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Abstract

Cut-elimination is usually presented as a set of local proof reduction
steps together with a terminating strategy thus showing the existence of
cut-free proofs for all provable sequents. Viewing cut-elimination as a
transformation of mathematical proofs, not only the existence but also
the structure and content of the cut-free proofs deserves investigation. In
this paper we use proof skeletons to describe the abstract structure of
a proof and the changes it undergoes during cut-elimination. We show
that a proof can be split up into several minimal fragments which them-
selves are not modified but merely rearranged and instantiated. This
result allows to characterize a certain kind of redundancy whose presence
is necessary for a cut-free proof to allow compression by introduction of
cuts. We formulate the cut-introduction problem in terms of a variant of
Kolmogorov complexity and prove a lower bound based on this character-
ization.

1 Introduction

Cut-elimination is a proof transformation of fundamental importance. It has
been introduced by Gentzen in [12] together with the sequent calculus. A cut-
elimination theorem for a calculus has a number of important corollaries among
which is the consistency of the system. Viewed as a transformation of mathe-
matical proofs, cut-elimination corresponds to the removal of intermediate state-
ments (lemmas) from a proof. The mathematical interest in this transformation
lies in the fact that frequently these lemmas may contain mathematical concepts
which do not occur in the theorem that is shown. Removing these lemmas also
removes these concepts therefore allowing the computation of an elementary
proof from a more abstract one. Such a transformation has for example been
applied by Girard in [13, Annex 4.A] to demonstrate that from the topological
Fürstenberg-Weiss proof of van der Waerden’s theorem the original combinato-
rial proof can be obtained. As a transformation of formal proofs, cut-elimination
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is usually presented as a set of local reduction steps. The changes to the global
structure of the proof that are caused by these local rewrite steps are strongly
influenced by the original cut formulas. Therefore, on the mathematical level,
the abstract concepts – up to a certain degree – determine the form of the
elementary argument.

The inverse problem of structuring a given cut-free proof by the introduction of
cuts is interesting for the following two reasons: Firstly for the above-mentioned
interplay between the structure of the elementary proof and the formulas defin-
ing the concepts of the abstract proof. The crucial question in that respect is: Is
it possible to read off formulas describing abstract mathematical concepts from
the structure of an elementary mathematical proof ? Secondly, it is well-known
that cut-elimination (in first-order classical logic) may lead to a non-elementary
increase in the size of proofs [23, 21, 22]. It is clear that not all sequences
of large (i.e. non-elementarily growing) cut-free proofs admit corresponding se-
quences of small (i.e. elementarily growing) counterparts with cuts. Some kind
of structural regularity, of redundancy, must be necessary for such a strong ab-
breviation to be possible. The question here is to find a characterization of
the redundancy of a proof w.r.t. the introduction of cuts. A partial answer to
this question will be provided in this paper by exhibiting a necessary (although
not sufficient) condition for a proof to allow an abbreviation by the introduc-
tion of cuts. Cut-introduction has also applications in computer science since
computer-generated proofs are typically analytic. In [9] several preprocessing
and optimization techniques for automated theorem proving are shown to be
representable by inserting cuts into a proof. In [20], the introduction of atomic
cuts is used in the context of proof search for logic programming.

We will treat the above questions based on the level of proof skeletons, i.e. trees
representing the structure of a proof. Proof skeletons allow to split a first-order
proof into two levels: The propositional structure and the term structure. The
relation between these two levels is interesting, often surprising and has been
studied for example in [18, 10, 8, 7]. We will show that a proof skeleton can
be divided into several minimal fragments which themselves are not modified
by cut-elimination but only rearranged and instantiated. Therefore, a cut-free
proof is shown to be a composition of instances of the minimal fragments of
the original proof. This in turn allows to read off the possible building blocks
of the skeleton of the proof with cuts from the one without cuts. Therefore it
is possible to compute a lower bound on the size of a proof with cuts leading
to a given cut-free proof. Although our analysis concerns usual cut-elimination
by local rewrite steps, many of our proofs are strongly based on another, more
general, cut-elimination method: Cut-elimination by resolution (Ceres), which
has been introduced in [4] and will be explained in Section 2. In Section 3 we
will establish the relation between the Ceres-method and the proof skeletons.
In Section 4 we will use constructions of the Ceres-method to prove the above
mentioned behavior of the minimal fragments. In Section 5 the problem of cut-
introduction will be formalized in terms of a variant of Kolmogorov complexity
and a lower bound will be provided.
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2 Cut-Elimination by Resolution

Cut-elimination by resolution (Ceres) is a method for cut-elimination which
has been introduced in [4]. It has been extended considerably to cover calculi
enriched with definition handling and equality reasoning [1] and also many-
valued logics [5]. An implementation of this method (and several examples)
are available at http://www.logic.at/ceres/. It has been used to analyze
a formalization of Fürstenberg’s topological proof of the infinity of primes [11]
showing that Euclid’s elementary argument can be obtained by cut-elimination,
see [2]. In the author’s PhD thesis [14, 15] a refinement of the method, taking
dependencies between rules and axioms into account, has been developed. This
refinement, whose usage is crucial to obtain the results presented in this paper,
is briefly described in this section.

2.1 The Sequent Calculus

We will investigate various proof transformations which would be very incon-
venient in a calculus including explicit exchange- or permutation-rules. Still
we want to track different occurrences of the same formula, which leads us to
using a sequent calculus based on indexed formulas. An indexed formula is a
pair consisting of a formula F and an index i ∈ N and is written as F[i]. A
sequent is a pair of sets of indexed formulas. In a sequent calculus proof each
formula occurrence is an ancestor either of a cut or of a formula in the end-
sequent. Following [24] we call the former implicit and the latter explicit. For
our purposes it will be convenient to express this distinction already at the level
of formula indices. Therefore we assume a partition I ] E = N for the indices,
e.g. I := {2k | k ∈ N} and E := {2k + 1 | k ∈ N}.

Definition 1. The rules of LK are the following:

1. Axiom sequents are of the form:

A[i] ` A[j] for an atomic formula A

2. Logical Rules
Γ ` ∆, A[i] Π ` Λ, B[j]

Γ,Π ` ∆,Λ, (A ∧B)[k]
∧ : r

A[i],Γ ` ∆

(A ∧B)[k],Γ ` ∆ ∧ : l1
B[i],Γ ` ∆

(A ∧B)[k],Γ ` ∆ ∧ : l2

A[i],Γ ` ∆ B[j],Π ` Λ

(A ∨B)[k],Γ,Π ` ∆,Λ ∨ : l

Γ ` ∆, A[i]

Γ ` ∆, (A ∨B)[k]
∨ : r1

Γ ` ∆, B[i]

Γ ` ∆, (A ∨B)[k]
∨ : r2

Γ ` ∆, A[i] B[j],Π ` Λ

(A→ B)[k],Γ,Π ` ∆,Λ →: l

A[i],Γ ` ∆

Γ ` ∆, (A→ B)[k]
→: r1

Γ ` ∆, B[i]

Γ ` ∆, (A→ B)[k]
→: r2
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Γ ` ∆, A[i]

(¬A)[k],Γ ` ∆ ¬ : l
A[i],Γ ` ∆

Γ ` ∆, (¬A)[k]
¬ : r

A{x← t}[i],Γ ` ∆

((∀x)A)[k],Γ ` ∆ ∀ : l
Γ ` ∆, A{x← α}[i]
Γ ` ∆, ((∀x)A)[k]

∀ : r

Γ ` ∆, A{x← t}[i]
Γ ` ∆, ((∃x)A)[k]

∃ : r
A{x← α}[i],Γ ` ∆

((∃x)A)[k],Γ ` ∆ ∃ : l

For the variable α and the term t the following must hold:

(a) t must not contain a variable that occurs bound in A

(b) α is called an eigenvariable and must not occur in Γ∪∆∪{A} (eigen-
variable condition).

