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1 Introduction

In classical �rst-order logic a proof can be considered as being composed of two
layers: on the one hand the terms by which quanti�ers are instantiated, and on
the other hand, the propositional structure. This separation is most clearly illus-
trated by Herbrand’s theorem [Herbrand, 1930, Buss, 1995]: a formula is valid if
and only if there is a �nite expansion (of existential quanti�ers to disjunctions
and universal quanti�ers to conjunctions of instances) which is a propositional
tautology. Such Herbrand expansions can be transformed to and obtained from
cut-free sequent calculus proofs in a quite straightforward way.

Standard cut reduction is, however, not con�uent, i.e. it permits the computa-
tion of many essentially di�erent cut-free proofs. It was shown in [Baaz andHetzl,
2011] (for pure �rst-order logic) and in [Hetzl, 2012b] (for arithmetical theories)
that the number of di�erent Herbrand expansions obtainable from a single proof
with cut grows at least as fast as the size of the cut-free proofs. Still, it is not clear
whether these results can be strengthened to obtain even more normal forms. In
particular, it is an open question whether in general cut-elimination can produce
in�nitely many di�erent Herbrand expansions.

In [Hetzl and Straßburger, 2012, 2013] an upper bound for the obtainable nor-
mal formshasbeenprovided for proofswithΠ1-cuts in the following strong sense:
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a proof π with Π1-cuts induces a �nite set [[π]] such that every cut-free proof π�

obtained from π via standard cut elimination has a Herbrand expansion, H(π�),
which is contained in [[π]] . Moreover, if π� is obtained from π by non-erasing re-
ductions (reductions that do not eliminate sub-proofs) thenwe even haveH(π�) =
[[π]]. Consequently all normal forms of the non-erasing reduction (of which there
in�nitely many) have the same Herbrand expansion. This property of classical
logic has been called Herbrand-con�uence in [Hetzl and Straßburger, 2012, 2013]
and provides a general way of de�ning the computational content of a classical
proof.

The present paper extends Herbrand-con�uence to proofs with Π2-cuts. To a
simple Π2-proof¹ π we associate a recursively de�ned tree grammar Gπ whose set
of production rules is bounded by the size of π and generates a �nite language
L(Gπ) satisfying the following con�uence result.

Theorem 1.1. Let π0, π1, . . . , πk be a sequence of simple Π2-proofs such that πi+1
is obtained from πi by a standard reduction rule (see Figures 1 and 2) other than
weakening reduction. Then L(Gπ0 ) = Ł(Gπk ). In particular, if the proof πk contains
only quanti�er-free cuts L(Gπ0 ) = H(πk).

Theorem 1.1 can be seen as a re�nement of [Afshari et al., 2015, Theorem 2].
Therein each simpleΠ2-proof π is associated an acyclic context-free tree grammar
Fπ such that for π0, π1, . . . , πk being a reduction sequence (possibly allowing re-
duction of weakening),L(Fπ0 ) ⊇ Ł(Fπk ). For simple proofs, the grammars de�ned
here and in [Afshari et al., 2015] can be shown to have the same language. There
are, however, a number of technical di�erences between the two grammars moti-
vated by the combinatorial nature of proving Herbrand con�uence. Most notably,
Gπ may be cyclic (but permit only ‘well-founded’ derivations).

The grammar Gπ can be considered as a directed graph whose nodes are
quanti�er occurrences and whose edges describe the information �ow between
them. In this sense it is also similar to the graphical formalisms of [Heijltjes, 2010,
McKinley, 2013]. Other related structures are proof nets, which capture informa-
tion �ow on the propositional level and have been extensively studied starting
with [Girard, 1987], as well as the logical �ow graphs used by Buss [Buss, 1991]
in the solution of the k-provability problem and further investigated by Carbone
(see e.g. [Carbone and Semmes, 2000]).

1 See De�nition 2.1.
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2 First-order logic

Wework with a Tait-style sequent calculus for �rst-order logic with explicit weak-
ening and contraction rules. Terms and formulæ of �rst-order logic are de�ned
as usual using the connectives ∧, ∨ and quanti�ers ∀, ∃, as well as a selection
of predicate and function symbols. We assume two sets of variable symbols, free
variables, denoted α, β, etc., and bound variables, x, y, z, with a formula only able
to contain the latter sort in bound contexts.

Upper-case Roman letters, A, B, etc. denote formulæ and upper-case Greek
letters Γ, ∆, etc. will range over sequents, �nite unordered collections of formulæ
with possible repetition. We abbreviate by Γ, ∆ the disjoint union of Γ and ∆; and
Γ, A is shorthand for Γ, {A}. We write Ā to denote the dual of the formula A ob-
tained by de Morgan laws, and A[x/t] for the formula obtained from A by replac-
ing x with the term t if this will not induce any variable capture, and A otherwise.

Table 1. Axioms and rules of sequent-calculus

A, Ā (for A an atomic formula)

Γ, A, B
−−−−−−−−−−−−−−−−−−−−− ∨
Γ, A ∨ B

Γ, A ∆, B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧
Γ, ∆, A ∧ B

Γ, A[x/α]
−−−−−−−−−−−−−−−−−−−−−−−−− ∀
Γ, ∀xA

Γ, A[y/s]
−−−−−−−−−−−−−−−−−−−−−−−−− ∃
Γ, ∃yA

Γ
−−−−−−−−− w
Γ, ∆

Γ, ∆, ∆∗
−−−−−−−−−−−−−−−−−−−−− c
Γ, ∆

Γ, A ∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆

A proof is a �nite binary tree of sequents obtained from the axioms and rules laid
out in Table 1. In the (∀) rule, α is called the eigenvariable and must not appear
in Γ, ∀xA. In the (∃) rule the term s is assumed to be free for y. In the contraction
rule (c), ∆∗ denotes a distinct copy of ∆. In each inference rule, those formulæ
which are explicitly mentioned in the premise are said to be principal in the rules
applied, for example A and B are principal in (∧) rule, every formula from ∆∗ is
principal in (c), and there are no principal formulæ in the weakening rule (w).

We assume all proofs are regular, namely all quanti�ers’ eigenvariables are
distinct and di�erent from any free variables. EV(π) denotes the set of eigenvari-
ables in π and π[α/t] is the result of replacing throughout the proof π each occur-
rence of the variable symbol α by the term t. We write π ⊢ Γ to express that π is a
proof with Γ being the sequent appearing at the root of π. A position in a proof π is
a �nite binary sequence pointing to a node in the proof-tree π. Pos(π) denotes the
set of all positions in π. For p ∈ Pos(π), π|p denotes the subproof of π at position
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p with the convention that π|⟨⟩ = π and π|ip = π�|p, where π� is the immediate
left (or only) subproof of π if i = 0 and the immediate right subproof otherwise.
The size of π, denoted |π|, is the total number of inference rules and axioms in π.

In this paper we primarily consider the following class of �rst-order proofs.

De�nition 2.1 (Simple formulæ and simple Π2-proofs). We call a formula simple
if it is a prenex Π2 or prenex Σ2 formula with at most one universal and one existen-
tial quanti�er. A simple Π2-proof is a proof in which each sequent is a �nite multiset
of simple formulæ and every universally quanti�ed formula appearing above a cut
is principal in the inference directly after its introduction (which is either a cut or
existential introduction).

Lemma 2.2. If π ⊢ Γ in which all cut formulæ in π and all formulæ in Γ are simple
then there is a simple Π2-proof π� ⊢ Γ such that |π�| ≤ |π|.

Proof: Apply inversion to all principal occurrences of universally quanti�ed for-
mulæ in π that appear above some cut to ‘shift’ the quanti�er introduction rule
(∀) downwards in the proof resulting in a simple Π2-proof π� ⊢ Γ. This operation
will not introduce any new inference rules to π so |π�| ≤ |π|.

2.1 Cut reduction

The standard cut reduction rules are given in Figures 1 and 2.

Axiom:

π

Γ, A A, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, A

Ä¼
π

Γ, A

Boolean:

π0

Γ, A

π1

∆, B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧
Γ, ∆, A ∧ B

π2

Π, Ā, B̄
−−−−−−−−−−−−−−−−−−−−−−−− ∨
Π, Ā ∨ B̄

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
Γ, ∆, Π

Ä¼
π0

Γ, A

π1

∆, B

π2

Π, Ā, B̄
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

∆, Π, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆, Π

Fig. 1. One-step cut reduction and permutation rules I.



Herbrand Confluence for First-Order Proofs with Π2-Cuts | 9

Quanti�er:

π0

Γ, A[x/α]
−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
Γ, ∀x A

π1

∆, Ā[x/t]
−−−−−−−−−−−−−−−−−−−−−−−−− ∃
∆, ∃x Ā

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
Γ, ∆

Ä¼

π0[α/t]

Γ, A[x/t]

π1

∆, Ā[x/t]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆

Weakening:

π0

Γ�
−−−−−−−−− w
Γ, A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆

Ä¼

π0

Γ�
−−−−−−−−− w
Γ, ∆

Contraction:

π0

Γ� , Γ, A, Γ∗ , A∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c

Γ� , Γ, A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ� , Γ, ∆

Ä¼

π0

Γ� , Γ, A, Γ∗ , A∗

π1

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ� , Γ, Γ∗ , A∗ , ∆

π∗1
∆∗ , Ā∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
Γ� , Γ, Γ∗ , ∆, ∆∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c

Γ� , Γ, ∆

Unary inf.:

π0

Γ� , A
−−−−−−−−−−−−− r
Γ, A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆

Ä¼

π0

Γ� , A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ� , ∆
−−−−−−−−−−−− r
Γ, ∆

Binary inf.:

π0

Γ�
π1

Γ�� , A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− r

Γ, A

π2

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆

Ä¼
π0

Γ�

π1

Γ�� , A

π2

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ�� , ∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− r

Γ, ∆

Fig. 2. One-step cut reduction and permutation rules II.
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There is one reduction step that may not preserve simple Π2-proofs, namely the
particular instance of binary rule permutation in which (r) is (cut):

π0

Γ, A

π1

∆, ∀xB, Ā

π2

Λ, ∀xB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

∆, Λ, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π ⊢ Γ, ∆, Λ

Ä¼

π0

Γ, A

π1

∆, ∀xB, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆, ∀xB

π2

Λ, ∀xB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π� ⊢ Γ, ∆, Λ

In the right-handproof,∀xB is principal in the cut but is not immediately preceded
by the rule (∀) introducing it, so is not a simple proof. If the left-hand proof is a
simple Π2-proof then it follows that π1 has the form

