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1 Introduction

In classical first-order logic a proof can be considered as being composed of two
layers: on the one hand the terms by which quantifiers are instantiated, and on
the other hand, the propositional structure. This separation is most clearly illus-
trated by Herbrand’s theorem [Herbrand, 1930, Buss, 1995]: a formula is valid if
and only if there is a finite expansion (of existential quantifiers to disjunctions
and universal quantifiers to conjunctions of instances) which is a propositional
tautology. Such Herbrand expansions can be transformed to and obtained from
cut-free sequent calculus proofs in a quite straightforward way.

Standard cut reduction is, however, not confluent, i.e. it permits the computa-
tion of many essentially different cut-free proofs. It was shown in [Baaz and Hetzl,
2011] (for pure first-order logic) and in [Hetzl, 2012b] (for arithmetical theories)
that the number of different Herbrand expansions obtainable from a single proof
with cut grows at least as fast as the size of the cut-free proofs. Still, it is not clear
whether these results can be strengthened to obtain even more normal forms. In
particular, it is an open question whether in general cut-elimination can produce
infinitely many different Herbrand expansions.

In [Hetzl and Straf3burger, 2012, 2013] an upper bound for the obtainable nor-
mal forms has been provided for proofs with IT; -cuts in the following strong sense:
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a proof i with IT;-cuts induces a finite set [77] such that every cut-free proof '
obtained from m via standard cut elimination has a Herbrand expansion, H(r'),
which is contained in [7]] . Moreover, if 71’ is obtained from 71 by non-erasing re-
ductions (reductions that do not eliminate sub-proofs) then we even have H(n') =
[7]. Consequently all normal forms of the non-erasing reduction (of which there
infinitely many) have the same Herbrand expansion. This property of classical
logic has been called Herbrand-confluence in [Hetzl and Straf$burger, 2012, 2013]
and provides a general way of defining the computational content of a classical
proof.

The present paper extends Herbrand-confluence to proofs with II,-cuts. To a
simple IT,-proof! m we associate a recursively defined tree grammar G, whose set
of production rules is bounded by the size of 7 and generates a finite language
L(Gy) satisfying the following confluence result.

Theorem 1.1. Let mg, 1, . . ., Mk be a sequence of simple I1,-proofs such that .,
is obtained from m; by a standard reduction rule (see Figures 1 and 2) other than
weakening reduction. Then £(Sy,) = E(Gr,). In particular, if the proof my contains
only quantifier-free cuts £(Gn,) = H(rmy).

Theorem 1.1 can be seen as a refinement of [Afshari et al., 2015, Theorem 2].
Therein each simple II,-proof i is associated an acyclic context-free tree grammar
JF such that for 71, 711, . . ., my being a reduction sequence (possibly allowing re-
duction of weakening), £(F,) 2 E(F,). For simple proofs, the grammars defined
here and in [Afshari et al., 2015] can be shown to have the same language. There
are, however, a number of technical differences between the two grammars moti-
vated by the combinatorial nature of proving Herbrand confluence. Most notably,
G, may be cyclic (but permit only ‘well-founded’ derivations).

The grammar S, can be considered as a directed graph whose nodes are
quantifier occurrences and whose edges describe the information flow between
them. In this sense it is also similar to the graphical formalisms of [Heijltjes, 2010,
McKinley, 2013]. Other related structures are proof nets, which capture informa-
tion flow on the propositional level and have been extensively studied starting
with [Girard, 1987], as well as the logical flow graphs used by Buss [Buss, 1991]
in the solution of the k-provability problem and further investigated by Carbone
(see e.g. [Carbone and Semmes, 2000]).

1 See Definition 2.1.
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2 First-order logic

We work with a Tait-style sequent calculus for first-order logic with explicit weak-
ening and contraction rules. Terms and formule of first-order logic are defined
as usual using the connectives A, v and quantifiers V, 3, as well as a selection
of predicate and function symbols. We assume two sets of variable symbols, free
variables, denoted a, f3, etc., and bound variables, x, y, z, with a formula only able
to contain the latter sort in bound contexts.

Upper-case Roman letters, A, B, etc. denote formulae and upper-case Greek
letters I', A, etc. will range over sequents, finite unordered collections of formulee
with possible repetition. We abbreviate by I, A the disjoint union of I and 4; and
T, A is shorthand for I', {A}. We write A to denote the dual of the formula A ob-
tained by de Morgan laws, and A[x/t] for the formula obtained from A by replac-
ing x with the term t if this will not induce any variable capture, and A otherwise.

Table 1. Axioms and rules of sequent-calculus

A,A (for A an atomic formula)

A B rA AB I, Alx/a] I, Aly/s]
\% AN v
rLAvB ryA,AnB I, VxA r,3yA
r,A4, A" LA 4,A
w C —F  cut
r,A r,A r,A

A proofis a finite binary tree of sequents obtained from the axioms and rules laid
out in Table 1. In the (V) rule, a is called the eigenvariable and must not appear
in I, VxA. In the (3) rule the term s is assumed to be free for y. In the contraction
rule (c), A* denotes a distinct copy of A. In each inference rule, those formula
which are explicitly mentioned in the premise are said to be principal in the rules
applied, for example A and B are principal in (A) rule, every formula from A* is
principal in (c), and there are no principal formule in the weakening rule (w).
We assume all proofs are regular, namely all quantifiers’ eigenvariables are
distinct and different from any free variables. EV(71) denotes the set of eigenvari-
ables in 7 and rr[a/t] is the result of replacing throughout the proof 7t each occur-
rence of the variable symbol a by the term ¢. We write 7 + I to express that 7 is a
proof with I' being the sequent appearing at the root of 7. A position in a proof m is
a finite binary sequence pointing to a node in the proof-tree 7. Pos(s1) denotes the
set of all positions in 7. For p € Pos(r), r1|p denotes the subproof of i at position
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p with the convention that 7|() = 7 and nt|lip = n'|p, where i’ is the immediate

left (or only) subproof of 77 if i = 0 and the immediate right subproof otherwise.

The size of 1, denoted |7|, is the total number of inference rules and axioms in 7.
In this paper we primarily consider the following class of first-order proofs.

Definition 2.1 (Simple formula and simple IT,-proofs). We call a formula simple
if it is a prenex I, or prenex X, formula with at most one universal and one existen-
tial quantifier. A simple II,-proof is a proof in which each sequent is a finite multiset
of simple formulae and every universally quantified formula appearing above a cut
is principal in the inference directly after its introduction (which is either a cut or
existential introduction).

Lemma 2.2. If 7 + I in which all cut formulee in m and all formulee in I are simple
then there is a simple II,-proof ' + I' such that |n'| < |1l

Proof: Apply inversion to all principal occurrences of universally quantified for-
mule in 7 that appear above some cut to ‘shift’ the quantifier introduction rule
(V) downwards in the proof resulting in a simple IT,-proof 71’  I'. This operation
will not introduce any new inference rules to 7 so |7'| < |7]. O

2.1 Cut reduction
The standard cut reduction rules are given in Figures 1 and 2.

Axiom:

cut LA

Boolean:

Fig. 1. One-step cut reduction and permutation rules I.
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Quantifier:
LA[x/a] A Alx/t]
I,VxA A, 3xA
cut
I,A
Weakening:
cut
I,A
Contraction:
I',I[A T* A" W
i /
I',IA A A
cut
I',I,A
Unary inf.:
r _
IA A A
cut
I,A
Binary inf.:
I’ I, A v
- "y /
LA A A
—  cut
I,A

VW

I, Alx/t] A, Ax/t]
I,A

N

%3
F,_A
I, FA Ir* A* W
cut _
A I',I,T*,A*, A A*,A*
cut
I',I,T*, A, A"
I', T,A
I A A A
At cut
I, A
r
I,A

Fig. 2. One-step cut reduction and permutation rules II.
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There is one reduction step that may not preserve simple IT,-proofs, namely the
particular instance of binary rule permutation in which (z) is (cut):

A,VxB,A A,VxB
cut

I,A AN A
nrI1,A A

cut

LA  A,VxB,A v
A cut

I, A,VxB A,VxB
a+T,4,A

cut

In the right-hand proof, VxB is principal in the cut but is not immediately preceded
by the rule (V) introducing it, so is not a simple proof. If the left-hand proof is a
simple II,-proof then it follows that 77, has the form

N/

A, B[x/B], A y
A,VxB, A

whence we see that applying unary rule permutation to the upper cut in 7’ we
may obtain the derivation

N N\gS

I,A A, Blx/Bl, A

I, A, B[x/B] v
I,A,VxB A, VxB
cut
a'"v+T,A, A

We have 71 w 1’ v 1"’ and i1’ is a simple IT,-proof.
In order to permit reduction strategies of this form it is convenient to consider
the reduction from m to 7"’ as a single reduction step, so we add the following
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additional rule to the definition of w:

A, Blx/Bl, A v W

A,VxB, A A,VxB
- cut
I,A A A A
cut
arT,A A
r, A, B[x/B], A
cut 1
w F,A,B[x/ﬁ] . @
F’A, VxB A, VxB
cut
7' v T, A, A

Definition 2.3. For proofs m, i’ we write m ~» m' if ' is the result of applying one
of the rules of Figures 1 or 2, or (1) above to (a sub-proof of) n. Notice that in con-
traction reduction the left sub-proof is duplicated and care is taken to rename the
eigenvariables (expressed by annotating the proof/sequent/formula in question by
an asterisk) to maintain regularity.