3. Structural Rules

Γ ` ∆
Γ ` ∆, A[k]

w : r Γ ` ∆
A[k],Γ ` ∆ w : l

A[i], A[j],Γ ` ∆
A[k],Γ ` ∆ c : l

Γ ` ∆, A[i], A[j]

Γ ` ∆, A[k]
c : r

Γ ` ∆, A[i] A[j],Π ` Λ
Γ,Π ` ∆,Λ cut

An LK-proof is a tree where each node is labelled by a rule and its conclusion
sequent fulfilling the following conditions:

1. For each axiom: i 6= j, for each other rule: the introduced index k is new,
i.e. it does not occur in the proof above. For each binary rule: there is no
index that occurs in both subproofs.

2. For each cut: i, j ∈ I, for each rule except cut: either i, j, k ∈ I or
i, j, k ∈ E .

We treat axioms as nullary rules. An axiom has therefore two main indices but
no auxiliary index. For the other (including the structural) rules, auxiliary and
main indices are defined as usual. An index i is active in a rule if it is main
or auxiliary, otherwise it is called context index. A rule will be called explicit
or implicit according to the type of its main and auxiliary indices. An axiom
will be called explicit if at least one index is in E and implicit otherwise. In
writing down proofs or defining proof transformations we will often omit the
indices if their choice is obvious or irrelevant. For defining the Ceres-method it
will be useful to track axiom occurrences in a proof and in structures derived
from it. This will be done by using an element of N × N as axiom identifier.
The identifier of an axiom is the pair of formula indices in this axiom.
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2.2 Clause Logic

A clause is a sequent containing only atomic formulas. We will consider clauses
which are labelled by sets of axiom identifiers. For a clause c we write A(c) to
denote this set. We will use the notation Γ `A ∆ for the clause Γ ` ∆ labelled
with the set A of axiom identifiers. The merge of two clauses Γ `A ∆ and
Π `B Λ is Γ `A ∆ ◦ Π `B Λ := Γ,Π `A∪B ∆,Λ. The merge operation will also
be used on sequents in an analogous way. Let C,D be clause sets. The product
of C and D is C ×D := {c ◦ d | c ∈ C, d ∈ D}. A clause selection formula is a
propositional formula built up from sets of axiom identifiers as atoms and the
connectives ∧,∨,¬. For a clause c and a set of axiom identifiers A we will say
that c is an A-clause if A ∩ A(c) 6= ∅.

Definition 2. Let C be a clause set, let A be a set of axiom identifiers and let
F and G be clause selection formulas. We define:

1. CA := {c ∈ C | c is an A-clause}

2. C¬F := C \ CF

3. CF∧G := CF ∩ CG

4. CF∨G := CF ∪ CG

Note that CA1∧A2 6= CA1∩A2 . Consider for example C = {P `{a1,a2} Q}. Then
C{a1}∧{a2} = C but C{a1}∩{a2} = C∅ = ∅. In contrast CA1∨A2 = CA1∪A2 as
can be easily verified.

Definition 3. Let C,D be clause sets and F be a clause selection formula. We
define the restricted product as

C ×F D := (CF ×DF ) ∪ C¬F ∪D¬F

The reader can easily convice himself that - under the usual interpretation of
a clause set as a universally quantified conjunctive normal form - the logical
meaning of the union (∪) is conjunction, the meaning of the product (×) is
disjunction and that the restricted product is in-between in the sense that C∪D
implies C×F D which in turn implies C×D for all clause selection formulas F .

2.3 The Ceres-Method

The Ceres-method is based on the resolution calculus. As a preprocessing we
skolemize the input proof with cuts. The skolemization of a proof consists in
removing the strong quantifiers (i.e. positive ∀ and negative ∃) from its end-
sequent and replacing the variables bound by these quantifiers by skolem terms.
A skolemized proof therefore is one which does not contain strong quantifiers in
its end-sequent. The interested reader is referred to [3] for a description of an
algorithm for proof skolemization. Denoting with |π| the number of rules in π,
the main theorem of the Ceres-method can be stated as follows:

Theorem 1. Let π be a skolemized proof of Γ ` ∆. Then
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1. there is an unsatisfiable set of clauses P(π) s.t.

2. for all c ∈ P(π) there is a proof ψ of (Γ ` ∆) ◦ c s.t.
(a) ψ is cut-free and (b) |ψ| ≤ |π|.

The clause set P(π) is called profile of π, the proof ψ is called projection (of π
to the clause c). This theorem gives rise to a cut-elimination method as follows:
Compute a resolution refutation γ of P(π). Compute a ground resolution refu-
tation γ′ of a set of instances of P(π). Convert γ′ to a sequent calculus proof
by replacing resolution by cut and the instances of P(π) by instances of the
respective projections. The result is a proof of Γ ` ∆ using only atomic cuts.

Starting with a skolemized proof is necessary for the following two reasons:
Firstly it ensures that in γ there are no substitutions which replace eigenvari-
ables of strong quantifiers in the end-sequent (as there are no such quantifiers
anymore). Secondly, it ensures that the projections do not contain violations
of eigenvariable conditions. Starting from a non-skolemized proof, the defini-
tions of the profile and the projections can still be applied, however Theorem 1
fails, in particular, a projection will only be a semi-proof, i.e. a proof possibly
containing violations of eigenvariable conditions. In this paper however, we will
use the profile and the projections not for the purpose of cut-elimination by
resolution, but instead as tools for analyzing the structure of proofs. Therefore
we do not need Theorem 1 and our investigation applies to all, i.e. also the
non-skolemized, proofs.

We now turn to the details of the Ceres-method: For a proof π and a formula
index i we define Aπ(i) ⊆ N × N as the set of axiom identifiers containing an
ancestor of i in π. For a rule ρ we define Aπ(ρ) as Aπ(i) ∪ Aπ(j) if ρ has the
two auxiliary indices i and j and as Aπ(i) if ρ has only one auxiliary index i.
For a rule ρ and a set of indices U we say that ρ operates on U if all the active
indices of ρ are in U . For a sequent s and a set of formula indices M , we write
S(s,M) for the subsequent of s indexed by elements of M .

Definition 4. Let π be a proof. We define the profile P(π) by induction on the
structure of π.

1. If π is an axiom s, then

P(π) :=
{
∅ if S(s, I) = s
{S(s, I)} if S(s, I) 6= s

2. If π ends with a unary rule, let π′ be its immediate subproof and define

P(π) := P(π′)

3. If π ends with a binary rule ρ, let π1, π2 be its immediate subproofs.

(a) If ρ is implicit, then

P(π) := P(π1) ∪ P(π2)

(b) If ρ is explicit, then

P(π) := P(π1)×Aπ(ρ) P(π2)
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We will now describe the projections of a proof. A proof π induces an ancestor
relation on the set of formula indices occurring in π: An auxiliary index is direct
ancestor of the main index of the same rule. The ancestor relation is the reflexive
and transitive closure of the direct ancestor relation. The part of the ancestor
relation that is induced by contraction-rules only will play an important part
later on, so it deserves its own notation.

Definition 5. Let π be a proof and i and j indices. We define i ≤1
π j if π

contains a contraction with main index i and an auxiliary index j. We write
≤π for the reflexive and transitive closure of ≤1

π.

Let s and s′ be sequents and π a proof. We write s′ ≤π s if there is a bijection
f from the indices of s′ into those of s s.t. the formulas are preserved by f and
i ≤π f(i) for all i. Note that if s′ ≤π s then s′ and s only differ in the indices.
Let π be a proof, U be a set of indices and let c ∈ P(π). Then we write Uπ(c)
for the set {i ∈ U | Aπ(i) ∩ A(c) 6= ∅}.

Proposition 1. Let π be a proof of a sequent s and let c ∈ P(π). Then there
is a cut-free semi-proof Ψ(π, c), the projection of π to c, of a sequent s′ with
S(s, Eπ(c)) ◦ c ≤π s′ and furthermore |Ψ(π, c)| ≤ |π|.

Proof. We proceed by induction on π. The claim S(s, Eπ(c)) ◦ c ≤π s′ will
follow from choosing the indices introduced into Ψ(π, c) appropriately. The
claim |Ψ(π, c)| ≤ |π| will follow from the observation that we add at most one
rule to Ψ(π, c) for each rule of π.

1. If π is an axiom, define Ψ(π, c) := π.

2. If π ends with a unary rule ρ, let π′ be π without ρ. For c ∈ P(π) we also
have c ∈ P(π′).

(a) If ρ does not operate on Eπ(c), define Ψ(π, c) := Ψ(π′, c).

