a2, . . . , am, b1, b2, . . . , bn}
as well as the languages L1 = {a1, a2, . . . , am}, L2 = {b1, b2, . . . , bn}, and
let X ∈ {SREG,REG}. Then clearly we have Xcc(L1) = m and Xcc(L2) = n.
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Thus, since every X-grammar is context-free, we have by Lemma 10 that
Xcc(Σ) = Xcc(L1L2) ≥ m + n = Xcc(L1) + Xcc(L2) and (S)LINcc(L1L2) ≥
m + n = min{(S)REGcc(L1) + (S)LINcc(L2), (S)LINcc(L1) + (S)REGcc(L2)}. 
�
Theorem 13. There exists a finite alphabet Σ such that for all m,n ≥ 1, there
exist L1, L2 ∈ Pfin(Σ∗) with SREGcc(L1) = m and SREGcc(L2) = n such that

SREGcc(L1L2) ≥ SREGcc(L1) + SREGcc(L2).

Proof. Let Σ = {a} and, for m,n ≥ 1, define L1 = {am} and L2 = {an}. From
Lemma 9, we get SREGcc(L1) ≥ m and SREGcc(L2) ≥ n. It is easy to see that
also SREGcc(L1) ≤ m and SREGcc(L2) ≤ n. Again, by Lemma 9, it follows that
SREGcc(L1L2) ≥ m + n = SREGcc(L1) + SREGcc(L2). 
�

6 Conclusion

In this paper, we have investigated cover complexity measures for finite languages
on three different levels and shown that every complexity measure on finite
languages naturally induces a corresponding cover complexity measure. We have
characterised in which situations arbitrary complexity measures thus obtained
are unbounded. Based on these rather abstract results, we have shown that
every class of context-free grammars that allows only a bounded number of
nonterminals on the right-hand side of each production induces an unbounded
production cover complexity measure. This, in turn, entails that the production
cover complexity of a finite language L can be obtained as the minimum of the
exact production complexities of a finite number of supersets L′ of L. Moreover,
we have investigated upper and lower bounds on the production cover complexity
of the language operations intersection, union, and concatenation (see Fig. 1).
Generalising the incompressibility result of [10,11] in a suitable fashion seems
to be a promising starting point for improving the lower bounds from growing
to fixed alphabets. In summary, we believe that the study of the complexity of
finite languages is a fruitful research area with strong ties to both proof theory
and more classical questions of descriptional complexity.
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mous reviewers for several useful comments and suggestions concerning the results in
this paper.
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5. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660,
pp. 43–56. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48057-9 4
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