π�1

∆, B[x/β], Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
∆, ∀xB, Ā

whence we see that applying unary rule permutation to the upper cut in π� we
may obtain the derivation

π0

Γ, A

π�1

∆, B[x/β], Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆, B[x/β]
−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
Γ, ∆, ∀xB

π2

Λ, ∀xB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π�� ⊢ Γ, ∆, Λ

We have π Ä¼ π� Ä¼ π�� and π�� is a simple Π2-proof.
In order to permit reduction strategies of this form it is convenient to consider

the reduction from π to π�� as a single reduction step, so we add the following
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additional rule to the de�nition of Ä¼:

π0

Γ, A

π1

∆, B[x/β], Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
∆, ∀xB, Ā

π2

Λ, ∀xB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

∆, Λ, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π ⊢ Γ, ∆, Λ

Ä¼

π0

Γ, A

π1

∆, B[x/β], Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆, B[x/β]
−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
Γ, ∆, ∀xB

π2

Λ, ∀xB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π�� ⊢ Γ, ∆, Λ

(1)

De�nition 2.3. For proofs π, π� we write π Ä¼ π� if π� is the result of applying one
of the rules of Figures 1 or 2, or (1) above to (a sub-proof of) π. Notice that in con-
traction reduction the left sub-proof is duplicated and care is taken to rename the
eigenvariables (expressed by annotating the proof/sequent/formula in question by
an asterisk) to maintain regularity.

2.2 Herbrand’s theorem

Suppose Γ is a set of simple formulæ and π ⊢ Γ is a proof in which all cuts are
on non-quanti�ed formulæ. For each F ∈ Γ let the Herbrand set for F, denoted
H(π, F), be the set of terms that occur in π aswitnesses to the existential quanti�er
in F (if there is one). The Herbrand set for π is the set H(π) = {(F, t) | F ∈ Γ ∧ t ∈
H(π, F)}.

Given a set X of terms and simple formula F, let FX denote the prenex Π1
formula given by

(∀xF)X = ∀xFX (∃xF)X = ⋁
t∈X
F[x/t]

and FX = F if F is quanti�er-free.

Theorem 2.4 (Herbrand’s theorem for simple formulæ). Let Γ be a �nite set of
simple Σ1 formulæ. ⋁ Γ is valid i� there exist �nite sets {XF ⊆ Terms | F ∈ Γ} such
that the formula⋁F∈Γ FXF is valid.
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Proof: The right-to-left direction is immediate. For the left-to-right direction, sup-
pose⋁ Γ is valid formula of �rst-order logic. Fix a cut-free proof π ⊢ Γ and for each
F ∈ Γ, set XF = H(π, F). By Gentzen’s mid-sequent theorem π induces a proof of
⋁F∈Γ FXF and we are done.

3 Proof grammars

It this sectionwe de�ne a class of grammars suitable for the analysis of Π2-proofs.
Our de�nition of a grammar somehow deviates from a standard one as it allows
certain (controlled) bounded non-terminals to be re-written in the derivations. It
is, nevertheless, possible to provide an equivalent de�nition of these grammars in
terms of (standard) context-free tree grammars [Afshari et al., 2015]. The presen-
tation given in this paper has the advantage that the types of non-terminals are
�xed from the outset allowing the veri�cation of (proof-speci�c) language prop-
erties such as reductions proved in Section 5 to be clearer.

3.1 Terms, positions and substitution

Fix a ranked alphabet Σ and let V be a �xed set of variable symbols distinct from
Σ. Let Term(Σ) denote the set of terms in the simply-typed λ-calculus built from
Σ ∪ V. The set of positions of a term T ∈ Term(Σ), denoted Pos(T), are the nodes of
the underlying tree, i.e.

Pos(T) = {⟨⟩} ∪
{{{
{{{
{

0, if T ∈ Σ ∪ V,
{ip | i ∈ {0, 1} ∧ p ∈ Pos(Ti)}, if T = T0 ⋅ T1,
{0p | p ∈ Pos(T0)}, if T = (λα.T0).

For a term T and p ∈ Pos(T), we write T|p for the subterm of T at position p.
Given T ∈ Term(Σ) and α ∈ V, let Free(T, α) ⊆ Pos(T) be the collection of

positions at which α appears free in T:

Free(α, α) = {⟨⟩}

Free(ã, α) = 0 if α ̸= ã ∈ V

Free(a, α) = 0 if a ∈ Σ
Free(T1 ⋅ T2, α) = {ip | i ∈ {0, 1} and p ∈ Free(Ti , α)}

Free(λã.T, α) =
{
{
{

0, if ã = α
{0p | p ∈ Free(T, α)}, if ã ̸= α
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We introduce two forms of term substitution. Let S, T ∈ Term(Σ).
– T[a/S], where a ∈ Σ ∪ V, denotes the safe substitution of S for a in T. So

in particular, (λã.T)[ã/S] = λã.T and for a distinct from ã, (λã.T)[a/S] =
λδ.(T[ã/δ][a/S]) where δ is a variable symbol not occurring free in S.

– T[p/S], where p ∈ Pos(T), is de�ned by recursion on p:

T[⟨⟩/S] = S a[p/S] = S, a ∈ Σ ∪ V

(T0 ⋅ T1)[0p/S] = T0[p/S] ⋅ T1 (λα.T)[0p/S] = λα.T[p/S]
(T0 ⋅ T1)[1p/S] = T0 ⋅ (T1[p/S])

Note that this may involve an unsafe substitution.

3.2 Syntax and semantics of proof grammars

Aproof grammar is a tupleG = ⟨N, Σ, S, Pr⟩whereN is a set of typed non-terminals
of order at most 1, S ⊆ N is a set of starting symbols (of base type), Σ is a ranked
alphabet, called terminals, disjoint from N, and Pr consists of pairs (a, T) ∈ N ×
Term(Σ ∪ N) (called production rules and written a → T) such that a and T have
the same type. Given a proof grammar G we assume G = ⟨NG, ΣG, SG, PrG⟩.

Let d be a sequence ⟨ρi , pi⟩i<k of pairs of production rules of a proof grammar
G and positions, and S and T terms. We call d a derivation from S to T, written
d : S → T, if there exist terms (Ni)i≤k such that N0 = S, Nk = T, and for each
0 ≤ i < k,
1. ρi is a production rule of G and pi ∈ Pos(Ni),
2. For ρi = (a → S), we have Ni|pi = a and Ni+1 = Ni[pi/S].

The sequence of terms (Ni)i≤k is uniquely determined by d and S, whence wemay
write d(i) for Ni. The length of d, lh(d), is k. We write Der(G) for the set of deriva-
tions in G, and say T is derivable from S if there exists a derivation d : S → T. A
derivation d writes a non-terminal a if there is a production rule of the form a → S
for some S occurring in d.

The language of a proof grammar G, L(G), is the set of terms not containing
free occurrences of non-terminal symbols that are derivable from the starting sym-
bols of the grammar:

Ł(G) = {T | ∃d : σ → T s.t. σ ∈ SG and T contains no
free occurrence of a non-terminal}.

When comparing languages of proof grammars it is convenient to workmodulo β-
convertibility. For λ-terms S and T, we write S →β T to abbreviate T is obtainable
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from S by one step β-reduction, and→∗
β for the re�exive transitive closure of this

relation. Thus for grammars G1, G2, we write L(G1) ⊆ Ł(G2) to express that for
every S ∈ Ł(G1) there exists a T ∈ Ł(G2) such that T →∗

β S.

3.3 Rigidity

Rigid grammars were studied in [Hetzl, 2010, 2012a] for the construction of terms
appearing in cut-elimination for �rst-order logic with Π1-cuts. In this section we
extend the notion of rigidity for the analysis of proofs with Π2-cuts.

Let G be a proof grammar and suppose ⊲ is a transitive binary relation on
NG and R ⊆ NG is a designated set of non-terminals. A derivation d = ⟨(ai →
Si), qi⟩i<lh(d) : S → T induces an equivalence relation on {i | i < lh(d)} corre-
sponding to connectedness in parse trees: for j0, j1 < lh(d), set j0 ≈d j1 i� there
exist i0 ≤ j0, j1 such that
1. qi0 ≤ qj0 , qj1 ,
2. for every k ∈ {0, 1} and i0 < i < jk < lh(d), if qi ≤ qjk and ai ∈ R then ajk ̸⊲ ai.

In other words, two non-terminals occurring in (the natural tree representation
of) the derivation d are considered connected if there is no non-terminal of higher
priority between them and their closest common ancestor. We write j0 ∼d j1 if
j0 ≈d j1 and in addition aj0 = aj1 ∈ R. Notice that ∼d may not be an equivalence
relation on {i | i < lh(d)}. For instance, if aj ̸∈ R then j ̸∼d j.

We consider derivations that respect the relation ∼d and we permit unsafe
substitutions that are controlled by priority ordering ⊲:

De�nition 3.1 (Rigid derivations). Let G be a proof grammar and suppose ⊲ is a
transitive binary relation onNG andR ⊆ NG. Aderivation d = ⟨ai → Ti , qi⟩i<k : S →
T in G is rigid with respect to (⊲,R) if
1. for every i, j < k, i ∼d j implies T|qi = T|qj, and
2. for every i < k with ai ∈ R, if d(i)|q = λai .S0 for some position q < qi and

term S0, then there exist position q < q� < qi, term S1 and variable b such that
d(i)|q� = λb.S1 and ai ⊲ b.

A rigid proof grammar is a tuple G = ⟨N,R, ⊲, Σ, S, Pr⟩ such that ⟨N, Σ, S, Pr⟩ is
a proof grammar, R ⊆ N and ⊲ is a transitive relation on N. R = RG is the set of
rigid non-terminals of G and ⊲=⊲G is the priority ordering of G. G is acyclic if the
ordering ⊲G is acyclic, that is for all a ∈ NG it is not the case that a ⊲G a, and is
totally rigid if RG = NG.
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In a rigid proof grammar G, a derivation is simply a derivation in the underly-
ing proof grammar and a rigid derivation is a derivationwhich is rigidwith respect
to (⊲G,RG).