(b) If ρ operates on Eπ(c), then ρ cannot be weakening as the main index
of a weakening has no ancestor axioms.

i. If ρ is a logical rule, then it has exactly one auxiliary index i in
π. The formula of i occurs in the end-sequent of Ψ(π′, c) with
an index j ≥π i. Define

Ψ(π, c) :=
Ψ(π′, c)

ρ

applying ρ to j creating the same main index as in π.
ii. If ρ is a contraction, let k be its main index and i1, i2 its auxiliary

indices. As Aπ(k)∩A(c) 6= ∅ also Aπ(in)∩A(c) 6= ∅ for at least
one n ∈ {1, 2}, let w.l.o.g. n = 1.
A. If also Aπ(i2) ∩ A(c) 6= ∅, then the end-sequent of Ψ(π′, c)

contains indices j1 ≥π i1 and j2 ≥π i2. Define

Ψ(π, c) :=
Ψ(π′, c)

ρ

applying ρ to j1, j2 creating the same main index as in π.
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B. If Aπ(i2) ∩ A(c) = ∅, define Ψ(π, c) := Ψ(π′, c).

3. If π ends with a binary rule ρ, let π1, π2 be the immediate sub-proofs of π.

(a) If ρ does not operate on Eπ(c), then either ρ operates on I, in which
case c ∈ P(π1)∪P(π2) or it operates on E \ Eπ(c) in which case even
c ∈ P(π1)¬Aπ(ρ) ∪ P(π2)¬Aπ(ρ). In any case, for c ∈ P(πi) define
Ψ(π, c) := Ψ(πi, c).

(b) If ρ operates on Eπ(c), then A(c) ∩ Aπ(ρ) 6= ∅ and c = c1 ◦ c2 with
cn ∈ P(πn) and A(c) ∩ Aπ(ρ) 6= ∅ for both n ∈ {1, 2}. Letting in
be the auxiliary index of ρ in πn, by the induction hypothesis the
end-sequent of Ψ(πn, cn) contains an index jn ≥π in. Define

Ψ(π, c) :=
Ψ(π1, c1) Ψ(π2, c2)

ρ

applying ρ to j1, j2 creating the same main index as in π.

We will write Ψ(π) for {Ψ(π, c) | c ∈ P(π)}.

Proof Sketch of Theorem 1. The unsatisfiability of P(π) is shown by construct-
ing a sequent calculus derivation of ` using clauses from P(π) as initial sequents
as in [4, Proposition 3.2]. The projections are constructed as in the above proof
of Proposition 1 where the assumption of a skolemized input proof ensures that
step 2(b)i does not introduce an eigenvariable violation. The end-sequents s ◦ c
as stated in Theorem 1 can be derived from the sequents s′ ≥π S(s, Eπ(c)) ◦ c
by weakening (and renaming of indices).

3 Proof Fragments and Projections

3.1 Proof Fragments

The skeleton of a proof is – roughly speaking – the proof tree with rule labels
but without formulas. Skeletons are usually (e.g. in [18] and [8]) defined based
on a calculus which contains a permutation rule which has the consequence
that not only the tree structure of the proof is determined by the skeleton but
also the ancestor relation of the formula occurrences, a fact which is crucial for
various decidability results. In our setting we are working without permutation
rules to allow a more flexible treatment of proof transformations. This however
has the consequence that formula indices are to be carried over into skeletons
which makes their definition technically more complex. Nevertheless the notion
of skeleton defined below has the same natural correspondence to our calculus
as the skeleton notion of [18, 8] to the respective calculus.

Definition 6. A proof skeleton S together with two associated sets of indices
Idx−(S) and Idx+(S) is defined by induction as follows:

1. For any indices i and j, S := • ax(i,j) is a skeleton, Idx−(S) := {i} and
Idx+(S) := {j}.
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2. If S′ is a skeleton with i ∈ Idx−(S′) and j ∈ Idx+(S′), then

S :=
• → : r(i,j;k)

S′

is a skeleton with Idx−(S) := Idx−(S′) \ {i} and Idx+(S) := (Idx+(S′) \
{j}) ∪ {k}.

3. If S1 and S2 are skeletons with i ∈ Idx+(S1) and j ∈ Idx−(S2), then

S :=
• → : l(i,j;k)

S2S1 �����

?????

is a skeleton with Idx−(S) := Idx−(S1) ∪ (Idx−(S2) \ {j}) ∪ {k} and
Idx+(S) := (Idx+(S1) \ {i}) ∪ Idx+(S2).

Continue analogously for the all other rules of LK. Furthermore, skeletons must
fulfill the conditions 1 and 2 of the sequent calculus on indices.

A skeleton will often be denoted as S = (V,E, τ) where V and E are the vertices
and edges of the underlying tree and τ assigns rule labels to the vertices. The
skeleton of a proof π is denoted as S(π) and defined in the obvious way by
removing all formulas. The notation i ≤π j for a proof π and indices i, j is
carried over to skeletons analogously.

Example 1. Consider the proof π =

P (α, f(β)) ` P (α, f(β))
(∀y)P (α, y) ` P (α, f(β)) ∀ : l

(∀y)P (α, y) ` (∀y)P (α, f(y)) ∀ : r (π′)
(∀y)P (α, f(y)), . . . ` . . .

(∀y)P (α, y), (∀y)P (α, y) ` (∀y)((∃x)P (x, y) ∧ (∃x)P (x, f(y)))
cut

(∀y)P (α, y) ` (∀y)((∃x)P (x, y) ∧ (∃x)P (x, f(y))) c : l

(∃x)(∀y)P (x, y) ` (∀y)((∃x)P (x, y) ∧ (∃x)P (x, f(y))) ∃ : l

where π′ =

P (α, γ) ` P (α, γ)
P (α, γ) ` (∃x)P (x, γ) ∃ : r

P (α, f(γ)) ` P (α, f(γ))
P (α, f(γ)) ` (∃x)P (x, f(γ)) ∃ : r

P (α, f(γ)), P (α, γ) ` (∃x)P (x, γ) ∧ (∃x)P (x, f(γ))
∧ : r

P (α, f(γ)), (∀y)P (α, y) ` (∃x)P (x, γ) ∧ (∃x)P (x, f(γ)) ∀ : l

(∀y)P (α, f(y)), (∀y)P (α, y) ` (∃x)P (x, γ) ∧ (∃x)P (x, f(γ)) ∀ : l

(∀y)P (α, f(y)), (∀y)P (α, y) ` (∀y)((∃x)P (x, y) ∧ (∃x)P (x, f(y))) ∀ : r
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Assuming an appropriate choice of the formula indices, the skeleton S(π) is

• ax(1,2)

• ∀ : l(1;3)

• ∀ : r(2;4)

• ax(5,7)

• ∃ : r(7;9)

• ax(6,11)

• ∃ : r(11;13)

• ∧ : r(9,13;15)
• ∀ : l(5;17)

• ∀ : l(6;8)

• ∀ : r(15;19)

• cut(4,8)
• c : l(3,17;21)

• ∃ : l(21;23)

LLLLLLLL

rrrrrrrr

LLLLLLLL

rrrrrrrr

In the above proof we have 21 ≤π 3 and 21 ≤π 17. All other pairs i, j of indices
with i ≤π j are trivial, i.e. i = j.

Just as rules in a sequent calculus proof are either implicit or explicit, so are
nodes in a proof skeleton. Again, we use the convention to call an axiom node
explicit if at least one of its main occurrences is ancestor of the end-sequent
and implicit otherwise. Given a graph G = (V ;E), paths(E) is defined as the
transitive closure of E. For a set X, a relation R ⊆ X × X and a set Y ⊆ X
we write R � Y for {(x1, x2) ∈ R | x1, x2 ∈ Y }. So, in particular, for a graph
G = (V ;E) and a set of vertices V ′ ⊆ V , paths(E) � V ′ are all pairs of nodes
from V ′ which are connected by a path in G.

Definition 7. Let T = (V ;E) be a tree. A graph T ′ = (V ′;E′) is called inner
tree of T if V ′ ⊆ V and paths(E′) = paths(E) � V ′.