2.2 Herbrand’s theorem

Suppose I is a set of simple formulee and 7 + I is a proof in which all cuts are
on non-quantified formulee. For each F € I let the Herbrand set for F, denoted
H(m, F), be the set of terms that occur in 77 as witnesses to the existential quantifier
in F (if there is one). The Herbrand set for m is the set H(m) = {(F,t) | Fe T At €
H(m, F)}.

Given a set X of terms and simple formula F, let FX denote the prenex II;
formula given by

(VxF)X = vxF* @xP* = \/ Flx/t]
teX

and FX = Fif F is quantifier-free.

Theorem 2.4 (Herbrand’s theorem for simple formulae). Let I' be a finite set of
simple % formulae. \/ I is valid iff there exist finite sets {Xr < Terms | F € I'} such
that the formula \/ . F¥* is valid.
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Proof: The right-to-left direction is immediate. For the left-to-right direction, sup-
pose \/ I'is valid formula of first-order logic. Fix a cut-free proof = + I" and for each
F e I, set Xp = H(m, F). By Gentzen’s mid-sequent theorem 7 induces a proof of
\/per FXF and we are done. O

3 Proof grammars

It this section we define a class of grammars suitable for the analysis of IT,-proofs.
Our definition of a grammar somehow deviates from a standard one as it allows
certain (controlled) bounded non-terminals to be re-written in the derivations. It
is, nevertheless, possible to provide an equivalent definition of these grammars in
terms of (standard) context-free tree grammars [Afshari et al., 2015]. The presen-
tation given in this paper has the advantage that the types of non-terminals are
fixed from the outset allowing the verification of (proof-specific) language prop-
erties such as reductions proved in Section 5 to be clearer.

3.1 Terms, positions and substitution

Fix a ranked alphabet X and let V be a fixed set of variable symbols distinct from
2. Let Term(X) denote the set of terms in the simply-typed A-calculus built from
2 UV. The set of positions of a term T € Term(Z), denoted Pos(T), are the nodes of
the underlying tree, i.e.

0, ifTezuv,
Pos(T) = {()}u {{ip | i € {0, 1} Ap € Pos(T;)}, ifT=Ty- T4,
{Op | p € Pos(To)}, if T = (Aa.To).

Foraterm T and p € Pos(T), we write T|p for the subterm of T at position p.
Given T € Term(X) and a € V, let Free(T, a) < Pos(T) be the collection of

positions at which a appears free in T:

Free(a, a) = {(}}

Free(y,a) =0 ifa+yeV

Free(a,a) =0 ifae’

Free(T, - Ty, a) ={ip | i € {0, 1} and p € Free(T;, a)}

a2, ify=a

Free(Ay.T, a) =
{Op | p € Free(T, )}, ify#a
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We introduce two forms of term substitution. Let S, T € Term(X).

— Tl[a/S], where a € X UV, denotes the safe substitution of S for a in T. So
in particular, (Ay.T)[y/S] = Ay.T and for a distinct from y, (Ay.T)[a/S] =
A8.(T[y/61la/S]) where § is a variable symbol not occurring free in S.

— T[p/S], where p € Pos(T), is defined by recursion on p:

T[()/S1=S alp/S]=S, aeXuV
(To - T1)[Op/S] = To[p/S] - T1 (Aa.T)[0p/S] = Aa.T[p/S]
(To - T1)[1p/S] = To - (T1[p/S])

Note that this may involve an unsafe substitution.

3.2 Syntax and semantics of proof grammars

A proofgrammarisatuple § = (N, X, 8, Pr) where N is a set of typed non-terminals
of order at most 1, § € N is a set of starting symbols (of base type), ¥ is a ranked
alphabet, called terminals, disjoint from N, and Pr consists of pairs (a, T) € N x
Term(2 U N) (called production rules and written a — T) such that a and T have
the same type. Given a proof grammar § we assume G = (Ng, Xg, Sg, Prg).

Let d be a sequence {p;, p;)i<k of pairs of production rules of a proof grammar
§ and positions, and S and T terms. We call d a derivation from S to T, written
d: S — T, if there exist terms (Nj)i<x such that Ng = S, Ny = T, and for each
0<i<k,
1. p;isaproduction rule of G and p; € Pos(N;),
2. Forp; =(a — S), we have Nj|p; = a and N;;1 = Ni[p;/S].

The sequence of terms (N;)i<k is uniquely determined by d and S, whence we may
write d(i) for N;. The length of d, 1h(d), is k. We write Der(G) for the set of deriva-
tions in G, and say T is derivable from S if there exists a derivation d: S — T. A
derivation d writes a non-terminal a if there is a production rule of the forma — S
for some S occurring in d.

The language of a proof grammar G, £(9), is the set of terms not containing
free occurrences of non-terminal symbols that are derivable from the starting sym-
bols of the grammar:

E(G)={T|3d: 0 — Ts.t. 0 € 85 and T contains no

free occurrence of a non-terminal}.

When comparing languages of proof grammars it is convenient to work modulo j3-
convertibility. For A-terms S and T, we write S —g T to abbreviate T is obtainable
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from S by one step S-reduction, and —>l’§ for the reflexive transitive closure of this
relation. Thus for grammars G1, G-, we write £(G1) < £(G,) to express that for

every S € £(G1) there existsa T € £(G,) such that T —>E S.

3.3 Rigidity

Rigid grammars were studied in [Hetzl, 2010, 2012a] for the construction of terms
appearing in cut-elimination for first-order logic with II; -cuts. In this section we
extend the notion of rigidity for the analysis of proofs with II,-cuts.

Let G be a proof grammar and suppose < is a transitive binary relation on
Ng and R ¢ Ng is a designated set of non-terminals. A derivation d = ((a; —
Si), gidi<in@): S — T induces an equivalence relation on {i | i < lh(d)} corre-
sponding to connectedness in parse trees: for jo, j1 < lh(d), set jo =4 ji iff there
exist iy < jo, j1 such that
L gi, < gj,» qjy»
2. foreveryk € {0, 1} and ip < i < ji < 1h(d), if g; < gj, and a; € R then g;, 4 a;.

In other words, two non-terminals occurring in (the natural tree representation
of) the derivation d are considered connected if there is no non-terminal of higher
priority between them and their closest common ancestor. We write jo ~g jp if
jo =q j1 and in addition aj, = aj, € R. Notice that ~4 may not be an equivalence
relation on {i | i < 1h(d)}. For instance, if aj ¢ R thenj +4 j.

We consider derivations that respect the relation ~; and we permit unsafe
substitutions that are controlled by priority ordering «:

Definition 3.1 (Rigid derivations). Let G be a proof grammar and suppose < is a

transitive binary relationon Ng and R < Ng.Aderivationd = (a; — Ti, qi)i<k: S —

T in G is rigid with respect to (<, R) if

1. foreveryi,j < k,i~qjimplies T|q; = T|gj, and

2. foreveryi < kwith a; € R, if d(i)lq = Aa;.So for some position q < g; and
term Sy, then there exist position q < q' < q;, term S1 and variable b such that
d(i)|q' =Ab.Syand a; < b.

A rigid proof grammar is a tuple § = (N, R, 4, X, 8, Pr) such that (N, X, 8, Pr) is
a proof grammar, R € N and « is a transitive relation on N. R = Rg is the set of
rigid non-terminals of § and <=«g is the priority ordering of S. G is acyclic if the
ordering «g is acyclic, that is for all a € Ng it is not the case that a «g a, and is
totally rigid if Rg = Ng.
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In a rigid proof grammar G, a derivation is simply a derivation in the underly-
ing proof grammar and a rigid derivation is a derivation which is rigid with respect
to («g, Rg).