A rigid derivation d : S → T (in G) is full if there is no extension of d that
is a rigid derivation in G. The language of a rigid proof grammar G, L(G), is the
collection of terms derivable from full rigid derivations starting from SG:

Ł(G) = {T | ∃d : σ → T s.t. σ ∈ SG and d is full and (⊲G,RG)-rigid}.

Note De�nition 3.1 allows certain variables that are bounded (by an abstraction)
to be re-written. Therefore in rigid derivations, arbitrary β-reductions are not per-
missible until the derivation is fully written in the sense given above.

Observation 3.2. The language of a rigid proof grammar is a set of closed (well-
typed) ground-type λ-terms.

Observation 3.3 (Permutation). Let d and d� be derivations in a rigid grammar G
and suppose d� is a permutation of d. d� is rigid i� d is rigid.

Example 3.4. Let G be the rigid proof grammar with start symbol σ, the non-
terminals σ, α and ã, rigid non-terminals R, ordering ⊲, all other symbols terminals
of appropriate arity, and production rules

σ → f(α, ã, ã) ã→ g(ã) | a α → ã

If ã ̸∈ R we have, unsurprisingly, L(G) = {f(gm(a), gn(a), go(a)) | m, n, o ≥ 0}. For
ã ∈ R,
1. If ã ⊲ ã ⊲ α and α ∈ R, L(G) = {f(gm(a), gn(a), gn(a)) | m, n ≥ 0};
2. If ã ⊲ ã ̸⊲ α, L(G) = {f(gm(a), gm(a), gm(a)) | m ≥ 0};
3. If ã ̸⊲ ã ̸⊲ α, L(G) = {f(a, a, a)}.

Example 3.5. Let G be a proof grammar and suppose R ⊆ NG. Further, let d =
⟨ρi , qi⟩i<k : M → N be a derivation in G. Two simple choices of ⊲ are
1. Global rigidity. Set ⊲G= 0. Then d is (⊲G ,R)-rigid i� for all i, j < k, d(i)|qi =

d(j)|qj ∈ R implies N|qi = N|qj.
2. Local rigidity. ⊲L= NG × NG. In this form rigidity is treated only at the level

of production rules: d is (⊲L ,R)-rigid i� for every i < k, if ρi = (a → S) and
S|p = S|q ∈ R, then N|qip = N|qiq.

Notation 3.6. Given a derivation d = ⟨ρi , qi⟩i<k and a position p we de�ne dp to be
the derivation ⟨ρi , pqi⟩i<k.

De�nition 3.7 (Subderivation). Let d = ⟨ρi , qi⟩i<lh(d) be a derivation and suppose
k < lh(d). The subderivation of d from k is the longest derivation e = ⟨ρ̂i , q̂i⟩i<lh(e)
such that q̂0 = ⟨⟩ and eqk is a subsequence of d.
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De�nition 3.8 (Strong rigidity). A derivation d = ⟨ρi , qi⟩i<lh(d) is strongly rigid i�
for all i0, i1 < lh(d) if i0 ∼d i1 then the subderivations of d from i0 and i1 are
identical or a permutation of one another.

Restricting to strongly-rigid derivations does not reduce the language of a rigid
grammar:

Lemma 3.9. Let G be a rigid grammar. For allM and N, if there is a rigid derivation
from M to N in G then there exists a strongly rigid derivation from M to N in G.

Proof: By recursion through d: for each p and q such that d(i)|p = d(j)|q ∈ NG

and N|p = N|q replace the sub-derivation of d at q by a copy of the sub-derivation
of d at p. The result will be strongly rigid i� d is rigid.

3.4 Bounds on rigid proof grammars

Lemma 3.10 (Bounding). Suppose G is a rigid proof grammar satisfying the follow-
ing condition:

for every rigid derivation d = ⟨ρi , pi⟩i≤k in G and every i < j ≤ k,
if pi ≤ pj and d(i)|pi = d(j)|pj then there exists l ∈ (i, j) such that (2)

pi ≤ pl ≤ pj and d(j)|pj ⊲G d(l)|pl.

If G is acyclic thenL(G) is �nite; if G is acyclic and totally rigid, |Ł(G)| ≤ |PrG|2
|NG |−1

.

Proof: Assume G is a rigid proof grammar satisfying (2) and ⊲G is acyclic. Fix a
rigid derivation d = ⟨ρi , pi⟩i≤k in G from an starting symbol. Call a derivation
d̂ = ⟨ρ̂i , p̂i⟩i≤k̂ a path through d if d̂ is a subsequence of d, (ρ̂0, p̂0) = (ρ0, p0), and
for every i < j < k̂, p̂i ≤ p̂j.

Let d̂ be apath through d and letNd denote the set of non-terminalswritten by
d̂, i.e.Nd = {a ∈ NG | ∃i < k̂∃S ρ̂i = (a → S)}. SupposeNd = {a0, a1, . . . , a|Nd |−1}
and for all i < j < |Nd|, ai ̸⊲ aj which is possible as ⊲G is acyclic. By the stated
requirement there canbe atmost one i ≤ k̂ such that ρ̂i writes a0, whence there are
at most two production rules in d̂ that write a1, four production rules in d̂ writing
a2, and in general no more than 2i production rules writing ai. So k̂ < 2|Nd |. The
set of paths through d forms a tree which has branching degree bounded by some
constant K independent of d and depth bounded by 2|NG|, and it follows that k ≤
K2

|NG |
. As d is arbitrary there are only �nitely many rigid derivations and the �rst

result follows.
Suppose G is acyclic, totally rigid and satis�es (2). Letm = |PrG| and n = |NG|.

We argue, by induction on the number of non-terminals in G, that the set of terms
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T ∈ Terms(ΣG) rigidly derivable from a starting symbol in G has size bounded by
m2n−1 .

The base case is n = 1. By themain assumption of the lemma every derivation
d : σ → T with σ ∈ SG and ∈ Terms(ΣG) has length 1, of which there are no more
than m. For the induction step, suppose n = n0 + 1. LetN = NG \ {a}where a ̸= σ
is chosen such that a ̸⊲ b for all b ∈ NG \ {σ}. Suppose d : σ → T ∈ Terms(ΣG)
is a rigid derivation in G. By the main assumption d can be re-ordered to have the
form d0d1 where d0 : σ → S and d1 : S → T = S[a/S�] for appropriate terms S
and S�, such that the non-terminal a is not written in d0 and not introduced by
a production rule in d1. The induction hypothesis implies there is no more than
m2n0−1 possibilities for each of S and S�, whence there are ≤ m2n−1 possibilities for
T.

3.5 Grammars for Π2-proofs

In this section we associate to each simple Π2-proof π a proof grammar Gπ which
will be used in the subsequent sections to prove the con�uence result. We begin
with a motivating example:

Example 3.11. Let π ⊢ ∃xF be the proof given below in which there is a Π2-cut
on ∀x∃yA, a Π1-cut on ∀xB and we assume these are the only cuts on quanti�ed
formulæ in π; α and ã the respectively eigenvariables of these cuts; ti and ui wit-
ness terms of the existential quanti�er in, respectively, ∃x∀yĀ and ∃xB̄; and βi the
eigenvariable of the universal quanti�er in ∀yĀ(ti , y). For a formula C, we use C∗ to
distinguish between the two copies of C that may appear in the same sequent in the
proof.

B(ã), A(α, s(α, ã)), F(g(ã, α))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃
B(ã), A(α, s(α, ã)), ∃xF
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃
∀xB, ∃yA(α, y), ∃xF

B̄(u1), B̄∗(u2(α))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃
B̄(u1), ∃xB̄∗
−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃
∃xB̄, ∃xB̄∗
−−−−−−−−−−−−−−−−−−−−−−−− c

∃xB̄
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

∃yA(α, y), ∃xF
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
∀x∃yA(x, y), ∃xF π� ⊢ ∃x∀yĀ(x, y)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π ⊢ ∃xF
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where π� is given by

Ā(t1, β1), Ā∗(t2(β1), β2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
Ā(t1, β1), ∀yĀ∗(t2(β1), y)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃
Ā(t1, β1), ∃x∀yĀ∗(x, y)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
∀yĀ(t1, y), ∃x∀yĀ∗(x, y)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃
∃x∀yĀ(x, y), ∃x∀yĀ∗(x, y)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c

π� ⊢ ∃x∀yĀ(x, y)

Having the cut reduction process in mind, it is natural to consider the following
grammar. First we introduce a starting symbol σ∃xF which will write to the (literal)
witness of ∃xF in π, i.e. the term g(ã, α). This production rule initiates the search for
the witnesses to ∃xF. Next we add production rules that write the eigenvariables
α and ã of the two cuts to the associated terms ti and ui respectively, mirroring
the substitutions performed in Gentzen-style cut elimination. To capture the cor-
rect rules for eigenvaribles of the universal quanti�er in ∃x∀yĀ, i.e. β0 and β1, we
introduce a functional non-terminal σ which represents the existential quanti�er in
∀x∃yA(x, y) and allows βi to write (modulo β-reduction) to the term s(ti , ã).²More
precisely, G = ⟨N,R, ⊲, Σ, S, Pr⟩with S = {σ∃xF},R = {α, ã, β1, β2},N = S ∪ R ∪ {σ}
and Pr consisting of rules:

σ∃xF → g(ã, α) ã→ u1 | u2
α → t1 | t2 βi → σ ⋅ ti for i = 1, 2 σ → λα.s

The priority ordering is given by the order in which the eigenvariables are eliminated
in the proof, increasing in priority from top down, and left to right through a Π2-cut
(which has the universal formula on the left subproof):

ã ⊲ α ⊲ β2 ⊲ β1

We now calculate L(G). There are two possible starting derivations for σ∃xF:

σ∃xF → g(ã, α) → g(u1, α) (3)
σ∃xF → g(ã, α) → g(u2(α), α) (4)

Extending (3) we obtain the closed term g(u1, t1) ∈ Ł(G) as well as

σ∃xF →∗ g(u1, α) → g(u1, t2(β1)) → g(u1, t2(σ ⋅ t1)) → g(u1, t2(λα.s(α, ã) ⋅ t1)).

2 Further motivation for the use of non-terminals of function type can be found in [Afshari et al.,
2015].
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Since ã ⊲ β1, the ã appearing in the last term above is not connected to its
earlier occurrence in (3) and may freely write to either u1 or u2, yielding terms
g(u1, t2(s(t1, u1)) and g(u1, t2(s(t1, u2(t1))) in L(G).