Note that T ′ is a tree too and that being inner tree is a transitive relation.

Definition 8. Let S1 = (V1, E1, τ1) and S2 = (V2, E2, τ2) be skeletons. S1 is
called subskeleton of S2, written as S1 ⊆ S2, if

1. (V1, E1) is inner tree of (V2, E2) and

2. For all v ∈ V1:

(a) τ1(v) and τ2(v) have the same rule type

(b) For a main index i1 in τ1(v) and the corresponding main index i2 in
τ2(v): i1 = i2.

(c) For an auxiliary index i1 in τ1(v) and the corresponding index i2 in
τ2(v): i2 ≤S2 i1.

The rationale for the above point 2c is that in a subskeleton certain parts of
the proof do no longer exist. This in turn makes certain contractions super-
fluous which therefore also do no longer exist in the subskeleton. The missing
contractions are reflected on the level on indices by updating the indices below
these contractions to point to ≤S2-larger indices. This effect is illustrated in
Example 2 below.
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Lemma 1. Let S1 = (V1, E1, τ1), S2 = (V2, E2, τ2) and S3 = (V3, E3, τ3) be
skeletons and i, k indices. Then

1. If S1 ⊆ S2 then k ≤S1 i implies k ≤S2 i.

2. If S1 ⊆ S2 and S2 ⊆ S3 then S1 ⊆ S3.

Proof. 1 is shown easily by using the subskeleton conditions and 2 follows from 1
and the transitivity of being inner tree.

S′ is a proper subskeleton of S, written as S′ ⊂ S, if S′ ⊆ S and S′ 6= S

Definition 9. Let S ⊆ S′ be proof skeletons and let U be a set of indices. S is
called U -closed w.r.t. S′ if: For all non-contraction nodes v ∈ S and w ∈ S′ s.t.
v has a main index i ∈ U and w has an auxiliary index j ≤S′ i also w ∈ S.

Definition 10. Let S be a proof skeleton. A subskeleton F ⊆ S is called
fragment of S if it contains at least one explicit node and is E-closed w.r.t. S.
A fragment F is called minimal if there is no fragment F ′ which is a proper
subskeleton of F . The set of fragments of S is denoted as F(S), the set of
minimal fragments of S as M(S).

Example 2. Consider the following proof skeletons:

• ax(1,2)

• ∀ : r(2;4)

• ax(6,11)

• ∀ : l(6;8)

• cut(4,8)
LLLLLLLL

rrrrrrr

• ax(1,2)

• ∀ : l(1;3)

• ∀ : r(2;4)

• ∃ : l(3;23)

• ax(1,2)

• ∀ : l(1;3)

• ∃ : l(3;23)

• ax(5,7)

• ∃ : r(7;9)

• ax(6,11)

• ∃ : r(11;13)

• ∧ : r(9,13;15)
• ∀ : l(5;17)

• ∀ : r(15;19)

• ∃ : l(17;23)

LLLLLLLL

rrrrrrrr

S1 S2 S3 S4

All of them are subskeletons of S(π) of Example 1. Observe that the auxiliary
index of the ∃ : l-rule at the root of π changes according to the subskeleton
condition: Its original value in π is 21 but as 21 ≤π 3 and 21 ≤π 17 it can
in addition take the values 3 and 17 in subskeletons (which corresponds to the
deletion of different parts in the skeleton above). S1 is not a fragment of S(π)
because 1 ∈ E and the node labelled with ax(1,2) appears in S1 but the one
labelled with ∀: l(1;3) does not. S2 is a fragment of S(π) but it is not a minimal
fragment because S3 ⊂ S2 and S3 is a fragment. The set of minimal fragments
of π is M(S(π)) = {S3, S4}.

3.2 Characterization of the Minimal Fragments

In this and the next section, we will show that the minimal fragments of a proof
are exactly the skeletons of the projections by characterizing both as those
fragments which contain only explicit nodes and no weakening.
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Definition 11. Let T = (V ;E) and T ′ = (V ′;E′) be trees. T ′ is called subtree-
residue of T if there are subtrees T1 = (V1;E1), . . . , Tn = (Vn;En) of T s.t.
V ′ = V \ (V1 ∪ . . . ∪ Vn) and E′ = E � V ′.

For a graph G, let V(G) denote the vertices and E(G) the edges of G. The
cardinality of a graph is defined as |G| := |V(G)|.

Lemma 2. Let S be a skeleton. If F is a fragment of S s.t. 1. F contains
only explicit nodes and 2. F does not contain weakening, then F is a minimal
fragment of S.

Proof. Given F fulfilling 1 and 2, assume there would be a fragment F ′ with
F ′ ⊂ F . We show that this assumption leads to a contradiction by exhibiting a
list of subtree-residues R|F |, R|F |−1, . . . , R1, R0 of F which is decreasing in the
sense that |Rk| = k until R0 = (∅, ∅) and for all k ∈ {0, . . . , |F |}: F ′ ⊆ Rk. Let
R|F | := F and observe that it fulfills the desired properties.

For constructing the rest of the sequence, let us assume that there is a subtree-
residue R of size n + 1 with F ′ ⊆ R and show that there is also a subtree-
residue R′ of size n with F ′ ⊆ R′. R′ is defined as follows: If there is a
v ∈ leaves(R) \ leaves(F ) then – as v /∈ leaves(F ) – v is not an axiom. In
a proof skeleton however a non-axiom node cannot be a leaf, and as F ′ is a
proof skeleton and F ′ ⊆ R, we have v /∈ F ′ and can define V − := V(R) \ {v},
E− := E(R) � V − and R′ := (V −;E−) which has the desired property F ′ ⊆ R′.
If leaves(R)\ leaves(F ) = ∅, i.e. leaves(R) ⊆ leaves(F ), then we claim that there
is a w ∈ R which is unary (i.e. has exactly one child) in R and binary (i.e.
has two exactly children) in F . To show this, let X be any maximal (w.r.t.
⊆ on the vertices) tree that is contained in F \ R. Such a tree exists because
R is a subtree-residue of F . Let w be the first node below X that is in R.
Then w must be binary in F for assume it would be unary, then w would be
in leaves(R) \ leaves(F ) which is empty by assumption. But w is unary in R
because no node from X is in R.

Let now w1 be an uppermost node that is unary in R and binary in F , let X
be the subtree immediately above w1 which is in F \R and let Y be the other
subtree which is in R as w1 was chosen uppermost. Let i be the auxiliary index
of w1 on the side of X. As F ′ ⊆ R and X∩R = ∅, i does not occur as main index
of a node in F ′ and therefore w1 cannot occur in F ′ at all. As Y is a weakening-
free skeleton, there is a list of vertices w1, . . . , wk with w2, . . . , wk ∈ Y s.t. wk is
an axiom and ∀j ∈ {1, . . . , k − 1} there are indices i, i′ s.t. i is auxiliary index
for wj , i′ is main index of wj+1 and i ≤F i′. But F ′ is E-closed w.r.t. S and
contains only explicit rules, so none of the wj can be in F ′ because w1 is not in
F ′. Define V − := V(R) \ {wk}, E− := E(R) � V −, R′ := (V −;E−) and observe
that R′ is a subtree-residue of size n with F ′ ⊆ R′.

In order to prove the converse of the above lemma, we need some preparatory
notions about the removal of weakening-rules from a proof.

Definition 12. We define a reduction relation →w on proofs as follows: Let ρ

12



be a weakening rule. If ρ is the last rule in the proof, define

(χ)
Γ ` ∆

Γ ` ∆, A
w : r →w (χ)

Γ ` ∆

Otherwise, there is a rule ρ′ immediately below ρ. If the main occurrence of ρ
is in the context of ρ′, then exchange ρ and ρ′, e.g. for ρ′ being ∧: l1 define

(χ)
A,Γ ` ∆
A,Γ ` ∆, C

w : r

A ∧B,Γ ` ∆, C ∧ : l1
→w

(χ)
A,Γ ` ∆

A ∧B,Γ ` ∆ ∧ : l1

A ∧B,Γ ` ∆, C
w : r

Otherwise the main occurrence of ρ is auxiliary occurrence of ρ′. If ρ′ is a
contraction, then delete both ρ and ρ′, i.e.