A rigid derivation d: S — T (in 9) is full if there is no extension of d that
is a rigid derivation in G. The language of a rigid proof grammar G, £(9), is the
collection of terms derivable from full rigid derivations starting from Sg:

E(G)={T|3d: 0 » Ts.t. 0 € 8Sg and d is full and («g, Rg)-rigid}.

Note Definition 3.1 allows certain variables that are bounded (by an abstraction)
to be re-written. Therefore in rigid derivations, arbitrary S-reductions are not per-
missible until the derivation is fully written in the sense given above.

Observation 3.2. The language of a rigid proof grammar is a set of closed (well-
typed) ground-type A-terms.

Observation 3.3 (Permutation). Let d and d' be derivations in a rigid grammar G
and suppose d' is a permutation of d. d' is rigid iff d is rigid.

Example 3.4. Let G be the rigid proof grammar with start symbol o, the non-
terminals o, a and v, rigid non-terminals R, ordering <, all other symbols terminals
of appropriate arity, and production rules

o - fla,y,7) y—8gyla a—y

Ify ¢ R we have, unsurprisingly, £(9) = {f(g"(a), g"(a), g°(a)) | m, n, 0 = O}. For
yeR,

L Ify<y<aandaeR, L(9) = {f(g"(a),g"(a),g"(a)) | m,n = O}

2. Ifyaysa L(9)={fg"(a),g"(a),g™"(a)) | m = O}

3. Ifyayta L9 ={fla,a,a)l

Example 3.5. Let G be a proof grammar and suppose R < Ng. Further, let d =

{pis qiYi<k: M — N be a derivation in G. Two simple choices of < are

1. Global rigidity. Set <g= 0. Then d is (<g, R)-rigid iff for all i, j < k, d(i)|q; =
d(j)lgj € R implies N|q; = N|g;.

2. Local rigidity. «t= Ng x Ng. In this form rigidity is treated only at the level
of production rules: d is (<r, R)-rigid iff for every i < k, if p; = (a — S) and
Slp = Slq € R, then Nlg;p = Nlqiq.

Notation 3.6. Given a derivation d = {p;, qi)i<k and a position p we define dP to be
the derivation {(p;, pq;)i<k-

Definition 3.7 (Subderivation). Let d = {p;, qi)i<in(a) be a derivation and suppose
k < 1h(d). The subderivation of d from k is the longest derivation e = {p;, i) i<In(e)
such that qo = () and e is a subsequence of d.
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Definition 3.8 (Strong rigidity). A derivation d = {pi, qi)i<in(a) is strongly rigid iff
for all ip, i, < lh(d) if ig ~q i1 then the subderivations of d from iy and i, are
identical or a permutation of one another.

Restricting to strongly-rigid derivations does not reduce the language of a rigid
grammatr:

Lemma 3.9. Let G be a rigid grammar. For all M and N, if there is a rigid derivation
from M to N in G then there exists a strongly rigid derivation from M to N in G.

Proof: By recursion through d: for each p and g such that d(i)|p = d(j)lg € Ng
and N|p = N|q replace the sub-derivation of d at g by a copy of the sub-derivation
of d at p. The result will be strongly rigid iff d is rigid. O

3.4 Bounds on rigid proof grammars

Lemma 3.10 (Bounding). Suppose § is a rigid proof grammar satisfying the follow-
ing condition:

for every rigid derivation d = {p;, pi)i<k in G and every i < j < k,
if pi < pj and d(i)|pi = d(j)|p; then there exists | € (i, j) such that @
pi < pi1 < pjand d(j)Ip; <g d(D)|p;.

If Gis acyclic then £(9) is finite; if G is acyclic and totally rigid, |E(S)| < |Prg |27

Proof: Assume § is a rigid proof grammar satisfying (2) and «g is acyclic. Fix a
rigid derivation d = (p;, pi)i<k in G from an starting symbol. Call a derivation
d= (Pi» Pi) i a path through d if d is a subsequence of d, (Pos Po) = (Po, Po), and
foreveryi <j <k, p; < bj.

Let d be a path through d and let N; denote the set of non-terminals written by
d,ie. Ng={aeNg|Fi< I%EIS[),- = (a — S)}. Suppose Ng ={ao, a1, ..., apg-1}
and for all i < j < [Ngl, a; # aj which is possible as «g is acyclic. By the stated
requirement there can be at most onei < k such that pi writes agp, whence there are
at most two production rules in d that write a1, four production rules in d writing
a,, and in general no more than 2! production rules writing a;. So k < 214!, The
set of paths through d forms a tree which has branching degree bounded by some
constant K independent of d and depth bounded by 2/*Vs!, and it follows that k <
K279 Asdis arbitrary there are only finitely many rigid derivations and the first
result follows.

Suppose § is acyclic, totally rigid and satisfies (2). Let m = |[Prg|and n = [Ng]|.
We argue, by induction on the number of non-terminals in G, that the set of terms
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T € Terms(Xg) rigidly derivable from a starting symbol in G has size bounded by
m2"".

The base case is n = 1. By the main assumption of the lemma every derivation
d: 0 — T with 0 € Sg and € Terms(2g) has length 1, of which there are no more
than m. For the induction step, suppose n = ng + 1. Let N = Ng \ {a} where a +# o
is chosen such thata « b forall b € Ng \ {0}. Suppose d: 0 — T € Terms(Xg)
is a rigid derivation in G. By the main assumption d can be re-ordered to have the
form dod, where dy: 0 — Sand d,: S — T = S[a/S'] for appropriate terms S
and S’, such that the non-terminal a is not written in do and not introduced by
a production rule in d;. The induction hypothesis implies there is no more than
m2"°™ possibilities for each of S and S’, whence there are < m2""! possibilities for
T. O

3.5 Grammars for /1,-proofs

In this section we associate to each simple IT,-proof 7 a proof grammar G, which
will be used in the subsequent sections to prove the confluence result. We begin
with a motivating example:

Example 3.11. Let m + 3xF be the proof given below in which there is a II,-cut
on Vx3yA, a II;-cut on VxB and we assume these are the only cuts on quantified
formulee in 71; a and y the respectively eigenvariables of these cuts; t; and u; wit-
ness terms of the existential quantifier in, respectively, AxVyA and 3xB; and B; the
eigenvariable of the universal quantifier in VyA(t;, y). For a formula C, we use C* to
distinguish between the two copies of C that may appear in the same sequent in the

proof.
B(u1), B*(uz2(a)) ,
B(y), A(a, s(a, y)), F(g(y, a)) 5 B(uy), 3xB* :

B(y), A(a, s(a, y)), IxF ; 3xB, 3xB*
—cC
VxB, 3yA(a, y), IxF 3IxB
cut
3yA(a, y), IxF
Vx3yA(x, y), IxF 'k 3AxVyA(x,y)
cut

m+ 3IxF
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where ' is given by

A(t1, B1), A*(t2(B1), B2) v
Alty, B1), YYA* (62(B1), ) .

A(ty, B1), IxVyA* (x, y)
VyA(ti,y), IxVyA* (x,y)
IxVyA(x,y), IxVyA*(x,y) .

' F 3xvyA(x,y)

Having the cut reduction process in mind, it is natural to consider the following
grammar. First we introduce a starting symbol o5,r which will write to the (literal)
witness of 3xF in 1, i.e. the term g(y, a). This production rule initiates the search for
the witnesses to AxF. Next we add production rules that write the eigenvariables
a and vy of the two cuts to the associated terms t; and u; respectively, mirroring
the substitutions performed in Gentzen-style cut elimination. To capture the cor-
rect rules for eigenvaribles of the universal quantifier in AxVyA, i.e. Bo and B1, we
introduce a functional non-terminal o which represents the existential quantifier in
Vx3yA(x, y) and allows f; to write (modulo B-reduction) to the term s(t;, y).2 More
precisely, G = (N, R, «, 2, 8, Pr) with 8 = {oaxr}, R = {a, y, B1, B2}, N = SUuR U {0}
and Pr consisting of rules:

Oaxr — 8(y, @) y—ug|u

a—t| b Bi—ao-t; fori=1,2 o — Aa.s

The priority ordering is given by the order in which the eigenvariables are eliminated
in the proof, increasing in priority from top down, and left to right through a II,-cut
(which has the universal formula on the left subproof):

yaa<dfrap
We now calculate £(S). There are two possible starting derivations for 0axr:

O3xr — 8(y, @) — g(uq, @) 3)
Oaxr — 8y, @) — g(uzx(a), a) (4)

Extending (3) we obtain the closed term g(uy, t1) € £(G) as well as

oxxr =" glur, @) — gug, t2(B1)) — glug, t2(0 - t1)) — glus, t2(Aa.s(a, p) - t1)).

