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This article examines the computational content of the classical Gentzen sequent 
calculus. There are a number of well-known methods that extract computational 
content from first-order logic but applying these to the sequent calculus involves 
first translating proofs into other formalisms, Hilbert calculi or Natural Deduction 
for example. A direct approach which mirrors the symmetry inherent in sequent 
calculus has potential merits in relation to proof-theoretic considerations such as 
the (non-)confluence of cut elimination, the problem of cut introduction, proof 
compression and proof equivalence. Motivated by such applications, we provide 
a representation of sequent calculus proofs as higher order recursion schemes. Our 
approach associates to an LK proof π of ⇒ ∃vF , where F is quantifier free, an 
acyclic higher order recursion scheme H with a finite language yielding a Herbrand 
disjunction for ∃vF . More generally, we show that the language of H contains 
all Herbrand disjunctions computable from π via a broad range of cut elimination 
strategies.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The property of being a valid first-order formula is intimately tied to the consideration of the ground, 
i.e., variable-free, instances of that formula. This connection is apparent in most, if not all, proofs of the 
completeness theorem which, in one way or another, rely on the construction of a term model. The phe-
nomenon is plainly visible in Herbrand’s theorem which states that a formula is valid if, and only if, there 
is a finite expansion (of existential quantifiers to disjunctions and universal quantifiers to conjunctions of 
instances) which is tautological. This feature of classical first-order logic is in contrast to both classical 
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second-order logic, whose standard semantics goes beyond the ground instances of a countable language, 
and intuitionistic first-order logic, which exhibits a more complicated interaction between quantifiers and 
propositional connectives.

Proof-theoretically, the use of instances of a formula naturally leads to analytic, cut-free, proofs. Gentzen’s 
mid-sequent theorem makes the close connection between Herbrand expansions and cut-free proofs apparent. 
Taking this perspective on the cut-elimination theorem, and thereby keeping the well-known complexity 
bounds in mind, shows that, in essence, cut-elimination consists of the computation of a Herbrand expansion. 
One may ask, however, whether it is possible to compute Herbrand expansions in a more direct way, 
circumventing the cumbersome process of cut-elimination. There are a number of formalisms that do just 
that, the historically first being Hilbert’s ε-calculus [25] (see [30] for a contemporary exposition of the ε-
theorems in English). In [17], Gerhardy and Kohlenbach adapt Shoenfield’s variant [38] of Gödel’s functional 
interpretation [18,6] to a system of pure predicate logic. A recent adaptation of the functional interpretation, 
utilising star types to interpret contraction, is given by Ferreira and Ferreira [14]. Related to proof nets is 
the work of Heijltjes [19] and McKinley [28], and a similar approach, in the formalism of expansion trees [29], 
can be found in [5]. A different method with similar aims is cut-elimination by resolution [9].

The present work is motivated by two follow-up questions: Which Herbrand expansions are implicit in 
(i.e., can be computed from) a sequent calculus proof with cut? What is a minimal amount of information 
needed to describe these expansions? These questions are closely related to the issue of (non-)confluence 
of cut elimination. For instance, the number of distinct Herbrand expansions computed by Gentzen-style 
cut-elimination can be non-elementary in the size of the starting proof [7]. In other words, the choice of 
reduction strategy affects which Herbrand expansion is computed by cut elimination. In light of this the 
motivating questions become a matter of representation, namely how to express the Herbrand expansions 
embedded in a proof with cut while abstracting away the propositional structure of the original proof and 
avoiding direct computation of cut-free proofs.

In this article, we provide a representation of Herbrand’s theorem as languages of higher order recursion 
schemes. Higher order recursion schemes are a generalisation of regular tree grammars (which correspond 
to order-0 recursion schemes) to finite types. They have their origin in Park’s program schemes [34] and are 
widely used for verification of higher-order functional programs [33].