(χ)
Γ ` ∆, A[i]

Γ ` ∆, A[i], A[j]
w : r

Γ ` ∆, A[k]
c : r

→w (χ)
Γ ` ∆, A[i]

and rename k to i below the reduced subproof.

If ρ′ is a unary logical rule, then delete ρ′, e.g. for ρ′ being ∨ : r1 define

(χ)
Γ ` ∆

Γ ` ∆, A[i]
w : r

Γ ` ∆, (A ∨B)[j]
∨ : r1

→w
(χ)

Γ ` ∆
Γ ` ∆, (A ∨B)[j]

w : r

If ρ′ is a binary rule, then delete ρ′ and the subproof which does not contain ρ,
e.g. for ρ′ being ∧: r and ρ being in the left subproof above ρ′ define

(χ1)
Γ ` ∆

Γ ` ∆, C
w : r (χ2)

Π ` Λ, D
Γ,Π ` ∆,Λ, (C ∧D)[i]

∧ : r
→w

(χ1)
Γ ` ∆

Γ,Π ` ∆,Λ, (C ∧D)[i]
w : ∗

Analogous reductions apply for ρ being w : l and/or ρ′ being of another rule
type. Note that this reduction relation immediately carries over to skeletons
because it depends only on the ancestor relation of the indices and not on the
concrete formulas.

Definition 13. Given a skeleton S, the weakening-residue w(S) of S is defined
by replacing each subgraph of the form

• v

• w

• u

by • v

• u

where τ(w) is weakening and u and the dotted edges are present iff w is not the
root of S.

13



Definition 14. Let S1 = (V1, E1, τ1) and S2 = (V2, E2, τ2) be skeletons. S1 is
called quasi-subskeleton of S2 if

1. w(S1) is inner tree of w(S2) and

2. For all v ∈ V1 where τ1(v) is not weakening:

(a) τ1(v) and τ2(v) have the same rule type
(b) For a main index i1 in τ1(v) and the corresponding main index i1 in

τ2(v): i1 = i2

(c) For an auxiliary index i1 in τ1(v) and the corresponding index i2 in
τ2(v): i2 ≤S2 i1.

Note that w(S) is an inner tree of S but in general not a skeleton. Being
quasi-subskeleton is a transitive relation which can be proved analogously to
Lemma 1.

Lemma 3. Let π be a proof of a sequent s and S be a subskeleton of S(π). Let
U be a set of indices s.t. S is U -closed w.r.t. π. Then there is a skeleton S∗ s.t.

1. S∗ does not contain weakening,

2. S∗ ⊆ S and

3. S∗ is U -closed w.r.t. π.

Proof. Observe that →w is strongly normalizing and that →w-normal forms do
not contain weakening. Letting S∗ be a →w-normal form of S, 1 is done. For 2
and 3 consider a single reduction step T →w T ′. Showing

2’. T ′ is a quasi-subskeleton of T and

3’. T is U -closed w.r.t. π =⇒ T ′ is U -closed w.r.t. π

by a case distinction on the →w-step is a matter of routine checking. Then 3
follows from 3’ by induction. Claim 2 follows from 2’ because by induction S∗

is a quasi-subskeleton of S. So w(S∗) is inner tree of w(S) but w(S∗) = S∗

because S∗ does not contain weakening. Furthermore w(S) is inner tree of S
and therefore S∗ is inner tree of S. The subskeleton-conditions on the node-
labellings τ of S and τ∗ of S∗ follow immediately from the quasi-subskeleton
relation between S∗ and S as there are no weakening nodes in S∗.

Lemma 4. Let S be a skeleton and F ∈ M(S). Then 1. F contains only
explicit nodes and 2. F does not contain weakening.

Proof. For 1 assume F ∈ F(S) and F contains an implicit rule. Let v be a
lowermost such rule. If v is a cut, then F \ {v} is a fragment, so F is not
minimal. If v is not a cut, then it has a main index i and there is no node in
F having i as auxiliary index because v was lowermost. Therefore – again –
F \ {v} is a fragment and F not minimal.

For 2 let F ∈ F(S) and assume that F contains weakening. Then by Lemma 3
there is a subskeleton F ′ of F which is E-closed w.r.t. S and therefore a fragment
of S. As F ′ does not contain weakening, it is a proper subskeleton of F and
therefore F is not a minimal fragment of S.

14



3.3 Characterization of the Projections

Lemma 5. Let π be a proof and c ∈ P(π). Then the skeleton of Ψ(π, c) is a
fragment of π, contains only explicit nodes and does not contain weakening.

Proof. By inspecting the definition of Ψ(π, c) in the proof of Proposition 1, it
is easy to check that S(Ψ(π, c)) is a subskeleton of S(π) containing only explicit
rules and no weakening. For E-closedness, observe that S(Ψ(π, c)) contains
exactly the rules that operate on Eπ(c). Furthermore, given two nodes v ∈ S(π)
with main index i and w ∈ S(π) with auxiliary index j s.t. j ≤π i, observe
that Aπ(v) ⊆ Aπ(w). Now for such v, w being explicit non-contraction nodes,
v operating on Eπ(c) implies that also w operates on Eπ(c) and therefore that
w is in S(Ψ(π, c)).

For a proof π, the set of axiom identifiers in π is denoted by A(π). For a set of
proofs P , S(P ) denotes the set {S(π) | π ∈ P}.

Lemma 6. Let π be a proof and c ∈ P(π). Then A(Ψ(π, c)) = A(c).

Proof. By induction on the construction of Ψ(π, c).

Lemma 7. Let π be a proof and F be a fragment of π s.t. 1. F contains only
explicit nodes and 2. F does not contain weakening. Then F is the skeleton of
a projection of π.

Proof. Let F = (VF , EF , τF ) and S(π) = (Vπ, Eπ, τπ). We will show by induc-
tion on π that ∃c ∈ P(π) s.t. F = S(Ψ(π, c)): If π is an axiom and F ∈ F(π)
then F = S(π). By 1 the axiom contains an explicit index, so P(π) = {c} for
some clause c and Ψ(π, c) = π. For the rest of this proof, assume that π ends
with a non-axiom rule ρ and let F ∈ F(π) fulfilling 1 and 2 be given.

1. If ρ is in F : Let i be an auxiliary index in τπ(ρ), let π′ be the immediate
subproof of π that contains i and let F ′ be the part of F in π′. By
induction hypothesis ∃c′ ∈ P(π′) s.t. F ′ = S(Ψ(π′, c′)). We will first show
that

Aπ(i) ∩ A(c′) 6= ∅ (∗)

For the index j in τF (ρ) that corresponds to i we have i ≤π j. As F ′

does not contain weakening, ∃a ∈ Aπ(j) ∩ A(F ′). But Aπ(j) ⊆ Aπ(i)
and by induction hypothesis A(F ′) = A(S(Ψ(π′, c′))) and by Lemma 6
A(S(Ψ(π′, c′))) = A(c′) and therefore a ∈ Aπ(i) ∩ A(c′).

(a) If ρ is a unary rule, then π′, F ′ are π, F without ρ. By 2, ρ cannot
be weakening. If ρ is a logical rule it has one auxiliary index i and
by (∗) Aπ(i) ∩ A(c′) 6= ∅. Letting c := c′, observe that c ∈ P(π)
and ρ operates on Eπ(c), so it is contained in Ψ(π, c) and therefore
F = S(Ψ(π, c)). If ρ is a contraction with auxiliary indices i1, i2 then
by (∗) Aπ(i1) ∩ A(c′) 6= ∅ and Aπ(i2) ∩ A(c′) 6= ∅ so ρ is contained
in Ψ(π, c) and again F = S(Ψ(π, c)).
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(b) If ρ is binary, let π1, F1 (and π2, F2) be the left (and right) part
of π, F without ρ. Let i1(i2) be the auxiliary index of ρ in π1(π2)
and let c1(c2) be the clause obtained from applying the induction
hypothesis to π1(π2) respectively. Then by (∗) Aπ(i1) ∩ A(c1) 6= ∅
and Aπ(i2) ∩ A(c2) 6= ∅. As ρ is explicit, P(π) = P(π1) ×A(ρ) P(π2)
and c1 ∈ P(π1)A(ρ) and c2 ∈ P(π2)A(ρ). Define c := c1 ◦ c2 ∈ P(π)
and observe that ρ operates on Eπ(c) so it is contained in in Ψ(π, c)
and therefore F = S(Ψ(π, c)).