2 Further motivation for the use of non-terminals of function type can be found in [Afshari et al.,
2015].
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Since y <« P1, the y appearing in the last term above is not connected to its
earlier occurrence in (3) and may freely write to either u; or u,, yielding terms
g(uy, ta(s(ty, ur)) and g(uy, t2(s(ty, uz(t1))) in £(9).

To extend (4), first note that the (possible) two occurrences of a in g(u,(a), a)
must be written to the same result, of which the following are allowed.

g(ux(tq), t1)
gua(ta(s(ty, u1))), ta(s(t1, u1)))
gua(t2(s(tq, uz(t1)))), ta(s(ty, ua(t1))))

Indeed, it is not hard to check that any cut-free proof ' obtainable from  via the
reduction steps in Figures 1and 2, H (', 3xF) consists of exactly the six closed terms
derived above.

We now proceed with the definition of the grammar. Let 7 - I"be a simple IT,-proof
of a set of prenex IT, and X, formulae. The proof grammar for m is the grammar
S = Ng, Ray <7, 21, 87, Pr;) where the components are defined as follows.

Symbols and their types

We will use symbols of the form T‘; or 0’? where p is a position and F is a formula
occurring in 7.3 Each such symbol is assigned a type, either O (ground type) or
0 — O (function type):

- type(t}) = type(0%) = Oif F € I,.

- type(rh) = type((f{;) = (0 — 0) otherwise (i.e. F € 2, \ IT5).

— All eigenvariables in 77 and first-order terms are ground-type terms.

Alphabet and non-terminals

2 consists of the function symbols, constants and variables occurring in 77, and

symbols T<F> for every F € I'. The set of non-terminals, N, consists of

— rigid non-terminals R, = EV(r);

— starting symbols S, = {0(F> | Ferll;

— symbols Tﬁ where p € Pos(m) \ {{)} and A is a formula occurring in the end-
sequent of 7|p;

3 For brevity we write 7 for 119 .
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— symbols aﬁ where p € Pos(/r) and A is a formula occurring in the end-sequent
of t|p.

Table 2. Production rules in G,

mp+r Production rules in G for position p, Pry ,
A p p P p

”|P"A,A {O'A—>TA,UA—>'[A}

4, Ao, A1
Vv prod(p, 4, 0)
mnlp+A4,Ag VA

n,AO A,A1
——— A prod(p, 1, 4)
"|P "n,AyAO/\Al
A, Alx/a] , , 20
P - 4, VXA prod(p, 4,0) U{a = Ty, Oy = AQ- Oy}
A,Aly/s] , 20 ,
nlp 4, IyA prod(p, 4,0) U053, = S, Ty = Toya S}
AA A 0 - .
nlp 4,1 cut prod(p,4, Mu{ty, — o}, T3 —dy}

A
e prod(p, 4, 0)
np+A4a,n
A, 1, M*
— ¢ prod(p, MU 4,0) U{t}. — 17, 0f — of. | F € T}
nlp A,

prod(p, I, 4) = prod,(p, I, 4) U prod,(p, I, 4)
prod,(p, o, 1) = (T — 0 |j € {0, 1} AF € [}}

prody(p, Fo, 1) = {0f — o |j € {0, 1} AF € T}

Production rules and priority ordering

As the set of production rules in G, we choose Pry := [Jpepos(n) Ptn,p, Where the
sets P, (defined in Table 2) are determined by the rule of inference occurring at
position p in 7. Informally, non-terminals of the form a’; represent the existential
quantifier in F (if there is one) with their production rules ‘searching’ for witnesses



Herbrand Confluence for First-Order Proofs with IT,-Cuts = 21

within the sub-proof 77|p. Dually, T‘?- represents the universal quantifier in F (at p)
and link eigenvariables on one side of a cut to the existential witnesses on the
other side.

Like the production rules, the rigidity ordering, <, is determined by the local
structure of 7 and is the smallest transitive relation satisfying the following five
conditions.

— Concerning production rules for axioms and side formule to all inference
rules:

1. For each production rule of the form a — Tg, ora — ‘r% - s where a €

N \ EV(7r) we have a < T%;
2. For each rule of the form ¢ — o’gj or o}y — Aa.o’éj (j € {0, 1}) we have
o < o3
— For production rules introducing or eliminating eigenvariables:

3. For each production rule a — 77 , where a € EV(r) we have a <z 7} ,,

and ¢ <, a for every & € EV(71|q0);

4. For each rule of the form o‘z — s and each variable a appearing in s we

set 0% <47
— And for production rules of cut formulee:
5. For a rule Tzi - 0’}1’ withi = 1 -j € {0,1},if A = VxAo for some 2,

formula Ao then 7 <, aij .

The first four conditions increase the priority of non-terminals as one follows ei-
ther ‘T’ production rules ‘down’ the proof towards the conclusion or principal cuts,
or ‘0’ productions ‘upwards’ towards witnesses of existential quantifiers. The fi-
nal condition mediates the passage between the two paths over (one direction of)
a IT,-cut. The additional cases added by 3. capture, through the rigidity ordering,
the duplication of eigenvariables that may occur when reducing a quantified cut.

Example 3.12. Consider the proof m in Example 3.11. The grammar G is the tuple

(Nzs Ry Ay 22y Sy Pry) where 85 = {ong}, Rz ={a, y, B1, B2}, we have in partic-
1

0 ; .
ular y < a <y Tyxaya n oaxw 4 n B2 < B1 and the production rules are:

1.  For the starting symbol we have:

0 0 00 000 0000
O3xF = O3y = O3xf = O34p = O — 8(1, @)

2. For the eigenvariable y:

0010

000 001 _, 50010 1
IxB*

N L
Y Twx OHXB 0-ExB
0010
3xB
0010 00100

- =
3xB* UElXB"

| o
o — U1

o - Uy
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3. Foreigenvariable a:

0 1 10 10
&= Tyxaya — UEIxVyA - AxVyA | UEXVyA*
10
O-EIxVyA —h
10,5100 51000 4
IxVyA* IxVyA* IxVyA*
4. For eigenvariables 1 and B,:
100 10
— - - _
P Toyae) — Taxwya ty
0
IxvyA IxVyA
10000 1000
BZ - TVyA*(tz) - THxVyA* 2
1000 _, 100 .10 o1
IxVyA* IxVyA* IxVyA* IxvyA
1 0 00
Towwya = Ovxaya Aa.03y,

00 000
GHyA - GHyA -S

Notice that the function type non-terminal agﬂy 4 blays the same role as o in gram-

mar G of Example 3.11. Indeed, £(3) = £(Sy).

Shifting symbols, terms and rules

Following the definition above, it is clear that if 7 is a sub-proof of i/, say 7 = 7’ |p,
then G, can be viewed as a sub-grammar of G, by ‘shifting’ the annotation of non-
terminals in G, by the position p. This action of ‘shifting” a grammar relative to a
position turns out to be a useful operation on grammars. We let G denote the
result of shifting G relative to p, thatis, ¥ = (\?., Rg, <b, Zg, Sg, Prg), where

Ng =1{a” | a € Ng} 8 ={a’ | a €8}

Prg ={a” - T? | (a — T) € Prg} <b ={(a?,bP) | a <, b}
given by

(P = ¢! (ohP = af? Y=y foryeRg

(T1- TP =T -0 (Aa.T)P = Aa.(TP)

P

So in particular § lp

is a sub-grammar of G, whenever p € Pos(m).
Lemma 3.13. If i is a simple II,-proof then < is acyclic.

Proof: By induction on the proof m + I' noticing that no production rule in G,

writes T(F> or introduces o(F> (for F € I'), and that if 7 ends in a cut on a simple
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IT, formula A = Vx3yB (say 7|0 + I, A and 7|1 + I, A) then for all a € N° 00 and

be anl we have a ¢, b. O

Theorem 3.14. Let i be a simple IT,-proof. Then |E(S)| < 22,

Proof: First, note that requirement (2) of Lemma 3.10 is satisfied by all proof gram-
mars arising from simple IT,-proofs. We define a new grammar G’ by making the
following changes to G,: for every non-terminal v’; ¢ R, withv € {1, o} and pro-
duction rule vi; — S, if there is a production rule a — v} in G, then remove
vf- — S and instead add a — S. Observe this process is well-defined as the term S
cannot contain any occurrences of vf; Once all production rules writing v? are re-
placed, remove v’; from the set of non-terminals. Let Gy be the resulting grammar,
and G’ the subsequent grammar obtained by indicating any remaining non-rigid
non-terminals in G to be rigid.