More specifically, sequents in a given proof with cut are interpreted as non-terminals whose production 
rules follow the local instantiation structure of quantifiers. The type of a given non-terminal is completely 
determined by the quantifier complexity of formulæ in the corresponding sequent in such a way that a sequent 
comprising Σn ∪Πn formulæ is represented by a non-terminal of order n. These types correspond closely to 
the types arising in Shoenfield’s version of Gödel’s functional interpretation. Concerning production rules, 
cut corresponds to composition of non-terminals and contraction gives rise to non-determinism.

Our representation of Herbrand’s theorem is specifically tailored for the classical sequent calculus in 
the sense that it remains faithful to the non-deterministic process of computing Herbrand expansions via 
(reductive) cut elimination. In this respect, we believe the present work marks the first method of Her-
brand extraction that operates directly on sequent calculus proofs. The framework of higher order recursion 
schemes opens the door to applying techniques and results from formal language theory directly to structural 
proof theory. An example of the latter is an upper bound on the size (and, therefore, number) of Herbrand 
expansions which can be obtained via a broad array of cut elimination strategies. On the other hand, our 
adaptation of Beckmann’s theorem on the length of β-reductions for the simply-typed λ-calculus [11] to lan-
guage bounds on acyclic higher order recursion schemes, may be of independent interest in formal language 
theory.

The main result of this article can be summarised as follows and was announced in [3].

Theorem 1.1. Let F be a quantifier-free formula and π a first-order proof of ∃�vF in which cut-formulæ are 
prenex Πn or Σn. There exists an acyclic order n recursion scheme H with language L(H ) such that: 
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i) 
∨

�t∈L(H ) F (�t) is valid; ii) |L(H )| ≤ 24|π|3
n+2 where |π| is the number of inference rules in π; iii) L(H )

subsumes the Herbrand set extracted from any cut-free proof that can be obtained from π via a sequence of 
Gentzen-style cut reductions that always reduces to the weak (quantifier) side of a cut before the strong side.

Outline

We begin by rehearsing the sequent calculus and reductive cut elimination. Higher order recursion schemes 
are introduced in Section 3. Theorem 3.16 establishes the upper bound on the size of languages for acyclic 
recursion schemes by generalising Beckmann’s theorem on the length of reduction sequences for simply typed 
λ-calculus [11]. Section 4 concerns our representation of sequent calculus proofs as higher order recursion 
schemes. Connections with the functional interpretation of classical logic are discussed and a correspondence 
between the two type hierarchies established (Theorem 4.4). The upper bound on language size stated in 
Theorem 1.1 is proved in Theorem 4.15. Section 5 provides a case study in which we analyse the Herbrand 
scheme for a proof of the pigeonhole principle. In Section 6 we establish the technical machinery necessary to 
relate reductive cut elimination to derivations in Herbrand schemes. The analysis of languages of Herbrand 
schemes in relation to reductive cut elimination is undertaken in Section 7, from which Theorem 1.1 follows. 
The article concludes with a discussion of the results and potential extensions.

2. Sequent calculus for classical first-order logic

Terms and formulæ of first-order logic are defined as usual using the connectives ∧, ∨ and quantifiers ∀, 
∃, as well as a selection of predicate and function symbols. We assume two sets of variable symbols, free
variables, denoted α, β, etc., and bound variables, v, w, etc. Upper-case Roman letters, A, B, etc. denote 
formulæ and upper-case Greek letters Γ, Δ, etc. range over sequents, namely finite sequences of formulæ. 
We abbreviate by Γ, Δ the concatenation of Γ and Δ; and Γ, A is shorthand for Γ, {A}. The length of a 
sequent Γ is denoted |Γ|. As the order of the formulæ in a sequent is often (though not always) unimportant, 
we will frequently identify sequents with (finite) multisets. We write Ā to denote the dual of the formula A
obtained by de Morgan laws. Given a sequence of variable symbols �v = (v0, . . . , vk−1) of length k, we write 
∀�vA and ∃�vA as shorthand for ∀v0 · · · ∀vk−1A (resp. ∃v0 · · · ∃vk−1A). If �t = (t0, . . . , tk−1) is a sequence of 
terms of the same length, A(�t/�v) is the formula obtained from A by replacing each vi by the corresponding 
term ti, where bound variables in A are renamed as necessary to avoid variable capture.