2. If ρ is not in F , then F is contained in an immediate subproof of π, denote
it with π′. Then F ∈ F(π′) and by the induction hypothesis there is a
c ∈ P(π′) s.t. S(Ψ(π′, c)) = F . We will show that a) c ∈ P(π) and b)
Ψ(π, c) = Ψ(π′, c).

If ρ is implicit then a) c ∈ P(π) and Ψ(π, c) – containing only explicit
rules – does not contain ρ which establishes b). So assume ρ is explicit.
Let i be an auxiliary index of τπ(ρ) that occurs in π′. We will first show

Aπ′(i) ∩ A(c) = ∅ (∗)

Assume ∃a ∈ Aπ′(i) ∩ A(c). By Lemma 6 A(c) = A(S(Ψ(π′, c))) and by
the induction hypothesis A(S(Ψ(π′, c))) = A(F ) so a ∈ Aπ′(i) ∩ A(F ).
This implies that F contains a non-contraction node σ with a main index
j ≥π′ i and a ∈ Aπ′(j). But σ – being in F – by 1 is explicit and as
F is E-closed w.r.t. π, ρ would have to be in F which contradicts the
assumption, so Aπ′(i) ∩ A(c) = ∅.

(a) If ρ is unary, then a) P(π) = P(π′). If ρ is weakening then it does
not operate on Eπ(c) and by definition of the projections b) Ψ(π, c) =
Ψ(π′, c). If ρ is a logical rule or a contraction, then by (∗) it does not
operate on Eπ(c) so b) Ψ(π, c) = Ψ(π′, c).

(b) If ρ is binary then P(π) = P(π′) ×A(ρ) P(π′′) where π′′ is the other
immediate subproof of π. By (∗), c ∈ P(π′)¬A(ρ) and therefore a)
c ∈ P(π). Also by (∗), ρ does not operate on Eπ(c) and therefore b)
Ψ(π, c) = Ψ(π′, c).

Theorem 2. For any proof π, the minimal fragments of π are exactly the
projections of π, i.e. S(Ψ(π)) =M(π).

Proof. S(Ψ(π)) is by Lemmas 5 and 7 the set of fragments of π that contain
only explicit nodes and no weakening. By Lemmas 2 and 4 this set isM(π).

4 Projections and Cut-Elimination

In this section we will analyze the behavior of the projections under the following
cut-elimination relation.
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Definition 15. Let χ be a regular proof of the form:

(χ1)
Γ ` ∆, A

(χ2)
A,Π ` Λ

Γ,Π ` ∆,Λ cut

We define proof rewrite rules for the reduction of this cut as follows:

Reduction of weakening: The cut formula is introduced by weakening on (at
least) one of the two sides immediately above the cut. If χ1 ends with w : r,
then χ =

(χ′1)
Γ ` ∆

Γ ` ∆, A
w : r (χ2)

A,Π ` Λ
Γ,Π ` ∆,Λ cut

and we define χ 7→w χ′ :=
(χ′1)

Γ ` ∆
Γ,Π ` ∆,Λ

w : ∗

If χ2 ends with w : l we proceed symmetrically.

Reduction of contraction: The cut formula is introduced by a contraction on (at
least) one of the two sides immediately above the cut. If χ1 ends with c : r, then
χ =

(χ′1)
Γ ` ∆, A,A

Γ ` ∆, A
c : r (χ2)

A,Π ` Λ
Γ,Π ` ∆,Λ cut

and we define χ 7→c χ′ :=

(χ′1)
Γ ` ∆, A,A

(χ2)
A,Π ` Λ

Γ,Π ` ∆,Λ, A cut (χ2θ)
A,Π ` Λ

Γ,Π,Π ` ∆,Λ,Λ cut

Γ,Π ` ∆,Λ
c : ∗

where θ is a renaming of all eigenvariables and formula indices of χ2 to fresh
ones. If χ2 ends with c : l, we proceed symmetrically.

Reduction of propositional rules: The cut formula is introduced by propositional
rules on both sides immediately above the cut. If A = B ∧ C, then χ =

(χ′1)
Γ1 ` ∆1, B

(χ′′1)
Γ2 ` ∆2, C

Γ1,Γ2 ` ∆1,∆2, B ∧ C
∧ : r

(χ′2)
B,Π ` Λ

B ∧ C,Π ` Λ ∧ : l1

Γ1,Γ2,Π ` ∆1,∆2,Λ
cut

and we define χ 7→p χ′ :=

(χ′1)
Γ1 ` ∆1, B

(χ′2)
B,Π ` Λ

Γ1,Π ` ∆1,Λ
cut

Γ1,Γ2,Π ` ∆1,∆2,Λ
w : ∗
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If A∧B is introduced by ∧: l2 we proceed symmetrically. The other propositional
connectives, ∨, → and ¬ are treated analogously.

Reduction of quantifier rules: The cut formula is introduced by quantifier rules
on both sides immediately above the cut. If A = (∀x)B, then χ =

(χ′1)
Γ ` ∆, B{x← α}

Γ ` ∆, (∀x)B ∀ : r

(χ′2)
B{x← t},Π ` Λ

(∀x)B,Π ` Λ ∀ : l

Γ,Π ` ∆,Λ cut

and we define χ 7→q χ′ :=

(χ′1{α← t})
Γ ` ∆, B{x← t}

(χ′2)
B{x← t},Π ` Λ

Γ,Π ` ∆,Λ cut

The case of A = (∃x)B is treated analogously.

Rule permutation: The cut formula is not introduced immediately above the
cut on (at least) one of the two sides. Let χ2 end with a rule ρ which does not
introduce the cut formula. If ρ is unary, then χ =

(χ1)
Γ ` ∆, A

(χ′2)
A,Π′ ` Λ′

A,Π ` Λ
ρ

Γ,Π ` ∆,Λ cut

and we define χ 7→r χ′ :=

(χ1)
Γ ` ∆, A

(χ′2)
A,Π′ ` Λ′

Γ,Π′ ` ∆,Λ′
cut

Γ,Π ` ∆,Λ
ρ

which is a proof. Note that regularity ensures that the eigenvariable condition
cannot be violated.

If ρ is binary and the ancestor of the cut formula is in the left premise, then
χ =

(χ1)
Γ ` ∆, A

(χ′2)
A,Π′1 ` Λ′1

(χ′′2)
Π′2 ` Λ′2

A,Π ` Λ
ρ

Γ,Π ` ∆,Λ cut

and we define χ 7→r χ′ :=

(χ1)
Γ ` ∆, A

(χ′2)
A,Π′1 ` Λ′1

Γ,Π′1 ` ∆,Λ′1
cut (χ′′2)

Π′2 ` Λ′2
Γ,Π ` ∆,Λ

ρ

If the ancestor of the cut formula is on the right side we proceed symmetrically.
The same rules apply for the case of χ1 ending with a rule which does not
introduce the cut formula.
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The reduction relations →w (and →c,→p,→q,→r respectively) are defined as
compatible closure of the relations 7→w (and 7→c, 7→p, 7→q, 7→r respectively). The
complete Gentzen-style cut-elimination relation →G is defined as reflexive and
transitive closure of →w ∪ →c ∪ →p ∪ →q ∪ →r. Note that the considered
relation →G does not eliminate atomic cuts. However, sequent calculus proofs
with only atomic cuts have the useful properties of cut-free proofs, in particular
the subformula property, so for most applications the elimination of these cuts
is irrelevant.

Definition 16. Let P, P ′ be finite sets of proofs. We define the relations

1. Duplication: P ≤d P ′ iff ∃ψ1, . . . , ψn ∈ P s.t. P ′ = P ∪ {ψ1θ, . . . , ψnθ}
where θ is a renaming of eigenvariables and formula indices.