To extend (4), �rst note that the (possible) two occurrences of α in g(u2(α), α)
must be written to the same result, of which the following are allowed.

g(u2(t1), t1)
g(u2(t2(s(t1, u1))), t2(s(t1, u1)))

g(u2(t2(s(t1, u2(t1)))), t2(s(t1, u2(t1))))

Indeed, it is not hard to check that any cut-free proof π� obtainable from π via the
reduction steps in Figures 1 and 2,H(π�, ∃xF) consists of exactly the six closed terms
derived above.

Wenowproceedwith thede�nitionof the grammar. Let π ⊢ Γ bea simpleΠ2-proof
of a set of prenex Π2 and Σ2 formulæ. The proof grammar for π is the grammar
Gπ = ⟨Nπ ,Rπ , ⊲π , Σπ , Sπ , Prπ⟩ where the components are de�ned as follows.

Symbols and their types

We will use symbols of the form τpF or σpF where p is a position and F is a formula
occurring in π.³ Each such symbol is assigned a type, either 0 (ground type) or
0 → 0 (function type):
– type(τpF) = type(σpF̄) = 0 if F ∈ Π2.
– type(τpF) = type(σpF̄) = (0 → 0) otherwise (i.e. F ∈ Σ2 \ Π2).
– All eigenvariables in π and �rst-order terms are ground-type terms.

Alphabet and non-terminals

Σπ consists of the function symbols, constants and variables occurring in π, and
symbols τ⟨⟩F for every F ∈ Γ. The set of non-terminals,Nπ, consists of
– rigid non-terminals Rπ = EV(π);
– starting symbols Sπ = {σ⟨⟩F | F ∈ Γ};
– symbols τpA where p ∈ Pos(π) \ {⟨⟩} and A is a formula occurring in the end-

sequent of π|p;

3 For brevity we write τF for τ⟨⟩F .
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– symbols σpA where p ∈ Pos(π) and A is a formula occurring in the end-sequent
of π|p.

Table 2. Production rules in Gπ

π|p ⊢ Γ Production rules in Gπ for position p, Prπ,p

π|p ⊢ A, Ā {σpA → τpĀ , σ
p
Ā → τpA}

∆, A0 , A1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∨
π|p ⊢ ∆, A0 ∨ A1

prod(p, ∆, 0)

Π, A0 ∆, A1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧
π|p ⊢ Π, ∆, A0 ∧ A1

prod(p, Π, ∆)

∆, A[x/α]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
π|p ⊢ ∆, ∀xA

prod(p, ∆, 0) ∪ {α → τp∀xA , σ
p
∀xA → λα.σp0A[x/α]}

∆, A[y/s]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃
π|p ⊢ ∆, ∃yA

prod(p, ∆, 0) ∪ {σp∃yA → s, τp0A[y/s] → τp∃yA ⋅ s}

∆, A Π, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
π|p ⊢ ∆, Π

prod(p, ∆, Π) ∪ {τp0A → σp1Ā , τp1Ā → σp0A }

∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w
π|p ⊢ ∆, Π

prod(p, ∆, 0)

∆, Π, Π∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c
π|p ⊢ ∆, Π

prod(p, Π ∪ ∆, 0) ∪ {τp0F∗ → τpF , σ
p
F → σp0F∗ | F ∈ Π}

prod(p, Γ, ∆) = prodτ(p, Γ, ∆) ∪ prodσ(p, Γ, ∆)

prodτ(p, Γ0 , Γ1) = {τpjF → τpF | j ∈ {0, 1} ∧ F ∈ Γj}

prodσ(p, Γ0 , Γ1) = {σpF → σpjF | j ∈ {0, 1} ∧ F ∈ Γj}

Production rules and priority ordering

As the set of production rules in Gπ we choose Prπ := ⋃p∈Pos(π) Prπ,p, where the
sets Prπ,p (de�ned in Table 2) are determined by the rule of inference occurring at
position p in π. Informally, non-terminals of the form σpF represent the existential
quanti�er in F (if there is one)with their production rules ‘searching’ forwitnesses
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within the sub-proof π|p. Dually, τpF represents the universal quanti�er in F (at p)
and link eigenvariables on one side of a cut to the existential witnesses on the
other side.

Like the production rules, the rigidity ordering, ⊲π, is determined by the local
structure of π and is the smallest transitive relation satisfying the following �ve
conditions.
– Concerning production rules for axioms and side formulæ to all inference

rules:
1. For each production rule of the form a → τqB or a → τqB ⋅ s where a ∈

Nπ \ EV(π) we have a ⊲π τ
q
B;

2. For each rule of the form σpA → σpjB or σpA → λα.σpjB (j ∈ {0, 1}) we have
σpA ⊲π σ

pj
B ;

– For production rules introducing or eliminating eigenvariables:
3. For each production rule α → τq∀xA where α ∈ EV(π) we have α ⊲π τ

q
∀xA,

and ξ ⊲π α for every ξ ∈ EV(π|q0);
4. For each rule of the form σpA → s and each variable α appearing in s we

set σpA ⊲π α;
– And for production rules of cut formulæ:

5. For a rule τpiA → σpjĀ with i = 1 − j ∈ {0, 1}, if A = ∀xA0 for some Σ1
formula A0 then τpiA ⊲π σ

pj
Ā .

The �rst four conditions increase the priority of non-terminals as one follows ei-
ther ‘τ’ production rules ‘down’ theproof towards the conclusionor principal cuts,
or ‘σ’ productions ‘upwards’ towards witnesses of existential quanti�ers. The �-
nal condition mediates the passage between the two paths over (one direction of)
a Π2-cut. The additional cases added by 3. capture, through the rigidity ordering,
the duplication of eigenvariables that may occur when reducing a quanti�ed cut.

Example 3.12. Consider the proof π in Example 3.11. The grammar Gπ is the tuple
⟨Nπ ,Rπ , ⊲π , Σπ , Sπ , Prπ⟩ where Sπ = {σ⟨⟩∃xF}, Rπ = {α, ã, β1, β2}, we have in partic-
ular ã ⊲π α ⊲π τ0∀x∃yA ⊲π σ1∃x∀yĀ ⊲π β2 ⊲π β1 and the production rules are:

1. For the starting symbol we have:

σ⟨⟩∃xF → σ0∃xF → σ00∃xF → σ000∃xF → σ0000∃xF → g(ã, α)

2. For the eigenvariable ã:

ã→ τ000∀xB → σ001∃xB̄ → σ0010∃xB̄ | σ0010∃xB̄∗

σ0010∃xB̄ → u1
σ0010∃xB̄∗ → σ00100∃xB̄∗ → u2
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3. For eigenvariable α:

α → τ0∀x∃yA → σ1∃x∀yĀ → σ10∃x∀yĀ | σ10∃x∀yĀ∗

σ10∃x∀yĀ → t1

σ10∃x∀yĀ∗ → σ100∃x∀yĀ∗ → σ1000∃x∀yĀ∗ → t2

4. For eigenvariables β1 and β2:

β1 → τ100∀yĀ(t1)
→ τ10∃x∀yĀ ⋅ t1

τ10∃x∀yĀ → τ1∃x∀yĀ
β2 → τ10000∀yĀ∗(t2)

→ τ1000∃x∀yĀ∗ ⋅ t2

τ1000∃x∀yĀ∗ → τ100∃x∀yĀ∗ → τ10∃x∀yĀ∗ → τ1∃x∀yĀ
τ1∃x∀yĀ → σ0∀x∃yA → λα.σ00∃yA

σ00∃yA → σ000∃yA → s

Notice that the function type non-terminal σ0∀x∃yA plays the same role as σ in gram-
mar G of Example 3.11. Indeed, L(G) = Ł(Gπ).

Shifting symbols, terms and rules

Following the de�nition above, it is clear that if π is a sub-proof of π�, say π = π�|p,
thenGπ canbe viewed as a sub-grammar ofGπ� by ‘shifting’ the annotation of non-
terminals in Gπ by the position p. This action of ‘shifting’ a grammar relative to a
position turns out to be a useful operation on grammars. We let Gp denote the
result of shifting G relative to p, that is, Gp = ⟨Np

G,RG, ⊲
p
π , ΣG, S

p
G, Pr

p
G⟩, where

N
p
G = {ap | a ∈ NG} S

p
G = {ap | a ∈ SG}

PrpG = {ap → Tp | (a → T) ∈ PrG} ⊲pπ = {(ap , bp) | a ⊲π b}

given by

(τqF)
p = τpqF (σqF)

p = σpqF ãp = ã for ã ∈ RG

(T1 ⋅ T2)p = Tp1 ⋅ Tp2 (λα.T)p = λα.(Tp)

So in particular Gpπ|p is a sub-grammar of Gπ whenever p ∈ Pos(π).

Lemma 3.13. If π is a simple Π2-proof then ⊲π is acyclic.

Proof: By induction on the proof π ⊢ Γ noticing that no production rule in Gπ
writes τ⟨⟩F or introduces σ⟨⟩F (for F ∈ Γ), and that if π ends in a cut on a simple
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Π2 formula A = ∀x∃yB (say π|0 ⊢ Γ, A and π|1 ⊢ Γ, Ā) then for all a ∈ N0
π|0 and

b ∈ N1
π|1 we have a ̸⊲π b.

Theorem 3.14. Let π be a simple Π2-proof. Then |Ł(Gπ)| < 222|π| .

Proof: First, note that requirement (2) of Lemma3.10 is satis�edby all proof gram-
mars arising from simple Π2-proofs. We de�ne a new grammar G� by making the
following changes to Gπ: for every non-terminal νpF ̸∈ Rπ with ν ∈ {τ, σ} and pro-
duction rule νpF → S, if there is a production rule a → νpF in Gπ then remove
νpF → S and instead add a → S. Observe this process is well-de�ned as the term S
cannot contain any occurrences of νpF . Once all production rules writing νpF are re-
placed, remove νpF from the set of non-terminals. Let G0 be the resulting grammar,
and G� the subsequent grammar obtained by indicating any remaining non-rigid
non-terminals in G0 to be rigid.