G’ is a totally rigid grammar and |Ng/| + |Prg/| < 2|m|. Moreover, £(Gr) =
E(G'): it is easy to see that the ‘compression’ preserves rigid derivations and so
L(So) E(G7). In Gp the only non-rigid non-terminals remaining are of the form
Tay 4 OF op for some p and A. Observe that i) there is only one choice for writing

such non- termlnals and ii) Tay " op d; a where a is the eigenvariable of VyA

Thus any two non-terminals that become disconnected through Tay 4 Of 0V al

G’ were already disconnected in G, through a. Indeed G’ and G, have the same
language, and the comparability between their rigid derivations means G’ also
satisfies requirement (2).

INgri-1
Now Lemma 3.10 implies |E(G)| < |Prg/ |27 . We therefore have

1P 1-1

IE(G)l = [E(G)[ < 227

2|nm|
2277,

This concludes the proof. O

4 Technical lemmas

In Section 5 we will prove that for regular simple IT,-proofs 7 and 7’ if 7 ~ 7'
then £(S) € E(S). Before considering the theorem, however, we require addi-
tional results concerning the fine structure of proof grammars. In Section 4.1 we
introduce the notion of homomorphism between proof grammars as a means to
test language containment. Section 4.2 highlights a number of properties relating
to derivations in proof grammars and Section 4.3 prepares the ground-work for
replacing sub-proofs by ones with comparable grammars.
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4.1 Comparing grammars

An easy way to compare the languages induced by grammars is by providing a
function mapping non-terminals of one grammar into another preserving rigid
derivability. In the simplest form (which is all that is required here) this is given
by a homomorphism as described below. First we need the following definitions.

Controlled B-reduction

We generalise the relation of S-reduction to obtain a finer relation between terms.
Given two A-terms S and T and a (possibly empty) set of variables X ¢ V, we write
S —x T if one of the following conditions hold.

- S=T;

- S=SO-81,T=T0-T1andS,~>—>XT,-;

- S=A(X.So, T=A(X.T0 andSo x To;

- S=Qa.Sp)-S1,ae Xand T = Sp[a/S1].

Notice that S »»>y T is the usual 1-step parallel S-reduction. We write S » T iff
S >y T. This is not to be confused with S »»¢ T which holds iff S = T. Also let
S =% T denote the (reflexive) transitive closure of S —x T.

Following the definition of S > T we define a canonical function r7 s mapping
positions in T to their corresponding position in S:

rrs(()) =)
(To-T1),(So:51)(IP) = 17T, 5,(p), fori e {0, 1}
T Aa.To),(Aa.50)(OP) = 01714, 5, (D)

1p', ifp=qp’, q € Free(a, Sp) and p' € Pos(S1)

T'So[a/S1],(Aa.So)-S1 (P) = .
ola/S1).(Aa-S0) 51 00p, otherwise

where Free(a, Sp) denotes the positions in Sy marking free occurrences of a.

Homomorphism function
Let ¥ and G berigid proof grammars and f: Ny — Ng.If X5 € ¥ then f naturally
extends to a function (.) : Terms(X5 UNg) — Terms(Zg U Ng) given by

o =fla) ifaeNg, Aa.S) = Aaf .S
ad=a ifaeZy, S- =581
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Definition 4.1 (Homomorphism). Let ¥, G be rigid grammars and suppose X5 € Xg

and 8 ¢ 8g. A homomorphism from F into §G is a function f : Ng — Ng such that

flo) = o forevery o € 85;

f(a) has the same type as a for every a € Ng;

fla) e Rg iffa € Ry;

a < b implies f(a) «g f(b);

foreachp = (a — S) € F, there is a derivation pf ={pi, Pi)i<k: fla) — Sfing

such that p/ (i)|p; € Rg only ifi = 0;

6. For every rigid derivation d = {(a; — Si), Pi)i<i: 0 — Sin F with o0 € 85 and
every jo, j1 < 1, if f(a;,) = f(aj,) and jo =q j1 then aj, = a;,.

RN S

We write f: ¥ — G to stipulate that X5 < Xg, S5 € 8g and f is a homomorphism
fromFto G.

Notice that condition 6 is trivially satisfied if f is injective, thus its only role is for
in the case of Contraction Reduction.

A homomorphism f: F — G extends to a function (.) : Der(¥) — Der(G) in
the obvious way: given a derivation d = (p, p)e: S — TinF, supposee’: d(1) —
T/ is already defined and set d’ := (p/, p)ef: S/ - T/ in g.

Lemma 4.2. Suppose f: F — Gis a homomorphism. Ifd: S — T is arigid deriva-
tionin F then d’ : f — Tf is a rigid derivationin G.

Proof: Let ¥ and G be as above, d = ((a; — S;), pi)i<k: S — T arigid derivation
inFand d = ((bj > M;), gj)janry: § — T/ the derivation in § induced by f.

First suppose jo,j1 < lh(df) are such that jo ~4 ji and bj, = bj, € Rg.
Condition 4 (combined with the definition of d — df) implies that there are ig, i1 <
lh(d) such that b;, = f(a;) and gj, = p;, forl = 0, 1. Let j* < jo, j1 be the index
witnessing jo =4 j1. Setj < j* be the greatest index such that b; = f(a;-) for some
i* < lh(d). We now verify that i* witnesses iy =4 i1: To obtain a contradiction,
suppose for I = 0 or [ = 1 there is a non-terminal a; with i* < i < i; such that
pi < prand a;, <5 a;. By condition 4 we have b, = f(a;,) <g f(a;). Let f(a;) = bj:.
By the definition of j we know for every j* > j' > j, by ¢ f({a; | i < Ih(d)}).
Therefore, j' > j*, and since bj, <g by we see that bj: violates jo ~4 j1, hence we
are done. Since i =4 i1, from condition 6 we deduce a;, = a;, so, since d is rigid,
T|p;, = Tlpi,. But then Tf|gj, = T/|g;, as required.

To check the second condition of rigidity for d/, suppose d/ (j)|x = Aa.S(f) for
x < gj and bj = a € Rg. Note that for any term T and position y, T/|y = (Tly). In
particular, since a is also rigid there is i < lh(d) such that d g) = d@y, fla;) = b;
with a; € Rz, and p; = g;. Then we have d(i)|x = Aa;.So and so by rigidity of d
there exists x < y < p; such that d(i)|[y = Ab.S1 and a; <5 b. Let 8 = f(b). Then
d (j)ly = AB.S’, and by condition 4 a <g B. O
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Since homomorphisms fix terms from X'+ we conclude

Corollary 4.3. Suppose F and G are rigid proof grammars and there is a homomor-
phismf: F — G. Then L(F) € E(9).

4.2 Partitioning

Let 77 be a proof ending in a cut. The grammar G, can be viewed as the union of
the two disjoint subgrammars 92IO and 9:11|1 and ‘connecting’ production rules (i.e.
rules introduced by the cut). A full derivation d in G, can therefore be permuted
to the form d1 d5 - - - dx where each d; is a full derivation in either 93|o or 9}“1, plus
one direction of the connecting rules. The next lemma demonstrates that in the
case of cuts on (simple) IT, -formulae, there can be at most three such ‘alternations’
between the two subgrammars. This observation will be particularly relevant in
the analysis of the Quantifier Reduction rule (Lemma 5.6).

Lemma 4.4 (Cut Partition). Suppose 7 is the simple II,-proof given below where A
is assumed to be a II, formula.

mo+I,A m I—A,A
n+I,A

cut

ForF e'and N € Term(X,), ifd: 0?, — N is arigid derivation in G, then there is a

permutation d' = did>dzdy: 02— — N of d such that

- dy: 03 > My is afull derivationin G5 U {19 — o}};

- dy: My —> My is arigid derivation G} U {T}1 - 024;

- ds: My > Msis aderivationin G ;

— d4: M3 — N is a derivation using only the rules {12 - 119 | FeTltu {r}g -
0 | Fe Al

Proof: The derivation d’ is obtained through permuting the production rules
so that we fully re-write the non-terminals of a subgrammar 951,- before passing
(through the cut on A) to those of 9,1,;"1,. In this way it is clear how to obtain
full derivations d; and d, satisfying the requirements such that d;d; is a sub-
sequence of d. Note, as d; and d; are full, M; and M, are, respectively, terms in
Zpufol}ufry | F e IYand Zp u{o}} u{ty | F € IY U {t} | F € A}. Finally, to
obtain ds; we rewrite (according to d) all occurrences of aff‘ in M,. Observe that
in doing so the non-terminal ‘rg will not be created: ds; writes each occurrence
of 02 in M, to a term of the form Aa.S where a is the unique eigenvariable for
the external universal quantifier in A; the definition of <, and the restriction on

rigid derivations implies d; may not utilise a production rule of the form a — TZ,
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SO 1'2 cannot appear in M3. Therefore, the only non-terminals from G, in M5 are
{Tg | FeT}u {T}, | F € A} which will be written with the remaining of production
rules from prod, ({), I, A). O

Theorem 4.5 (Partition). Let 7 be a simple II,-proof and p € Pos(m). Denote by G,
the sub-grammar of G comprising only those production rules writing non-terminals
in{of, 7} | p < q} UEV(n|p) with start symbols {o%, | F in the end sequent of m|p}.
If N € E(Sp), then there exists a rigid derivation d: 0 — N in G of the form d =
dody ---dy where foralli <L,

~ dj: M; = M, is a full derivation in G, \ G, if i is even;

- dj: Mj = M1 is a full derivation in G, if i is odd.