The following abbreviations will be used in later sections. For a formula A, we write Aqf to indicate that 
A is quantifier-free, and u(A) (resp. e(A)) for the number of consecutive universal (existential) quantifiers 
in A before encountering an existential (universal) quantifier:

u(∀vA) = u(A) + 1 e(∃vA) = e(A) + 1

u(∃vA) = u(Aqf) = 0 e(∀vA) = e(Aqf) = 0

For notational simplicity, we work in one-sided sequent calculus with explicit structural rules for weak-
ening (w), contraction (c) and permutation (p), though the results presented apply equally to two-sided 
(so-called Gentzen-style) sequent calculi and either form of calculus without explicit structural rules. The 
axioms and rules of the calculus are laid out in Fig. 1. The quantifier introduction rules ∀�α and ∃�r introduce 
a sequence of quantifiers in one application. Applications of ∀�α are subject to an eigenvariable condition 
that if �α = (α0, . . . , αk−1) then αi does not occur in the sequent Γ, A for any i < k. In each inference 
rule, the formulæ which are explicitly mentioned in the premise(s) (usually the right-most formula in the 
sequent) are said to be active in the rules applied. For example, A and B are active in ∧ rule, both copies 
of A are active in contraction, and there are no active formulæ in the weakening rule. Active formulæ of cut
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Axioms: A, Ā for A quantifier-free

Inference rules: Γ, A,B
∨ −−−−−−−−−−

Γ, A ∨ B

Γ, A Δ, B
∧ −−−−−−−−−−−−−−

Γ,Δ, A ∧ B

Γ, A(�α/�v)
∀�α −−−−−−−−−−−−

Γ,∀�vA
Γ, A(�r/�v)

∃�r −−−−−−−−−−−
Γ,∃�vA

Γ, A Δ, Ā
cut −−−−−−−−−−−−−

Γ,Δ

Γ
w −−−−−

Γ, A
Γ, A,A

c −−−−−−−−
Γ, A

Γ, B,A,Δ
p −−−−−−−−−−−−
Γ, A,B,Δ

Fig. 1. Axioms and rules of sequent calculus.

are refereed to as cut formulæ. We often leave the applications of the permutation rule implicit, writing, for 
instance,

Γ, A(�α/�v),Δ
∀�α −−−−−−−−−−−−−−−

Γ,∀�vA,Δ
Γ, A,Γ′ Δ, Ā,Δ′

cut −−−−−−−−−−−−−−−−−−−−−
Γ,Γ′,Δ,Δ′

to abbreviate derivations

Γ, A(�α/�v),Δ
p∗ −−−−−−−−−−−−−−−

Γ,Δ, A(�α/�v)
∀�α −−−−−−−−−−−−−−−

Γ,Δ,∀�vA
p∗ −−−−−−−−−−−

Γ,∀�vA,Δ

Γ, A,Γ′
p∗ −−−−−−−−

Γ,Γ′, A

Δ, Ā,Δ′
p∗ −−−−−−−−−

Δ,Δ′, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−

Γ,Γ′,Δ,Δ′

where in each case p∗ denotes a sequence of permutation inferences p, a notation we also extend to the other 
structural rules.

Definition 2.1. A proof is a finite tree labelled by sequents obtained from the axioms and rules of the calculus 
with the restriction that cuts apply to prenex formulæ only. Without loss of generality, we assume all proofs 
are regular, by which we mean:

1. every eigenvariable in the proof appears in exactly one ∀�α inference in the proof and does not occur in 
any sequent outside the sub-proof of this inference,

2. if A appears as the active formula of a quantifier inference ∀ (∃) then u(A) = 0 (resp. e(A) = 0).