G� is a totally rigid grammar and |NG� | + |PrG� | ≤ 2|π|. Moreover, L(Gπ) =
Ł(G�): it is easy to see that the ‘compression’ preserves rigid derivations and so
L(G0) = Ł(Gπ). In G0 the only non-rigid non-terminals remaining are of the form
τp∃yA or σp∀yĀ for some p and A. Observe that i) there is only one choice for writing
such non-terminals, and ii) τp∃yA , σ

p
∀yĀ ⊲π α where α is the eigenvariable of ∀yĀ.

Thus any two non-terminals that become disconnected through τp∃yA or σp∀yĀ in
G� were already disconnected in Gπ through α. Indeed G� and Gπ have the same
language, and the comparability between their rigid derivations means G� also
satis�es requirement (2).

Now Lemma 3.10 implies |Ł(G�)| ≤ |PrG� |2
|N

G� |−1
. We therefore have

|Ł(Gπ)| = |Ł(G�)| ≤ 22
|N

G� |+|PrG� |−1
< 222|π| .

This concludes the proof.

4 Technical lemmas

In Section 5 we will prove that for regular simple Π2-proofs π and π� if π Ä¼ π�

then L(Gπ� ) ⊆ Ł(Gπ). Before considering the theorem, however, we require addi-
tional results concerning the �ne structure of proof grammars. In Section 4.1 we
introduce the notion of homomorphism between proof grammars as a means to
test language containment. Section 4.2 highlights a number of properties relating
to derivations in proof grammars and Section 4.3 prepares the ground-work for
replacing sub-proofs by ones with comparable grammars.
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4.1 Comparing grammars

An easy way to compare the languages induced by grammars is by providing a
function mapping non-terminals of one grammar into another preserving rigid
derivability. In the simplest form (which is all that is required here) this is given
by a homomorphism as described below. First we need the following de�nitions.

Controlled β-reduction

We generalise the relation of β-reduction to obtain a �ner relation between terms.
Given two λ-terms S and T and a (possibly empty) set of variables X ⊆ V, we write
S � X T if one of the following conditions hold.
– S = T;
– S = S0 ⋅ S1, T = T0 ⋅ T1 and Si � X Ti;
– S = λα.S0, T = λα.T0 and S0 � X T0;
– S = (λα.S0) ⋅ S1, α ∈ X and T = S0[α/S1].

Notice that S � V T is the usual 1-step parallel β-reduction. We write S �  T i�
S � V T. This is not to be confused with S � 0 T which holds i� S = T. Also let
S � ∗X T denote the (re�exive) transitive closure of S � X T.

Following thede�nitionof S �  Twede�nea canonical function rT,Smapping
positions in T to their corresponding position in S:

rT,S(⟨⟩) = ⟨⟩

r(T0⋅T1),(S0⋅S1)(ip) = i rTi ,Si (p), for i ∈ {0, 1}
r(λα.T0),(λα.S0)(0p) = 0 rT0 ,S0 (p)

rS0[α/S1],(λα.S0)⋅S1 (p) =
{
{
{

1p�, if p = qp�, q ∈ Free(α, S0) and p� ∈ Pos(S1)
00p, otherwise

where Free(α, S0) denotes the positions in S0 marking free occurrences of α.

Homomorphism function

LetF andG be rigid proof grammars and f : NF → NG. If ΣF ⊆ ΣG then f naturally
extends to a function (.)f : Terms(ΣF ∪ NF) → Terms(ΣG ∪ NG) given by

αf = f(α) if α ∈ NF, (λα.S)f = λαf .Sf

af = a if a ∈ ΣF, (S ⋅ T)f = Sf ⋅ T f
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De�nition 4.1 (Homomorphism). LetF,G be rigid grammars and suppose ΣF ⊆ ΣG
and SF ⊆ SG. A homomorphism from F into G is a function f : NF → NG such that
1. f(σ) = σ for every σ ∈ SF;
2. f(a) has the same type as a for every a ∈ NF;
3. f(α) ∈ RG i� α ∈ RF;
4. a ⊲F b implies f(a) ⊲G f(b);
5. for each ρ = (a → S) ∈ F, there is a derivation ρf = ⟨ρi , pi⟩i<k : f(a) → Sf in G

such that ρf (i)|pi ∈ RG only if i = 0;
6. For every rigid derivation d = ⟨(ai → Si), pi⟩i<l : σ → S in F with σ ∈ SF and

every j0, j1 < l, if f(aj0 ) = f(aj1 ) and j0 ≈d j1 then aj0 = aj1 .

We write f : F → G to stipulate that ΣF ⊆ ΣG, SF ⊆ SG and f is a homomorphism
from F to G.

Notice that condition 6 is trivially satis�ed if f is injective, thus its only role is for
in the case of Contraction Reduction.

A homomorphism f : F → G extends to a function (.)f : Der(F) → Der(G) in
the obviousway: given a derivation d = ⟨ρ, p⟩e : S → T inF, suppose ef : d(1)f →
T f is already de�ned and set df := ⟨ρf , p⟩ef : Sf → T f in G.

Lemma 4.2. Suppose f : F → G is a homomorphism. If d : S → T is a rigid deriva-
tion in F then df : Sf → T f is a rigid derivation in G.

Proof: Let F and G be as above, d = ⟨(ai → Si), pi⟩i<k : S → T a rigid derivation
in F and df = ⟨(bj → Mj), qj⟩j<lh(df ) : Sf → T f the derivation in G induced by f .

First suppose j0, j1 < lh(df ) are such that j0 ≈df j1 and bj0 = bj1 ∈ RG.
Condition4 (combinedwith thede�nition of d Ü→ df ) implies that there are i0, i1 <
lh(d) such that bjl = f(ail ) and qjl = pil for l = 0, 1. Let j∗ < j0, j1 be the index
witnessing j0 ≈df j1. Set j ≤ j∗ be the greatest index such that bj = f(ai∗ ) for some
i∗ < lh(d). We now verify that i∗ witnesses i0 ≈d i1: To obtain a contradiction,
suppose for l = 0 or l = 1 there is a non-terminal ai with i∗ < i < il such that
pi ≤ pl and ail ⊲F ai. By condition 4 we have bjl = f(ail ) ⊲G f(ai). Let f(ai) = bj� .
By the de�nition of j we know for every j∗ ≥ j� > j, bj� ∉ f({ai | i ≤ lh(d)}).
Therefore, j� > j∗, and since bjl ⊲G bj� we see that bj� violates j0 ≈df j1, hence we
are done. Since i0 ≈d i1, from condition 6 we deduce ai0 = ai1 so, since d is rigid,
T|pi0 = T|pi1 . But then T f |qj0 = T f |qj1 as required.

To check the second condition of rigidity for df , suppose df (j)|x = λα.Sf0 for
x < qj and bj = α ∈ RG. Note that for any term T and position y, T f |y = (T|y)f . In
particular, since α is also rigid there is i < lh(d) such that df (j) = (d(i))f , f(ai) = bj
with ai ∈ RF, and pi = qj. Then we have d(i)|x = λai .S0 and so by rigidity of d
there exists x < y < pi such that d(i)|y = λb.S1 and ai ⊲F b. Let β = f(b). Then
df (j)|y = λβ.Sf1 and by condition 4 α ⊲G β.
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Since homomorphisms �x terms from ΣF we conclude

Corollary 4.3. Suppose F and G are rigid proof grammars and there is a homomor-
phism f : F → G. Then L(F) ⊆ Ł(G).

4.2 Partitioning

Let π be a proof ending in a cut. The grammar Gπ can be viewed as the union of
the twodisjoint subgrammarsG0π|0 andG

1
π|1 and ‘connecting’ production rules (i.e.

rules introduced by the cut). A full derivation d in Gπ can therefore be permuted
to the form d1d2 ⋅ ⋅ ⋅ dk where each di is a full derivation in either G0π|0 or G1π|1, plus
one direction of the connecting rules. The next lemma demonstrates that in the
case of cuts on (simple)Π2-formulæ, there canbe atmost three such ‘alternations’
between the two subgrammars. This observation will be particularly relevant in
the analysis of the Quanti�er Reduction rule (Lemma 5.6).

Lemma 4.4 (Cut Partition). Suppose π is the simple Π2-proof given below where A
is assumed to be a Π2 formula.

π0 ⊢ Γ, A π1 ⊢ ∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π ⊢ Γ, ∆

For F ∈ Γ and N ∈ Term(Σπ), if d : σ0F → N is a rigid derivation in Gπ then there is a
permutation d� = d1d2d3d4 : σ0F → N of d such that
– d1 : σ0F → M1 is a full derivation in G0π0 ∪ {τ0A → σ1Ā};
– d2 : M1 → M2 is a rigid derivation G1π1 ∪ {τ1Ā → σ0A};
– d3 : M2 → M3 is a derivation in G0π0 ;
– d4 : M3 → N is a derivation using only the rules {τ0F → τ⟨⟩F | F ∈ Γ} ∪ {τ1F →

τ⟨⟩F | F ∈ ∆}.

Proof: The derivation d� is obtained through permuting the production rules
so that we fully re-write the non-terminals of a subgrammar Giπi before passing
(through the cut on A) to those of G1−iπ1−i . In this way it is clear how to obtain
full derivations d1 and d2 satisfying the requirements such that d1d2 is a sub-
sequence of d. Note, as d1 and d2 are full, M1 and M2 are, respectively, terms in
Σπ ∪ {σ1Ā} ∪ {τ0F | F ∈ Γ} and Σπ ∪ {σ0A} ∪ {τ0F | F ∈ Γ} ∪ {τ1F | F ∈ ∆}. Finally, to
obtain d3 we rewrite (according to d) all occurrences of σ0A in M2. Observe that
in doing so the non-terminal τ0A will not be created: d3 writes each occurrence
of σ0A in M2 to a term of the form λα.S where α is the unique eigenvariable for
the external universal quanti�er in A; the de�nition of ⊲π and the restriction on
rigid derivations implies d3 may not utilise a production rule of the form α → τqA,
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so τ0A cannot appear in M3. Therefore, the only non-terminals from Gπ in M3 are
{τ0F | F ∈ Γ} ∪ {τ1F | F ∈ ∆} which will be written with the remaining of production
rules from prodτ(⟨⟩, Γ, ∆).