2. Instantiation: P ≤i P ′ iff P ′ = Pσ where σ is a substitution.

3. Removal: P ≤r P ′ iff P ′ ⊆ P

We define ≤dir as transitive closure of ≤d ∪ ≤r ∪ ≤i and similarly ≤dr as that of
≤d ∪ ≤r, etc. For proving the main result of this section we need the following
preparatory lemma.

Lemma 8. Let π[χ]p be a proof and let χ′ be a proof with the same end-sequent
as χ. Let i1, . . . , in be the formula indices in the end-sequent of χ and χ′. Let
σ be a substitution whose domain is contained in the set of eigenvariables of χ.
Write π′ for π[χ′]p. If

1. Ψ(χ′) = Ψ(χ)σ and

2. Aπ′(ij) = Aπ(ij) for all j ∈ {1, . . . , n}

then Ψ(π′) = Ψ(π)σ.

Proof. By induction on the number of rules between the end-sequent of χ and
that of π.

In Theorem 3 below we analyze the behavior of the projections of the Ceres-
method under the standard cut-elimination →G. The first analysis of this kind
has been carried out in [6] for the characteristic clause set of the Ceres-method
as introduced in [4]. The result of [6] appeared in a polished form in [17] by using
the profile instead of the original characteristic clause set. In the following proof
we rely on a variant of the analysis of the profile which appeared in [14, 15].

Theorem 3. If π →G π′, then Ψ(π) ≤dir Ψ(π′).

Proof. We show the claim for a single cut-reduction step, the full result follows
by induction. The induction base of π = π′ is trivial as ≤dir is reflexive. Let
p be the position of the reduced cut and χ be the subproof of π at p. Then
π′ = π[χ′]p with χ→G χ′. We make a case distinction according to the type of
cut-reduction. Throughout this proof we use the notation and proof names of
Definition 15.
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For reduction of weakening we have

Ψ(χ) = Ψ(χ′1) ∪Ψ(χ2) and Ψ(χ′) = Ψ(χ′1).

We proceed by induction on the length of the path between χ and the end-
sequent of π. Let ξ0 = χ, . . . , ξn = π be the subproofs of π along this path. Let
D := A(χ2), let σ1, . . . , σl be those explicit binary rules along this path that
have an auxiliary index i with Aπ(i) ⊆ D. Let j1, . . . , jl be the other auxiliary
indices of these rules, abbreviate Ak := Aπ(jk) and define the clause selection
formula D∗ := ¬D ∧¬A1 ∧ . . .∧¬Al. Let ξ′0 = χ′, . . . , ξ′n = π′ be the subproofs
of π′ that correspond to ξ0, . . . , ξn.

Now let k ∈ {0, . . . , n}. In [15, Lemma 5.4] it has been shown that

P(ξ′k) = P(ξk)D
∗
.

So in particular P(π′) ⊆ P(π) and to conclude Ψ(π′) ⊆ Ψ(π), it is enough to
show that ∀c ∈ P(π′) : Ψ(π′, c) = Ψ(π, c). To that aim, observe that for all
indices i we have Aπ′(i) ∩ D = ∅. Therefore, for all c ∈ P(π′): i ∈ Eπ(c) ⇔
i ∈ Eπ′(c). This is enough for a case distinction on the construction of the
projections (Proposition 1) to show that

∀c ∈ P(ξ′k) : Ψ(ξ′k, c) = Ψ(ξk, c) ⇒ ∀c ∈ P(ξ′k+1) : Ψ(ξ′k+1, c) = Ψ(ξk+1, c).

for k = 0, . . . , n− 1. For ξ′0 = χ′ observe that c ∈ P(χ′) implies that c ∈ P(χ′1).
Therefore Ψ(χ′, c) = Ψ(χ, c) and we can conclude Ψ(π′) ⊆ Ψ(π).

Reduction of contraction: Let ξ0 = χ, . . . , ξn = π be the subproofs of π between
χ and the endsequent of π. Let D := A(χ2) and let θ be the variable- and index-
renaming applied in the reduction. Let ξ′0 = χ′, . . . , ξ′n = π′ be the subproofs of
π′ that correspond to ξ0, . . . , ξn. Let k ∈ {0, . . . , n} and let i be an index in the
end-sequent of ξk. By induction it is easy to show that

Aξ′k(i) = Aξk(i) ∪ (Aξk(i) ∩D)θ. (∗)

In [15, Lemma 5.5] it has been shown that

P(ξ′k) = P(ξk) ∪ P(ξk)Dθ.

Let c′ ∈ P(ξ′k). We will show that

1. If c′ ∈ P(ξk) then Ψ(ξ′k, c
′) = Ψ(ξk, c′) and

2. If c′ ∈ P(ξk)Dθ then Ψ(ξ′k, c
′) = Ψ(ξk, c)θ where c ∈ P(ξk)D with cθ = c′.

which implies Ψ(π) ≤d Ψ(π′).

1 If c′ ∈ P(ξk) then A(c′) does not contain an identifier of an axiom from
A(χ2θ) = Dθ, so by (∗) we have Aξ′k(i) ∩ A(c′) = Aξk(i) ∩ A(c′) and
therefore i ∈ Eξk(c′) ⇔ i ∈ Eξ′k(c′). Claim (a) then follows by induction
on the construction of the projections.

2 If c′ ∈ P(ξk)Dθ then there is a c ∈ P(ξk)D with cθ = c′. By (∗)

Aξ′k(i) ∩ A(c′) = (Aξk(i) ∩ A(c′)) ∪ ((Aξk(i) ∩D)θ ∩ A(c′))
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But Aπ(i) contains no indices from the range of θ, so Aπ(i) ∩ A(c′) =
Aπ(i) ∩ (A(c) \D) and therefore we have

Aξk(i) ∩ A(c′) = Aξk(i) ∩ A(c) ∩Dc

and as A(c′) = A(c)θ also

((Aξk(i) ∩D)θ ∩ A(c′)) = (Aξk(i) ∩ A(c) ∩D)θ

Therefore Aξ′k(i)∩A(c′) 6= ∅ ⇔ Aξk(i)∩A(c) 6= ∅ and so i ∈ Eξk(c)⇔ i ∈
Eξ′k(c′) from which claim (b) can be shown by induction on the construction
of the projections.

For the reduction of B ∧ C to B,

Ψ(χ) = Ψ(χ′1) ∪Ψ(χ′′1) ∪Ψ(χ′2) and Ψ(χ′) = Ψ(χ′1) ∪Ψ(χ′2)

which is treated in the same way as the reduction of a weakening to show that
also Ψ(π′) ⊆ Ψ(π). The other reductions of binary propositional connectives
are treated analogously, for negation we obtain Ψ(π′) = Ψ(π).

For the reduction of a universal quantifier, we have

Ψ(χ) = Ψ(χ′1) ∪Ψ(χ′2) and Ψ(χ′) = Ψ(χ′1{α← t}) ∪Ψ(χ′2)

But Ψ(χ′1{α← t}) = Ψ(χ′1){α← t} and by regularity Ψ(χ′) = Ψ(χ){α← t}.
Let i be an index in the end-sequent of χ and χ′, then Aπ′(i) = Aπ(i) and
therefore by Lemma 8 we obtain Ψ(π′) = Ψ(π){α← t}.
For the case of rule permutation it has been shown in [15, Lemma 5.1] that

P(χ′) = P(χ).

We will show that ∀c ∈ P(χ) : Ψ(χ′, c) = Ψ(χ, c) which entails Ψ(π′) = Ψ(π)
because we can apply Lemma 8 as Aπ′(i) = Aπ(i) for all indices i in the end-
sequent of χ and χ′.

1. Permutation of a unary rule: Then P(χ) = P(χ1) ∪ P(χ2) and Ψ(χ, c) =
Ψ(χ′, c) can be shown for each c by first distinguishing wether c ∈ P(χ1)
or c ∈ P(χ2) and – for the latter case – making a case distinction on the
last construction step of the projection Ψ(χ2, c).

2. Permutation of a binary rule: If ρ is implicit then

Ψ(χ) = Ψ(χ1) ∪Ψ(χ′2) ∪Ψ(χ′′2) = Ψ(χ′).