Proof: The proofis by induction on p. The base case p = () holds trivially, choos-
ing do = d. Suppose p = gj where j € {0, 1}. Let L’ and (dlf)igy be given by the
induction hypothesis for q € Pos(r). For each i < L' therefore dlf : M; —» M, isa
full derivation in G, \ Gy, if i is even, and in G4 otherwise.

First suppose the final rule of 77|q is a cut. By Lemma 4.4 for each odd i, d; can
be replaced by a derivation of the form e; pe; 1 €;,2 : M; — M;.1 wheree; g and e; »
are full derivations in G40 = 9, and e, is a full derivation in G4;.

Suppose j = 1. Then we pick L = L’ and set

p ei1,2dleii1,0 1<Leven,
i= )
€i1, i<Lodd,

where, if necessary, ep41,0 = €-1,2 = (). If instead j = O we set L = 2L’ and for
each 2i < L' we define

!
dyi = d; dsiv2 = €2i11,1
daiv1 = €2i41,0 d4is3 = €2i41,2.

Now suppose the rule at position g in 7 is not a cut. Notice thatif e: a — Sis
a derivation in G4 with a € Ng, then e is either a derivation wholly in G4 or
a derivation wholly in G41. Thus for each odd i < L', dlf can be re-ordered as a
derivation e;e;1: M; — Mi.1 where e;g is full in G40 and e; 1 is full in G41.
Moreover, observe that the two derivations are independent of one another, so
ei,1€i,0: M; — M;,1. Using this fact it is straightforward to alter the arrangement
of derivations to obtain a satisfying sequence {d;)i<; with L < L'. O

4.3 Lifting

Another ingredient required in the analysis of the Quantifier Reduction rule
is commuting derivations with S-reduction. More precisely, given a derivation
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d: T — U and B-reduction R —x T, whether it is possible to ‘lift’ d to a derivation
e: R — Ssuchthat S —x U as in the figure below. This is not in general possible
as demonstrated by the example in Figure 3. Lemma 4.8 pins down sufficient
conditions for completing the square. Before this we define the reverse process
which can be visualised as ‘pushing’ a derivation through S-reduction.

R--8.. s Ao, ) - a -2 (. fx, )7
]X X X X
r—4.p fla, ) —% . fla, by
Fig. 3. Lifting

Definition 4.6. Let e = (p;, pi)i<inee): R — S be a derivation in grammar G and

suppose R »—x T. The derivation e” is defined by recursion on lh(e).

- Forlh(e) =0, el := ();

- Forlh(e)=n+1,el:= eg(pn, qi)i<k Where ey = {pi, pi)i<n and {q; | i < k} is
an enumeration of {q | rt,r(q) = pn}.

It is easily seen that

Lemma 4.7. Ife: R —» S,R —x TandeT: T — UthenS —x U, and if d is strongly

rigid, so is e”.

Lemma 4.8 (Lifting). Let d = {a; — Si, pi)i<k: T — U be a strongly rigid deriva-

tion in grammar G and R ~—x T. Suppose

1. for all positions qo, q1, if r.r(qo) = r1.r(q1) then the subderivations of d from
qo and g, are permutations of one another;

2. if a; € X then there exists p < p; and non-terminal a ¢ X such that a; < a and
Ulp = Aa.(U|p0).

Then there exists a strongly rigid derivation e: R — S such that e” is a permutation
ofdand S »x U.

Proof: Let rr g be the canonical function mapping positions in T to their corre-
sponding position in R. To each p € Pos(S) we can associate a particular position
in T corresponding to p. Thus let r}ls be a function such that

rils(p) € {qlrrs(q) =p}

for every position p. We now define e = f(d) recursively:
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- Fork=0,f(d) = ();

- Fork =1+1,ifp; = r}’lR(p)q for some maximal p € Pos(R) and some g,
set f(d) = f(do){a; — Si,pq) where dy = (a; — Si, pi)i<1, otherwise set
fld) = f(do).

f(d) is well-defined since condition 1. ensures that f(d) is invariant under the
choice of the inverse r~1, and condition 2. guarantees that every applicable pro-
duction rule in d will be also freely applicable in f(d). O

5 Reductions

We begin with showing that the simplest reductions yield homomorphisms.

Lemma 5.1. Suppose 1 ~ 1’ is an instance of a reduction rule in Figure 1 or 2 except
Contraction or Quantifier Reduction. Then £L(SG;) € E(Sr). If the reduction is not a
case of Weakening Reduction then in fact £L(S) = E(Gr).

Proof: Suppose m w 7' is and instance of Axiom Reduction and

IA A A

cut alp+T,A
nptrT,A

A homomorphism f: G, — G, can be easily given by a function which maps a
non-terminal v?q forv € {0, 7} and pq € Pos(n') with q # () to the corresponding
ones in 7 at position pOgq and is identity on all other non-terminals. Consider a
rule o — Sin 7’ then 0% — f(S) is a production rulein . If F € T, o}, — 01;0 is
also a production rules in §,; otherwise, F = A and the sequence

o) = o ot

is a derivation in 7. In either case, we have a derivation f(o’;) — f(S) in m as re-
quired. Conversely, one can define a homomorphism f: G, — G by the function
below, hence £(G;) = E(G).

fh) = A, fOR) = Vi
flahh) = fihh) = o fahh = floh) =4
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Now consider an instance of Weakening Reduction. Suppose

FI
—_w
cut mprT,A

—Ww

I,A AA
nprT,A
where I’ ¢ I'. A homomorphism from G, to G, is defined as follows. The function
f: Np — Ny is determined by
foRT) = v?oq for v € {0, T} and every q # () with pg € Pos('|p);
fyy=y for all other non-terminals.
Production rules from 7' are readily mapped to derivation in 7 and the remaining
conditions of d are trivially met.

Suppose instead that 7 w 7' is a case of rule permutation. Of particular in-
terest is if the reduction is the permutation of two cuts, for example 71|p and 7’|p

A)B X ﬁ ’11 : :
&V

A,VxB, A A,VxB
- cut
IA AAA
cut
nprIl,A A

N N\

I,A A, B[x/B], A

cut
I, A, B[x/p] v W

FyA’VXB A,VXB
alprT,A A

cut

where A is a I, formula and Bis 2.

We begin showing £(G) € E(Gr). This is achieved by considering the ho-
momorphism that maps, for i = 0, 1, 2, the copy of G, in G to the copy in G.
Explicitly, we define f: Ny — Nj as follows. For each position g, formula F and
v € {0, T} set

f(VI;OOOq) :V?Oq f(VIP;OOlq) _ vglOOq f(Vl;lq) _ v]p;llq.
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The non-terminals arising from positions p0O and p00 in 7’ are then appropriately
mapped to those in 71 so connections between the sub-grammars are preserved:

o . o .
f(vf?o):{vg ifFerl f(vioo):{vf. ifFerl

V% if F e Au{vxB) VoI if F e AU (BIx/BI}

In all other cases (i.e. a is a non-terminal of G, but not of Sﬁ, |p) we set f(a) = a.

We now argue that if A is not quantifier free and the last rule in mg is not
weakening then f is a homomorphism. Since 7 is a simple proof, A has the form
VxAg for some X formula Ag and there is an eigenvariable a € EV(r1p) such that
the last inference rule of g is

I, Aolx/a]
—V
I,A

By the definition of <, notice that ¢ <, a <, Tio for every & € EV(mp) \ {a}. It is
clear that f respects the ordering </, when restricted to non-terminals from either
o, 71 OF 7T2. The only other cases we need show are

FER*™) < ™) § n B an fTlg) an flob )
for every ¢ € EV(mp). The first inequation is given by the definition of <. The
second is determined by observing

pO 1 100 p10 11
Ean T < og U 0’;’l A B Th.p <n ovaB.