Theorem 4.5 (Partition). Let π be a simple Π2-proof and p ∈ Pos(π). Denote by Gp
the sub-grammar of G comprising only those production rules writing non-terminals
in {σqF , τ

q
F | p ≤ q} ∪ EV(π|p) with start symbols {σpF | F in the end sequent of π|p}.

If N ∈ Ł(Gπ), then there exists a rigid derivation d : σ → N in Gπ of the form d =
d0d1 ⋅ ⋅ ⋅ dL where for all i ≤ L,
– di : Mi → Mi+1 is a full derivation in Gπ \ Gp if i is even;
– di : Mi → Mi+1 is a full derivation in Gp if i is odd.

Proof: The proof is by induction on p. The base case p = ⟨⟩ holds trivially, choos-
ing d0 = d. Suppose p = qj where j ∈ {0, 1}. Let L� and ⟨d�i⟩i≤L� be given by the
induction hypothesis for q ∈ Pos(π). For each i ≤ L� therefore d�i : Mi → Mi+1 is a
full derivation in Gπ \ Gq, if i is even, and in Gq otherwise.

First suppose the �nal rule of π|q is a cut. By Lemma 4.4 for each odd i, d�i can
be replaced by a derivation of the form ei,0ei,1ei,2 : Mi → Mi+1 where ei,0 and ei,2
are full derivations in Gq0 = Gp and ei,1 is a full derivation in Gq1.

Suppose j = 1. Then we pick L = L� and set

di =
{
{
{

ei−1,2d�iei+1,0 i ≤ L even,
ei,1, i ≤ L odd,

where, if necessary, eL+1,0 = e−1,2 = ⟨⟩. If instead j = 0 we set L = 2L� and for
each 2i ≤ L� we de�ne

d4i = d�2i d4i+2 = e2i+1,1
d4i+1 = e2i+1,0 d4i+3 = e2i+1,2.

Now suppose the rule at position q in π is not a cut. Notice that if e : a → S is
a derivation in Gq with a ∈ NGq then e is either a derivation wholly in Gq0 or
a derivation wholly in Gq1. Thus for each odd i ≤ L�, d�i can be re-ordered as a
derivation ei,0ei,1 : Mi → Mi+1 where ei,0 is full in Gq0 and ei,1 is full in Gq1.
Moreover, observe that the two derivations are independent of one another, so
ei,1ei,0 : Mi → Mi+1. Using this fact it is straightforward to alter the arrangement
of derivations to obtain a satisfying sequence ⟨di⟩i≤L with L ≤ L�.

4.3 Lifting

Another ingredient required in the analysis of the Quanti�er Reduction rule
is commuting derivations with β-reduction. More precisely, given a derivation
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d : T → U and β-reduction R � X T, whether it is possible to ‘lift’ d to a derivation
e : R → S such that S � X U as in the �gure below. This is not in general possible
as demonstrated by the example in Figure 3. Lemma 4.8 pins down su�cient
conditions for completing the square. Before this we de�ne the reverse process
which can be visualised as ‘pushing’ a derivation through β-reduction.

R S

T U

e

d
X X

(λx.f(x, x)) ⋅ α (λx.f(x, x))⋅?

f(α, α) f(a, b)

e

d
X X

Fig. 3. Lifting

De�nition 4.6. Let e = ⟨ρi , pi⟩i<lh(e) : R → S be a derivation in grammar G and
suppose R � X T. The derivation eT is de�ned by recursion on lh(e).
– For lh(e) = 0, eT := ⟨⟩;
– For lh(e) = n + 1, eT := eT0⟨ρn , qi⟩i≤k where e0 = ⟨ρi , pi⟩i<n and {qi | i ≤ k} is

an enumeration of {q | rT,R(q) = pn}.

It is easily seen that

Lemma 4.7. If e : R → S, R � X T and eT : T → U then S � X U, and if d is strongly
rigid, so is eT .

Lemma 4.8 (Lifting). Let d = ⟨ai → Si , pi⟩i<k : T → U be a strongly rigid deriva-
tion in grammar G and R � X T. Suppose
1. for all positions q0, q1, if rT,R(q0) = rT,R(q1) then the subderivations of d from

q0 and q1 are permutations of one another;
2. if ai ∈ X then there exists p < pi and non-terminal α ̸∈ X such that ai ⊲ α and

U|p = λα.(U|p0).

Then there exists a strongly rigid derivation e : R → S such that eT is a permutation
of d and S � X U.

Proof: Let rT,R be the canonical function mapping positions in T to their corre-
sponding position in R. To each p ∈ Pos(S)we can associate a particular position
in T corresponding to p. Thus let r−1T,S be a function such that

r−1T,S(p) ∈ {q | rT,S(q) = p}

for every position p. We now de�ne e = f(d) recursively:



Herbrand Confluence for First-Order Proofs with Π2-Cuts | 29

– For k = 0, f(d) = ⟨⟩;
– For k = l + 1, if pl = r−1T,R(p)q for some maximal p ∈ Pos(R) and some q,

set f(d) = f(d0)⟨al → Sl , pq⟩ where d0 = ⟨ai → Si , pi⟩i<l, otherwise set
f(d) = f(d0).

f(d) is well-de�ned since condition 1. ensures that f(d) is invariant under the
choice of the inverse r−1, and condition 2. guarantees that every applicable pro-
duction rule in d will be also freely applicable in f(d).

5 Reductions

We begin with showing that the simplest reductions yield homomorphisms.

Lemma 5.1. Suppose π Ä¼ π� is an instance of a reduction rule in Figure 1 or 2 except
Contraction or Quanti�er Reduction. Then L(Gπ� ) ⊆ Ł(Gπ). If the reduction is not a
case of Weakening Reduction then in fact L(Gπ� ) = Ł(Gπ).

Proof: Suppose π Ä¼ π� is and instance of Axiom Reduction and

π0

Γ, A A, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
π|p ⊢ Γ, A

π0

π�|p ⊢ Γ, A

A homomorphism f : Gπ� → Gπ can be easily given by a function which maps a
non-terminal νpqF for ν ∈ {σ, τ} and pq ∈ Pos(π�) with q ̸= ⟨⟩ to the corresponding
ones in π at position p0q and is identity on all other non-terminals. Consider a
rule σpF → S in π� then σ0p → f(S) is a production rule in π. If F ∈ Γ, σpF → σp0F is
also a production rules in Gπ; otherwise, F = A and the sequence

σpA → σp1A → τp1Ā → σp0A

is a derivation in π. In either case, we have a derivation f(σpF) → f(S) in π as re-
quired. Conversely, one can de�ne a homomorphism f : Gπ → Gπ� by the function
below, hence L(Gπ) = Ł(Gπ� ).

f(νpF) = ν
p
F f(νp0qF ) = νpqF

f(σp1A ) = f(τp1Ā ) = σpA f(τp1A ) = f(σp1Ā ) = τpA
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Now consider an instance of Weakening Reduction. Suppose

π0

Γ�
−−−−−−−− w
Γ, A ∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
π|p ⊢ Γ, ∆

π0

Γ�
−−−−−−−−−−−−−−−−−−−−−−− w
π�|p ⊢ Γ, ∆

where Γ� ⊆ Γ. A homomorphism from Gπ� to Gπ is de�ned as follows. The function
f : Nπ� → Nπ is determined by

f(νpqF ) = νp0qF for ν ∈ {σ, τ} and every q ̸= ⟨⟩ with pq ∈ Pos(π�|p);
f(ã) = ã for all other non-terminals.

Production rules from π� are readily mapped to derivation in π and the remaining
conditions of d are trivially met.

Suppose instead that π Ä¼ π� is a case of rule permutation. Of particular in-
terest is if the reduction is the permutation of two cuts, for example π|p and π�|p
are of the form

π0

Γ, A

π1

∆, B[x/β], Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
∆, ∀xB, Ā

π2

Λ, ∀xB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

∆, Λ, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π|p ⊢ Γ, ∆, Λ

π0

Γ, A

π1

∆, B[x/β], Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆, B[x/β]
−−−−−−−−−−−−−−−−−−−−−−−−−− ∀
Γ, ∆, ∀xB

π2

Λ, ∀xB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π�|p ⊢ Γ, ∆, Λ

where A is a Π2 formula and B is Σ1.
We begin showing L(Gπ� ) ⊆ Ł(Gπ). This is achieved by considering the ho-

momorphism that maps, for i = 0, 1, 2, the copy of Gπi in Gπ� to the copy in Gπ.
Explicitly, we de�ne f : Nπ� → Nπ as follows. For each position q, formula F and
ν ∈ {σ, τ} set

f(νp000qF ) = νp0qF f(νp001qF ) = νp100qF f(νp1qF ) = νp11qF .
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The non-terminals arising from positions p0 and p00 in π� are then appropriately
mapped to those in π so connections between the sub-grammars are preserved:

f(νp0F ) =
{
{
{

νp0F if F ∈ Γ
νp10F if F ∈ ∆ ∪ {∀xB}

f(νp00F ) =
{
{
{

νp0F if F ∈ Γ
νp100F if F ∈ ∆ ∪ {B[x/β]}

In all other cases (i.e. a is a non-terminal of Gπ� but not of G
p
π�|p) we set f(a) = a.

We now argue that if A is not quanti�er free and the last rule in π0 is not
weakening then f is a homomorphism. Since π is a simple proof, A has the form
∀xA0 for some Σ1 formula A0 and there is an eigenvariable α ∈ EV(π0) such that
the last inference rule of π0 is

Γ, A0[x/α]
−−−−−−−−−−−−−−−−−−−−−−− ∀
Γ, A

By the de�nition of ⊲π notice that ξ ⊲π α ⊲π τ
p0
A for every ξ ∈ EV(π0) \ {α}. It is

clear that f respects the ordering ⊲�
π when restricted to non-terminals from either

π0, π1 or π2. The only other cases we need show are

f(τp000A ) ⊲π f(σ
p001
Ā ) ξ ⊲π β ⊲π f(τ

p0
∀xB) ⊲π f(σ

p1
∀xB

)

for every ξ ∈ EV(π0). The �rst inequation is given by the de�nition of ⊲π. The
second is determined by observing

ξ ⊲π τ
p0
A ⊲π σ

p1
Ā ⊲π σ

p100
Ā ⊲π β ⊲π τ

p10
∀xB ⊲π σ

p11
∀xB

.

As f is injective on eigenvariables in π� condition 6 is also satis�ed and by Corol-
lary 4.3 we are done.