If ρ is explicit, then – letting A := Aπ(ρ) –

P(χ) = P(χ1) ∪ P(χ′2)¬A ∪ P(χ′′2)¬A ∪ (P(χ′2)A × P(χ′′2)A)

and Ψ(χ, c) = Ψ(χ′, c) can be shown for each c ∈ P(χ) by a case distinction
on which of the above subsets of P(χ) contains c.
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Definition 17. Let S1 = (V1, E1, τ1) and S2 = (V2, E2, τ2) be proof skeletons.
S1 and S2 are isomorphic, written as S1

∼= S2, if there is a graph isomorphism
ϕ : V1 → V2 and a bijection f mapping the set of indices into itself s.t. for all
v ∈ V1 : τ2(ϕ(v)) = f(τ1(v)) where the application of f to a rule label is defined
in the obvious way, for example f(→ : l(i,j;k)) := → : l(f(i),f(j);f(k)).

Let S denote the set of all skeletons and S/∼= the set of the isomorphism classes
of S. For a set of skeletons S, write S∼= for { C ∈ S/∼= | C ∩ S 6= ∅}.

Theorem 4. For proofs π and π′: If π →G π′ then M(π′)∼= ⊆M(π)∼=.

Proof. By Theorem 3, Ψ(π) ≤dir Ψ(π′), therefore S(Ψ(π)) ≤dr S(Ψ(π′)) and so
S(Ψ(π′))∼= ⊆ S(Ψ(π))∼= which by Theorem 2 implies M(π′)∼= ⊆M(π)∼=.

So if we are given a proof π′ that we want to shorten by introducing cuts, the
only way to do so is to decrease the number of elements of the isomorphism
classes of M(π′), i.e. to merge several minimal fragments. As M(π′) ⊆ M(π)
we cannot possibly hope to decrease the number of isomorphism classes. This
is a general restriction for any method of cut-introduction based on →G and
therefore having such isomorphism classes with more than one element is a
necessary condition for a proof to allow abbreviation by the introduction of
cuts. A quantification of the compressability of a proof is given in the next
section.

As a side remark not connected to the main argument of this paper, note that
for the weakening reduction →w of Definition 12 an analogous result holds:
π →w π′ ⇒M(π′) ⊆M(π). This shows that the concept of minimal fragment
is also of significance in situations not concerned with cut-elimination.

5 A Lower Bound on Cut-Introduction

It is well-known and has already been mentioned in the introduction that cut-
elimination creates a non-elementary increase in proof size. It is simple to
observe that not every sequence of large proofs has a sequence of small proofs
as counterpart. This situation is similar to the one encountered in general
data compression, for example based on binary strings. There, the concept of
Kolmogorov complexity is a very useful tool for quantifying the amount of in-
formation contained in a binary string and therefore – its compressability. The
Kolmogorov complexity of a binary string is the size of its shortest represen-
tation [19]. Analogously we can define a variant of Kolmogorov complexity,
restricted to proofs and based on cut-elimination instead of (Turing-complete)
computation as

C(π∗) := min{ |π| | π →G π∗}
From the point of view of complexity, the cut-introduction problem can then be
stated as:

Given a proof π∗, find a proof π s.t. π →G π∗ and |π| = C(π∗).

In the rest of this section we prove and apply a lower bound on the complexity
of a proof w.r.t. cut-introduction by relying on Theorems 2 and 4 shown above.
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For a finite set P of proofs, define ‖P‖ :=
∑
π∈P |π|. Two isomorphic skeletons

have the same size, i.e. number of nodes. For a class C ∈ S/∼= we can therefore
define |C| := |S| for an arbitrary S ∈ C. For a finite set P ⊆ S/∼= we define
‖P‖ :=

∑
C∈P |C|.

Lemma 9. For any proof π: ‖Ψ(π)‖ ≤ |π| · 2|π|

Proof. |P(π)| ≤ 2|π| can be shown by a simple induction on the definition of the
profile. Furthermore, each ψ ∈ Ψ(π) has at most size |π|.

Theorem 5. For any proof π∗:

C(π∗) ≥ log(‖M(π∗)
∼=‖)

2

Proof. For any cut-elimination sequence π →G π∗ we have

‖M(π∗)
∼=‖ ≤Thm. 4 ‖M(π)

∼=‖ ≤ ‖M(π)‖

and furthermore

‖M(π)‖ ≤Thm. 2 ‖Ψ(π)‖ ≤Lem. 9 |π| · 2|π| ≤ 22·|π|

Choosing π s.t. |π| = C(π∗) we obtain

log(‖M(π∗)
∼=‖) ≤ 2 · C(π∗).

The above relation between ‖M(π∗)
∼=‖ and C(π∗) is exponential and therefore

slowly growing compared to the non-elementary worst-case complexity of cut-
elimination which motivates the following

Corollary. Let (π∗n)n≥1 be a sequence of proofs. If there exists a sequence
(πn)n≥1 s.t. πn →G π∗n for all n ≥ 1 and |πn| grows elementarily in n, then
‖M(π∗n)

∼=‖ grows elementarily in n.

The above corollary is a strong restriction on the structure of the →G-normal
forms of the sequences of [23, 21, 22] and any other sequences with that asymp-
totic behavior: The large sizes of the normal forms are only due to a non-
elementary number of repetitions of the same structural elements, the isomor-
phism classes of the minimal fragments. Using the corollary in a contrapositive
way we obtain a method to demonstrate that a sequence of long proofs does not
allow strong compression.

6 Conclusion

The elimination and introduction of cuts allow to navigate in the space of proofs
of a theorem in ways which are not fully understood yet. This paper is a contri-
bution to the understanding of the structural effects of these transformations.
We have shown that cut-elimination based on local rewrite steps perturbs the

23



structure of a proof only up to a surprisingly low degree: The minimal frag-
ments of a proof are not changed themselves, they are merely instantiated and
rearranged. This strong connection between a proof with cuts and its counter-
part without cuts allows to describe a certain kind of redundancy, having large
isomorphism classes of minimal fragments, whose presence is necessary for a
cut-free proof to allow compression. We have stated this result in the form of a
lower bound on the cut-introduction problem.

However, many questions still remain open. For finding conditions which are not
only necessary but also sufficient for a cut-free proof to allow compression, the
methods employed in this paper have to be extended considerably: As we are
dealing with first-order logic, the term-level of a proof is of crucial importance
for the introduction of cuts. Taking this level into account needs an investigation
of the redundancy of Herbrand-disjunctions and its pre-forms (as in [16]) during
cut-elimination.

Acknowledgments
The author would like to thank M. Baaz, A. Leitsch, D. Weller and B. Woltzen-
logel Paleo for useful comments on an earlier version of this article.

References

[1] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hen-
drik Spohr. Proof Transformation by CERES. In Jonathan M. Borwein
and William M. Farmer, editors, Mathematical Knowledge Management
(MKM) 2006, volume 4108 of Lecture Notes in Artificial Intelligence, pages
82–93. Springer, 2006.

[2] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hen-
drik Spohr. CERES: An Analysis of Fürstenberg’s Proof of the Infinity of
Primes. Theoretical Computer Science, 403(2–3):160–175, 2008.

[3] Matthias Baaz and Alexander Leitsch. On Skolemization and Proof Com-
plexity. Fundamenta Informaticae, 20(4):353–379, 1994.

[4] Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-
elimination by Resolution. Journal of Symbolic Computation, 29(2):149–
176, 2000.

[5] Matthias Baaz and Alexander Leitsch. Ceres in many-valued logics. In
Franz Baader and Andrei Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning, LPAR 2004, volume 3452 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2005.

[6] Matthias Baaz and Alexander Leitsch. Towards a clausal analysis of cut-
elimination. Journal of Symbolic Computation, 41(3–4):381–410, 2006.

[7] Matthias Baaz and Piotr Wojtylak. Generalizing proofs in monadic lan-
guages. Annals of Pure and Applied Logic, 154(2):71–138, 2008.

[8] Matthias Baaz and Richard Zach. Algorithmic Structuring of Cut-free
Proofs. In Computer Science Logic (CSL) 1992, volume 702 of Lecture
Notes in Computer Science, pages 29–42. Springer, 1993.

24



[9] Uwe Egly and Karin Genther. Structuring of Computer-Generated Proofs
by Cut Introduction. In Georg Gottlob, Alexander Leitsch, and Daniele
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