As f is injective on eigenvariables in 7' condition 6 is also satisfied and by Corol-
lary 4.3 we are done.

In the other cases, namely that A is quantifier free or A has no eigenvariable
associated to it in 1y, f need not be a homomorphism because for an eigenvari-
able ¢ € EV(mp) we will have £ 4, fbut & </, B. Nevertheless, by the Cut Partition
Lemma 4.4 it is simple to show that f maps rigid derivations in G, to rigid deriva-
tions in G.

The converse direction, £(S,) <€ E(G), is witnessed by the function f: N, —
Ny given by

f(lei-Oq) _ Vze‘OOOq f(szz‘qu) _ V]p;OOlq f(vgllq) _ VIp;lq
001 . - vfp ifFeA
A1) = {V? WE=A oy Lot gep_ g

0 .
Vi otherwise 1 .
Vi otherwise

for each q, F and v € {0, 1}, and setting f(a) = a in all other cases which in all
cases is a homomorphism. O
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We now proceed with Contraction Reduction. In this case the obvious renaming
of non-terminals is not injective and additional properties are required in order to
verify the preservation of rigidity i.e. condition 6 of homomorphism.

For the remainder of the section we use symbols x and y (possibly with in-
dices) as meta-variables for positions in terms to contrast with positions in proofs
which will be denoted by p, g, etc.

Lemma 5.2 (Contraction Reduction). If i, ' are simple II,-proofs and m ~ 1’ is
an instance of Contraction Reduction, L(Gy) = £(Gr).

Proof: Suppose that the reduction 7 ~ 7’ is an instance of Contraction Reduction
to position p as follows:

— IA I AA
I,A AA cut
—cut I,r*, A

il ‘
p+I,A

nptrI,A

Note that we have assumed the contraction is on a single formula A; the case for
contraction of multiple formulee is analogous. Consider the function f: Ny — N,
defined by

fiy) =f(y*)=y fory e EV(mp) FR00T) = fPO10) _ PO

f(6)=6 for 6 € EV(r11) FROHy = 10
FORYy = VB0 for F e AU {A} FOPY =20 for Fer
FOR0) = V810 forFeA f(vf-?p) v forFerl
fla)=a

It is easy to verify that f transforms production rules in G, to derivations in G.

. . 00 01 010 011
For instance, the production rules 74" — ag and 74" — a’/‘i{ -, from the cuts

. 0 1 10 0
in 71’ on A and A*, are transformed under f to 7} — ¢4 — o5 and 7}’ —

0'21 - crgio respectively.

Condition 6 is the only non-trivial case to verify. Suppose, in search of a con-
tradiction, d = ((a; — Si), Vi)i<in@): ao — S is a strongly rigid derivation in G,
and io, i1 < lh(d) are such that i) ip =4 i1, ii) f(ai,) = f(ai,) € Ry and iii) a;, + a;,.
We may assume d is the shortest rigid derivation satisfying these conditions, so
in particular for every i < lh(d), y; < yi, or yi < yi,, both hold only if i = 0, and
lh(d) = max{ip + 1,i; + 1}. By the definition of f, (ii) and (iii) we may assume
aj, =y € EV(ro) and a;, = y* € EV(r1j). The argument breaks into three cases:
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. . 010 00
1. d writes one of the two non-terminals ¢;. ~ or o’y ;

2. ag € EV(mo)UEV(}) or ag € {Uf?ooq, a?éqloq} for some g € Pos(mo) and simple
formula F;
3. there exist distinct jo, j; < 1h(d) and formulee Fy, F; € I such that for each

. 0 0
k € {0, 1}, 0 < jk < ik, Vji < Viy» o = of-o and a;j, = Uii"

Notice that the failure of 1 implies either 3 or that ag is a non-terminal from one of
o or 11y, a condition that, by the minimality of d, is equivalent to 2.

First suppose 1 holds. Due to the minimality of d the derivation must pass
through (from right to left) at least one of the two marked cuts, so there is i > j
such that either a; = T};Ol and S; = oﬁoo, ora; = TZ?H and S; = oi(flo. This is only
possible if A contains a universal quantifier and so, by simplicity of 7, A cannot be
in the class IT,, that is, A = Vx3yAq for some quantifier-free Ag. But then we may
find an eigenvariable of EV(sr1) that is written by d and contradicts assumption
.

Suppose 2 holds; in particular that ag € EV(m1p) or ag = 0;00:1 for some g €
Pos(mp) and simple formula F. Since a;, € EV(r15j) and yo < y;, there exists jo < i1
such that yg < yj, < yi, and either a;, = 75 ° or aj, € {r% | g < p and F is simple}
(if the production rule in d giving rise to a;, writes an eigenvariable from EV(nt) \
EV(mo) thenin fact aj, = T?: for some g < p and some F). Assuming 1 does not hold
the latter case will hold for some choice of j, whence there also exists jo < j; < i1
such that aj, € {0} | F € I'}. But then there will be jo < i < j; such that y; < yj, <
vi,» ai € EV(i1') \ EV(rr'|p) and & <, a; for every & € EV(n'|p), contradicting ().

If 3 holds then similar to the above argument there must exist i < lh(d) such
that a; € EV(n') \ EV(rr'|p) and ¢ </, a; for every & € EV(r').

By Lemma 4.2 we conclude £(G,) € E(9x). The converse inclusion holds be-
cause f is, in a suitable sense, surjective. In particular, for every rigid derivation
d in G, there exists a derivation d' in G, such that d is a permutation of f(d').
d' is chosen by replacing each sub-derivation that resides wholly within 71, by its
counterpart in 7] if this sub-derivation is immediately preceded or succeeded by
the production rules rﬁio N rgl or agl - af’_;o. This operation is guaranteed to
yield a derivation in G, by the Partition Lemma for Cut which implies that there is
no derivation in G, that write 020 to a term containing Tﬂo and involves only rules
taken from 7. O

Before we proceed with Quantifier Reduction we need the following lemmas.

Lemma 5.3. If 1 is a simple I1,-proof, d: Ti — S is a derivation in G, and S|x =
a € EV(n|q) for some x € Pos(S) and p < q € Pos(m) then there exist y < x and
B € EV(m) such that S|y = AB.(S|y0) and a < .
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Proof: By examination of the definition of Gj. O

Lemma 5.4 (Substitution). Let i be a regular proof, s a term whose free variables
do not appear in EV(r) and a ¢ EV(n). Then for every d: M — N in G(q/s) there
exists a derivationd': M' — N' in G,; such that M = M'[a/s] and N = N'[a/s] and
d' is strongly rigid iff d is strongly rigid.

Proof: Let f be the natural homomorphism from G to Gn(4/s). Notice f is surjective
on derivations up to permutation. O

Letd = ((a; — Si), ¥i)i<in): S — T beaderivation. Recall therelation ~4 defined
in Section 3.3. We could instead define ~4 on the set Pos(T). For xg, x; € Pos(T),
Xo ~¢ x1 if and only if there exists jo, j; < 1h(d) such that

1. xo =yj, and x1 =yj,,

2. aj,=aj €R,

3. foreveryip <i<lh(d)andk € {0, 1}, if a; € R and y; < yj, then aj, 4 a;.

The relation ~4 on positions (as opposed to indices) is not in general transitive but
it suffices to define rigidity and is a useful alternative. For example,

Lemma5.5. Let d: S — T be a derivation and suppose d' is a permutation of d.
If d' is a derivation and ~ is defined on positions then ~g3=~g4. In addition, ~4 is
independent of the choice of S.

Lemma 5.6 (Quantifier Reduction). If m and n' are the simple II,-proofs and  ~»
7' is an instance of Quantifier Reduction £(S) = £(Gx).

Proof: Suppose that the reduction m w '’ is an instance of Quantifier Reduction
to position p as follows:

N N

— FO,AS FI,AS
Fo,VXAX Fl,HXAX t
cu mlpt+To, I
flp +To, I P+ To, Iy

where A; abbreviates A[a/t]. Let § = G, and G’ = G,». We begin showing £(G) <
E(Gn).