In the other cases, namely that A is quanti�er free or A has no eigenvariable
associated to it in π0, f need not be a homomorphism because for an eigenvari-
able ξ ∈ EV(π0)we will have ξ ̸⊲π β but ξ ⊲�

π β. Nevertheless, by the Cut Partition
Lemma 4.4 it is simple to show that f maps rigid derivations in Gπ� to rigid deriva-
tions in Gπ.

The converse direction,L(Gπ) ⊆ Ł(Gπ� ), is witnessed by the function f : Nπ →
Nπ� given by

f(νp0qF ) = νp000qF f(νp100qF ) = νp001qF f(νp11qF ) = νp1qF

f(νp10F ) =
{
{
{

νp001F if F = A
νp0F otherwise

f(νp1F ) =
{{{
{{{
{

νp0F if F ∈ ∆
νp001F if F = A
νp1F otherwise

for each q, F and ν ∈ {σ, τ}, and setting f(a) = a in all other cases which in all
cases is a homomorphism.
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We now proceed with Contraction Reduction. In this case the obvious renaming
of non-terminals is not injective and additional properties are required in order to
verify the preservation of rigidity i.e. condition 6 of homomorphism.

For the remainder of the section we use symbols x and y (possibly with in-
dices) as meta-variables for positions in terms to contrast with positions in proofs
which will be denoted by p, q, etc.

Lemma 5.2 (Contraction Reduction). If π, π� are simple Π2-proofs and π Ä¼ π� is
an instance of Contraction Reduction, L(Gπ� ) = Ł(Gπ).

Proof: Suppose that the reduction π Ä¼ π� is an instance of ContractionReduction
to position p as follows:

π0

Γ, A

π1

∆, Ā, Ā∗
−−−−−−−−−−−−−−−−−− c
∆, Ā

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
π|p ⊢ Γ, ∆

π0

Γ, A

π∗0

Γ∗, A∗

π1

∆, Ā, Ā∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ∗, ∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, Γ∗, ∆
−−−−−−−−−−−−−−−−−−−−−−− c
π�|p ⊢ Γ, ∆

Note that we have assumed the contraction is on a single formula Ā; the case for
contraction ofmultiple formulæ is analogous. Consider the function f : Nπ� → Nπ
de�ned by

f(ã) = f(ã∗) = ã for ã ∈ EV(π0) f(νp00qF ) = f(νp010qF∗ ) = νp0qF

f(δ) = δ for δ ∈ EV(π1) f(νp011qF ) = νp10qF

f(νp01F ) = νp10F for F ∈ ∆ ∪ {Ā} f(νp01F∗ ) = νp0F for F ∈ Γ

f(νp0F ) = νp10F for F ∈ ∆ f(νp0F/F∗ ) = ν
p0
F for F ∈ Γ

f(a) = a

It is easy to verify that f transforms production rules in Gπ� to derivations in Gπ.
For instance, the production rules τp00A → σp01Ā and τp010A∗ → σp011Ā∗ , from the cuts
in π� on A and A∗, are transformed under f to τp0A → σp1Ā → σp10Ā and τp0A →

σp1Ā → σp10Ā∗ respectively.
Condition 6 is the only non-trivial case to verify. Suppose, in search of a con-

tradiction, d = ⟨(ai → Si), yi⟩i<lh(d) : a0 → S is a strongly rigid derivation in Gπ�

and i0, i1 < lh(d) are such that i) i0 ≈d i1, ii) f(ai0 ) = f(ai1 ) ∈ Rπ and iii) ai0 ̸= ai1 .
We may assume d is the shortest rigid derivation satisfying these conditions, so
in particular for every i < lh(d), yi ≤ yi0 or yi ≤ yi1 , both hold only if i = 0, and
lh(d) = max{i0 + 1, i1 + 1}. By the de�nition of f , (ii) and (iii) we may assume
ai0 = ã ∈ EV(π0) and ai1 = ã∗ ∈ EV(π∗0). The argument breaks into three cases:
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1. d writes one of the two non-terminals σp010A∗ or σp00A ;
2. a0 ∈ EV(π0)∪ EV(π∗0) or a0 ∈ {σp00qF , σp010qF } for some q ∈ Pos(π0) and simple

formula F;
3. there exist distinct j0, j1 < lh(d) and formulæ F0, F1 ∈ Γ such that for each

k ∈ {0, 1}, 0 < jk < ik, yjk ≤ yik , aj0 = σp0F0 and aj1 = σp0F∗1 .

Notice that the failure of 1 implies either 3 or that a0 is a non-terminal from one of
π0 or π∗0, a condition that, by the minimality of d, is equivalent to 2.

First suppose 1 holds. Due to the minimality of d the derivation must pass
through (from right to left) at least one of the two marked cuts, so there is i ≥ j
such that either ai = τ

p01
Ā and Si = σ

p00
A , or ai = τ

p011
Ā∗ and Si = σ

p010
A∗ . This is only

possible if Ā contains a universal quanti�er and so, by simplicity of π, Ā cannot be
in the class Π2, that is, A = ∀x∃yA0 for some quanti�er-free A0. But then we may
�nd an eigenvariable of EV(π1) that is written by d and contradicts assumption
(i).

Suppose 2 holds; in particular that a0 ∈ EV(π0) or a0 = σp00qF for some q ∈
Pos(π0) and simple formula F. Since ai1 ∈ EV(π∗0) and y0 < yi1 there exists j0 < i1
such that y0 < yj0 ≤ yi1 and either aj0 = τp00A or aj0 ∈ {τqF | q ≤ p and F is simple}
(if the production rule in d giving rise to aj0 writes an eigenvariable from EV(π�) \
EV(π0) then in fact aj0 = τqF for some q < p and some F). Assuming 1 does not hold
the latter case will hold for some choice of j0 whence there also exists j0 ≤ j1 < i1
such that aj1 ∈ {σpF | F ∈ Γ}. But then there will be j0 < i < j1 such that yi ≤ yj1 ≤
yi1 , ai ∈ EV(π�) \ EV(π�|p) and ξ ⊲�

π ai for every ξ ∈ EV(π�|p), contradicting (i).
If 3 holds then similar to the above argument there must exist i < lh(d) such

that ai ∈ EV(π�) \ EV(π�|p) and ξ ⊲�
π ai for every ξ ∈ EV(π�).

By Lemma 4.2 we conclude L(Gπ� ) ⊆ Ł(Gπ). The converse inclusion holds be-
cause f is, in a suitable sense, surjective. In particular, for every rigid derivation
d in Gπ there exists a derivation d� in Gπ� such that d is a permutation of f(d�).
d� is chosen by replacing each sub-derivation that resides wholly within π0 by its
counterpart in π∗0 if this sub-derivation is immediately preceded or succeeded by
the production rules τp10Ā∗ → τp1Ā or σp1Ā → σp10Ā∗ . This operation is guaranteed to
yield a derivation in Gπ� by the Partition Lemma for Cut which implies that there is
no derivation in Gπ that write σp0A to a term containing τp0A and involves only rules
taken from π0.

Before we proceed with Quanti�er Reduction we need the following lemmas.

Lemma 5.3. If π is a simple Π2-proof, d : τ
p
A → S is a derivation in Gπ and S|x =

α ∈ EV(π|q) for some x ∈ Pos(S) and p < q ∈ Pos(π) then there exist y < x and
β ∈ EV(π) such that S|y = λβ.(S|y0) and α ⊲ β.
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Proof: By examination of the de�nition of Gπ.

Lemma 5.4 (Substitution). Let π be a regular proof, s a term whose free variables
do not appear in EV(π) and α ̸∈ EV(π). Then for every d : M → N in Gπ[α/s] there
exists a derivation d� : M� → N� in Gπ such thatM = M�[α/s] and N = N�[α/s] and
d� is strongly rigid i� d is strongly rigid.

Proof: Let f be thenatural homomorphism fromGπ toGπ[α/s]. Notice f is surjective
on derivations up to permutation.

Let d = ⟨(ai → Si), yi⟩i<lh(d) : S → T be a derivation. Recall the relation∼d de�ned
in Section 3.3. We could instead de�ne ∼d on the set Pos(T). For x0, x1 ∈ Pos(T),
x0 ∼d x1 if and only if there exists j0, j1 < lh(d) such that
1. x0 = yj0 and x1 = yj1 ,
2. aj0 = aj1 ∈ R,
3. for every i0 < i < lh(d) and k ∈ {0, 1}, if ai ∈ R and yi ≤ yjk then aji ̸⊲ ai.

The relation ∼d on positions (as opposed to indices) is not in general transitive but
it su�ces to de�ne rigidity and is a useful alternative. For example,

Lemma 5.5. Let d : S → T be a derivation and suppose d� is a permutation of d.
If d� is a derivation and ∼ is de�ned on positions then ∼d=∼d� . In addition, ∼d is
independent of the choice of S.

Lemma 5.6 (Quanti�er Reduction). If π and π� are the simple Π2-proofs and π Ä¼
π� is an instance of Quanti�er Reduction L(Gπ� ) = Ł(Gπ).

Proof: Suppose that the reduction π Ä¼ π� is an instance of Quanti�er Reduction
to position p as follows:

π0

Γ0, Aα
−−−−−−−−−−−−−−−−−−−− ∀
Γ0, ∀x Ax

π1

Γ1, Ās
−−−−−−−−−−−−−−−−−−−− ∃
Γ1, ∃x Āx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
π|p ⊢ Γ0, Γ1

π0[α/s]

Γ0, As

π1

Γ1, Ās
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π�|p ⊢ Γ0, Γ1

where At abbreviates A[α/t]. Let G = Gπ and G� = Gπ� . We begin showingL(Gπ� ) ⊆
Ł(Gπ).