Suppose a € Ngr and let d: a — T be a full strongly rigid derivation in §'.
We may assume d is partitioned according to the Partition Theorem 4.5, whence
d =dody---dyr and foreachi < L, d;: S; — Sis1 is a full derivation in ' \ 91’,, if
iiseven, andin G ;, otherwise. We determine a term T' »* T and rigid derivation
d': a — T'in G by recursion on L.
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IfL = 0,d = dy is a derivation solely in G’ \ 9;, and hence also a derivation
in G. So suppose L > 0. The Cut Partition Lemma 4.4 determines a strongly rigid
permutation of d; of the form epe; e, e3e, where
~ eo: S1 — S} is derivation using only rules in {0}, — api li<2AFeli;

- eq: S1 — S2 is a full derivation in the grammar 9p0’

- e3: 587 — S; isafull derivation in (Spa \ {Tpl}),

- e3={(Th = ), xi)iciak: ST — S = S3 ”1/01”0

- e4 = e4’1 e4 X S4 — S, where foreach 1 < i < k, ey,; is a derivation of
S, |x; from ap using only rules in G/ 00> and e’ 4’i is the induced derivation of
SHxi/S21xi] from S? obtained by adjusting e ; to S7.

The Substitution Lemma 5.4 provides translations of e; and e, to derivations
é1: S} > Siand &, = &', - &% : S > S5 in Gpo such that

3 = 82> 1T N as] St =8410% 10h>°] S2 = Sala/sl.

Within G, there is a simple derivation of s from a (i.e., a — TVX A, op ! —'S)
which, when combined with é; and the natural translation of e; into G0, ylelds
aderivation e = epé18,: S1 — §3 = S3 [Tpl/rplo].

The derivation e3, when translated to 9,,|p,4 becomes

&3: 87 - S}Ieh /Aa. o) - 5]

x100 . AX}(OO

and may be connected with e and &,'; to yield the derivation é given by

€0818,838)'1" - &/}°: S1 > Sh = Sz[xl/(/\a.S‘zlxl) o8]+ [xa/ (A Sa)xg) - s).

Clearly S '2 —q S>. All that remains is to show that the derivation d; ---dpr: S; —
T ‘lifts’ to a derivation azz S'2 — T such that doéazz a— Tis rigid and T—T
as then applying the induction hypothesis to d> will determine a rigid derivation
d':a— T'inGsuchthat T' — T.

First we note the following. Suppose yo and y; are distinct positionsin S, such
that S,|yo = Saly1 € Rgr and rs,.s, (Vo) ~ape rs,., (y1). If neither yg nor y; has the
form x;1y for any i < k and position y then by the choice of é and strong rigidity
of din fact yo ~a4,4, y1. If yo = x;1 however, then since S|y is an eigenvariable
outside 7t|p, also yo ~dyd, Y1

We can now verify that the lifting lemma can indeed be applied to d5 - - - d>1.
to obtain a term T »» T and derivation d,: S, — T: The first condition for lifting

4 Each ('r’/'%1 - 0'” )1s readily translated to pr — ‘r;’l s s (Aa.oz(:o) .S
S

XAy VxAx
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is provided by the argument in the previous paragraph in the case rg,, s, (yo) =
rs,.s) (y1); the second condition follows from Lemma 5.3. The previous argument
also suffices to deduce that doéd, is rigid. As applying the induction hypothesis
to az does not affect rigidity, we are done.

The converse direction, namely £(S,) € E(G), is more straightforward. Ev-
ery derivation e starting from a with 1h(e) > 3 will have e(1) = ng A e(2) = GpvxlT
and e(3) = s. Similarly, for any derivation e’ in G, if i < lh(e') and e'(i)|x has
the form (Aa.Sp) - S1 then S; = s. These observations allow a simple translation
of derivations in G, to derivations in G, preserving rigidity. Let d: a — Sbea
derivation in G; where a and S contain neither TLA nor asx 4> and let S 7 S'
be the term in which all abstractions on a have been reduced. Then there exists a
derivation d': f(a) — f(S') where f: N; — Terms(Z; U N,) is defined by

fla) = fiegiy ) = flol ) =5 SORP) =iy fpt =g

AxA,
forv € {0, 1}, qo € Pos(my) and g1 € Pos(m), and f(a) = a in all other cases.
Finally we may deduce that d’ is rigid whenever d is strongly rigid by an induction
on lh(d) using Lemma 4.7. As f is the identity function on terms in Terms(X), we
conclude £(G;) € £(Gx). O

6 Conclusion

We have established the following theorems.

Theorem 6.1. Let mg, 111, . .., Ty be a sequence of simple II,-proofs such that m;,,
is obtained from m; by the reduction steps outlined in Section 2.1. Then £(G,) <
L(Gn,). If, moreover, no step in the reduction is an instance of weakening reduction
then £(Sx,) = £(Sr,)-

Theorem 6.2. Let i + I' be a simple IT,-proof where I is a set of X1 formulae. There

exists a grammar G such that

L [Prgl < |ml + |1,

2. k(G <227,

3. The formula \/ gy FUEDEG) s valid,

4. If i’ is obtained from i by a sequence of simple IT,-proofs using the reduction
steps of Section 2.1 and all cuts in ' are on quantifier-free formulee then the
Herbrand set for ', H(r'), is contained in £(S); if no application of weakening
reduction is used then H(r') = L(9).

Proof: Let G be the modification of G,; which contains a single (fresh) start symbol
o and production rules ¢ — (F, or) for each F € I' n X1. 1. is immediate from the
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definition of G, 2. is a consequence of Lemma 3.14 and 4. is a corollary of the pre-
vious theorem and the observation that if 77 contains only cuts on quantifier-free
formulee then, up to S-equivalence of terms, H(mr) = £(G). Finally, 3. is deducible
from the first part of 4. by observing that standard cut elimination strategies, such
as in [Troelstra and Schwichtenberg, 1996], preserve simplicity of proofs. O

These results may be extended to proofs involving prenex II; and 2, formulz.
This can be achieved by endowing the simply typed A-calculus with product types
and pairing functions in the usual way. In addition to the typing definition for
simple IT; and X; formulea defined in the paper, for each position g and prenex IT,
formula A = VxB the two non-terminals 74 and og are assigned type type(t%) =
0 x type(rg), and ¢ and 74 have the dual type 0 — type(o) where o denotes
the type of first-order terms. In other words, if A = Vx; - Vx,y,3y1 --- Jy,B and B
is quantifier free then

type(t?) = type(og) = oMl = 0x(0%-:-x0)

m+1
type(UZ) = type(rg) =00 50— o™l

m

The production rules for existential and universal introduction in Table 2 then
become respectively

0 pO p
PTOd(p, I, 0)u {UgyA — (s, oﬁ[y/s])’ TA[y/S] g TEIyA - s},

0 0
prOd(P, II,9) U {a — (TsxA)O’ Tf}[x/a] s (Ts’xA)h GsxA - /la.O’i[X/a]}

where (., .)isa (polymorphic) binary pairing function with first and second projec-
tions (.)g and (.)1. Aside from a few technical considerations all the lemmas and
proofs presented here generalise to proofs with cuts and end-sequents of prenex
IT, and %, formulae.

6.1 Future work

We have shown the language of grammars defined for simple II,-proofs is invari-
ant under most cut reduction rules. It would be interesting to investigate under
which further transformations language invariance is maintained. For example,
as part of Lemma 5.1 we have shown that permuting two cuts does not change the
language of the proof grammar. In other words, composition by cut is an asso-
ciative operation which, as another interesting line of future work, would allow
the consideration of a category of proofs in the spirit of [Hyland, 2002]. Note, the
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results and techniques presented in this paper are independent of the exact syn-
tactic variant of the sequent calculus used and apply to two-sided, additive, etc.
calculi as well.

Further generalisation of this work would involve larger classes of cut-
formula of which there are two natural directions to proceed. The first is to
generalise to cuts on a wider class of IT; and X,-formulae. The simplest extension,
which can already be realised, is to simple proofs with cuts on arbitrary prenex IT,
formulee (this generalisation is described in detail above); more complex will be
considering boolean combinations of prenex IT, and X, formula and non-prenex
formule. A second generalisation would see proof grammars extended to prenex
IT,,-formulee. The relationship between proofs and grammars established thus far
suggests how to proceed: with IT; -cuts inducing non-terminals of type level 0 and
II,-cuts inducing, in addition, non-terminals if type level 1, the conjecture is that
IT,,+1-cuts will be amenable to analysis using non-terminals of level < n and order
n recursion schemes (a natural extension of context-free tree grammars to higher-
order). This is reminiscent to the relationship between the number of quantifier
alternations in an induction and the type level of the functional obtained from
Godel’s Dialectica interpretation [G6del, 1958], see e.g. [Avigad and Feferman,
1999].
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