Suppose a ∈ NG� and let d : a → T be a full strongly rigid derivation in G�.
We may assume d is partitioned according to the Partition Theorem 4.5, whence
d = d0d1 ⋅ ⋅ ⋅ d2L and for each i ≤ L, di : Si → Si+1 is a full derivation in G� \ G�

p, if
i is even, and in G�

p otherwise. We determine a term T� � ∗ T and rigid derivation
d� : a → T� in G by recursion on L.
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If L = 0, d = d0 is a derivation solely in G� \ G�
p and hence also a derivation

in G. So suppose L > 0. The Cut Partition Lemma 4.4 determines a strongly rigid
permutation of d1 of the form e0e1e2e3e4 where
– e0 : S1 → S11 is derivation using only rules in {σpF → σpiF | i < 2 ∧ F ∈ Γi};
– e1 : S11 → S21 is a full derivation in the grammar G�

p0;
– e2 : S21 → S31 is a full derivation in (G�

p1 \ {τ
p1
Ās
});

– e3 = ⟨(τp1Ās → σp0As ), xi⟩1≤i≤k : S
3
1 → S41 = S31[τ

p1
Ās
/σp0As ];

– e4 = ex14,1 ⋅ ⋅ ⋅ e
xk
4,k : S

4
1 → S2 where for each 1 ≤ i ≤ k, e4,i is a derivation of

S2|xi from σp0As using only rules in G�
p0, and e

xi
4,i is the induced derivation of

S41[xi/S2|xi] from S41 obtained by adjusting e4,i to S41.

The Substitution Lemma 5.4 provides translations of e1 and e4 to derivations
ê1 : S11 → Ŝ21 and ê4 = êx14,1 ⋅ ⋅ ⋅ ê

xk
4,k : Ŝ

4
1 → Ŝ2 in Gp0 such that

S21 = Ŝ21[τ
p00
Aα /τp0As ][α/s] S41 = Ŝ41[σ

p0
As /σ

p00
Aα ] S2 = Ŝ2[α/s].

Within Gπ|p there is a simple derivation of s from α (i.e., α → τp0∀xAx → σp1∃xĀx → s)
which, when combined with ê1 and the natural translation of e2 into Gp10, yields
a derivation e = e0 ê1 ê2 : S1 → Ŝ31 = S31[τ

p1
Ās
/τp10Ās

].
The derivation e3, when translated to Gπ|p,⁴ becomes

ê3 : Ŝ31 → S31[τ
p1
Ās
/(λα. σp00Aα ) ⋅ s]

and may be connected with e and êx1004,1 ⋅ ⋅ ⋅ êxk004,k to yield the derivation ê given by

e0 ê1 ê2 ê3 êx1004,1 ⋅ ⋅ ⋅ êxk004,k : S1 → S�2 = S2[x1/(λα.Ŝ2|x1) ⋅ s] ⋅ ⋅ ⋅ [xk/(λα.Ŝ2|xk) ⋅ s].

Clearly S�2 � α S2. All that remains is to show that the derivation d2 ⋅ ⋅ ⋅ d2L : S2 →
T ‘lifts’ to a derivation d̂2 : S�2 → T̂ such that d0 êd̂2 : a → T̂ is rigid and T̂ �  T
as then applying the induction hypothesis to d̂2 will determine a rigid derivation
d� : a → T� in G such that T� �  T.

Firstwenote the following. Suppose y0 and y1 aredistinct positions in S2 such
that S2|y0 = S2|y1 ∈ RG� and rS2 ,S�2 (y0) ∼d0 ê rS2 ,S�2 (y1). If neither y0 nor y1 has the
form xi1y for any i ≤ k and position y then by the choice of ê and strong rigidity
of d in fact y0 ∼d0d1 y1. If y0 ≥ xi1 however, then since S2|y0 is an eigenvariable
outside π|p, also y0 ∼d0d1 y1.

We can now verify that the lifting lemma can indeed be applied to d2 ⋅ ⋅ ⋅ d2L
to obtain a term T̂ �  T and derivation d̂2 : S�2 → T̂: The �rst condition for lifting

4 Each (τp1Ās → σp0As ) is readily translated to τp10Ās
→ τp1

∃xĀx
⋅ s → σp0∀xAx ⋅ s → (λα.σp00Aα ) ⋅ s.
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is provided by the argument in the previous paragraph in the case rS2 ,S�2 (y0) =
rS2 ,S�2 (y1); the second condition follows from Lemma 5.3. The previous argument
also su�ces to deduce that d0 êd̂2 is rigid. As applying the induction hypothesis
to d̂2 does not a�ect rigidity, we are done.

The converse direction, namely L(Gπ) ⊆ Ł(Gπ� ), is more straightforward. Ev-
ery derivation e starting from α with lh(e) ≥ 3will have e(1) = τp0∀xAx , e(2) = σ

p1
∀xAx

and e(3) = s. Similarly, for any derivation e� in Gπ, if i < lh(e�) and e�(i)|x has
the form (λα.S0) ⋅ S1 then S1 = s. These observations allow a simple translation
of derivations in Gπ to derivations in Gπ� preserving rigidity. Let d : a → S be a
derivation in Gπ where a and S contain neither τp1

∀xA
nor σp0∀xA, and let S � ∗α S�

be the term in which all abstractions on α have been reduced. Then there exists a
derivation d� : f(a) → f(S�) where f : Nπ → Terms(Σπ ∪ Nπ� ) is de�ned by

f(α) = f(τp0∀xAx ) = f(σ
p1
∃xĀx

) = s f(νp00q0F ) = νp0q0F[α/s] f(νp10q1F ) = νp1q1F

for ν ∈ {σ, τ}, q0 ∈ Pos(π0) and q1 ∈ Pos(π1), and f(a) = a in all other cases.
Finally wemay deduce that d� is rigidwhenever d is strongly rigid by an induction
on lh(d) using Lemma 4.7. As f is the identity function on terms in Terms(Σπ), we
conclude L(Gπ) ⊆ Ł(Gπ� ).

6 Conclusion

We have established the following theorems.

Theorem 6.1. Let π0, π1, . . . , πk be a sequence of simple Π2-proofs such that πi+1
is obtained from πi by the reduction steps outlined in Section 2.1. Then L(Gπk ) ⊆
Ł(Gπ0 ). If, moreover, no step in the reduction is an instance of weakening reduction
then L(Gπ0 ) = Ł(Gπk ).

Theorem 6.2. Let π ⊢ Γ be a simple Π2-proof where Γ is a set of Σ1 formulæ. There
exists a grammar G such that
1. |PrG| ≤ |π| + |Γ|,
2. |Ł(G)| ≤ 222|π| ,
3. The formula⋁F∈Γ F{t|(F,t)∈Ł(G)} is valid,
4. If π� is obtained from π by a sequence of simple Π2-proofs using the reduction

steps of Section 2.1 and all cuts in π� are on quanti�er-free formulæ then the
Herbrand set for π�,H(π�), is contained inL(G); if no application of weakening
reduction is used thenH(π�) = Ł(G).

Proof: LetG be themodi�cation ofGπ which contains a single (fresh) start symbol
σ and production rules σ → (F, σF) for each F ∈ Γ ∩ Σ1. 1. is immediate from the
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de�nition of Gπ, 2. is a consequence of Lemma 3.14 and 4. is a corollary of the pre-
vious theorem and the observation that if π contains only cuts on quanti�er-free
formulæ then, up to β-equivalence of terms,H(π) = Ł(G). Finally, 3. is deducible
from the �rst part of 4. by observing that standard cut elimination strategies, such
as in [Troelstra and Schwichtenberg, 1996], preserve simplicity of proofs.

These results may be extended to proofs involving prenex Π2 and Σ2 formulæ.
This can be achieved by endowing the simply typed λ-calculuswith product types
and pairing functions in the usual way. In addition to the typing de�nition for
simpleΠ1 and Σ1 formulæde�ned in the paper, for each position q and prenexΠ2
formula A = ∀xB the two non-terminals τqA and σqĀ are assigned type type(τqA) =
o × type(τqB), and σ

q
A and τqĀ have the dual type o → type(σqB) where o denotes

the type of �rst-order terms. In other words, if A = ∀x1 ⋅ ⋅ ⋅∀xm∃y1 ⋅ ⋅ ⋅∃ynB and B
is quanti�er free then

type(τqA) = type(σqĀ) = o
m+1 = o × (o × ⋅ ⋅ ⋅ × o⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

m+1
)

type(σqA) = type(τqĀ) = o → o → ⋅ ⋅ ⋅ → o⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
m

→ on+1.

The production rules for existential and universal introduction in Table 2 then
become respectively

prod(p, Π, 0) ∪ {σp∃yA → (s, σp0A[y/s]), τ
p0
A[y/s] → τp∃yA ⋅ s},

prod(p, Π, 0) ∪ {α → (τp∀xA)0, τ
p0
A[x/α] → (τp∀xA)1, σ

p
∀xA → λα.σp0A[x/α]}

where (., .) is a (polymorphic) binarypairing functionwith�rst and secondprojec-
tions (.)0 and (.)1. Aside from a few technical considerations all the lemmas and
proofs presented here generalise to proofs with cuts and end-sequents of prenex
Π2 and Σ2 formulæ.

6.1 Future work

We have shown the language of grammars de�ned for simple Π2-proofs is invari-
ant under most cut reduction rules. It would be interesting to investigate under
which further transformations language invariance is maintained. For example,
as part of Lemma 5.1 we have shown that permuting two cuts does not change the
language of the proof grammar. In other words, composition by cut is an asso-
ciative operation which, as another interesting line of future work, would allow
the consideration of a category of proofs in the spirit of [Hyland, 2002]. Note, the
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results and techniques presented in this paper are independent of the exact syn-
tactic variant of the sequent calculus used and apply to two-sided, additive, etc.
calculi as well.

Further generalisation of this work would involve larger classes of cut-
formulæ of which there are two natural directions to proceed. The �rst is to
generalise to cuts on a wider class of Π2 and Σ2-formulæ. The simplest extension,
which can already be realised, is to simple proofswith cuts on arbitrary prenexΠ2
formulæ (this generalisation is described in detail above); more complex will be
considering boolean combinations of prenex Π2 and Σ2 formulæ and non-prenex
formulæ. A second generalisation would see proof grammars extended to prenex
Πn-formulæ. The relationship between proofs and grammars established thus far
suggests how to proceed: with Π1-cuts inducing non-terminals of type level 0 and
Π2-cuts inducing, in addition, non-terminals if type level 1, the conjecture is that
Πn+1-cuts will be amenable to analysis using non-terminals of level ≤ n and order
n recursion schemes (a natural extension of context-free tree grammars to higher-
order). This is reminiscent to the relationship between the number of quanti�er
alternations in an induction and the type level of the functional obtained from
Gödel’s Dialectica interpretation [Gödel, 1958], see e.g. [Avigad and Feferman,
1999].
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