A proof that does not contain the rule cut is cut-free. A proof in which every cut formula is quantifier-free 
is called quasi cut-free.

We write π � Γ to express that π is a regular proof with Γ being the sequent appearing at the root 
of π. EV(π) denotes the set of eigenvariables in a proof π, and for sequences �α = (α0, . . . , αk−1) and 
�t = (t0, . . . , tk−1) of variable symbols and terms, π(�t/�α) is the result of replacing throughout the proof π
each occurrence of the variable symbol αi by the term ti.

2.1. Cut reduction and normal forms

The standard cut reduction and cut permutation steps are given in Figs. 2 and 3. For the sake of a concise 
presentation, the axioms and rules are stated with implicit permutation in place. We assume all the proofs 
drawn in Figs. 2 and 3 are regular. Hence, in the case of contraction reduction where the sub-proof π1 is 
duplicated it is assumed that the eigenvariables are renamed in the copy, which is emphasised by annotating 
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Axiom:

π

Γ, A A, Ā
cut −−−−−−−−−−−−−−−−

Γ, A

� π

Γ, A

Boolean:

π0

Γ, A

π1

Δ, B
∧ −−−−−−−−−−−−−−−−−−−

Γ,Δ, A ∧ B

π2

Π, Ā, B̄
∨ −−−−−−−−−−

Π, Ā ∨ B̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Π

� π0

Γ, A

π1

Δ, B

π2

Π, Ā, B̄
cut −−−−−−−−−−−−−−−−−−−−−

Δ,Π, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Π

Quantifier:

π0

Γ, A(�α/�v),
∀�α −−−−−−−−−−−−

Γ,∀�vA

π1

Δ, Ā(�r/�v)
∃�r −−−−−−−−−−−−

Δ, ∃�vĀ
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ

�
π

(�r/�α)
0

Γ, A(�r/�v)

π1

Δ, Ā(�r/�v)
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ

Weakening:

π0

Γ
w −−−−−

Γ, A

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−

Γ,Δ

�
π0

Γ
w∗ −−−−−

Γ,Δ

Contraction:

π0

Γ, A,A
c −−−−−−−−

Γ, A

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−

Γ,Δ

�

π0

Γ, A,A

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−−

Γ, A,Δ

π∗
1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Δ
c∗ −−−−−−−−

Γ,Δ

Fig. 2. One-step cut reduction rules.

Unary inf.:

π0

Γ′, A
r −−−−−
Γ, A

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−

Γ,Δ

�

π0

Γ′, A

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−

Γ′,Δ
r −−−−−−
Γ,Δ

Binary inf.:

π0

Γ′

π1

Δ′, A
r −−−−−−−−−−−−−−−−−−−

Γ,Δ, A

π2

Λ, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Λ

� π0

Γ′

π1

Δ′, A

π2

Λ, Ā
cut −−−−−−−−−−−−−−−−−−−−

Δ′,Λ
r −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Λ

Fig. 3. One-step cut permutation rules.

the sub-proof with an asterisk i.e. π∗
1 . In the two reductions of Fig. 3, r represents an arbitrary unary or 

binary inference rule. An example of the binary inference permutation rule for r = cut is
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π0

Γ, B

π1

Δ, B̄, A
cut −−−−−−−−−−−−−−−−−−−−

Γ,Δ, A

π2

Λ, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Λ

� π0

Γ, B

π1

Δ, B̄, A

π2

Λ, Ā
cut −−−−−−−−−−−−−−−−−−−−

Δ, B̄,Λ
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Λ

For proofs π and π′ we write π � π′ to express that π′ is obtained from π by application of a reduction or 
permutation rule to a sub-proof of π, and let �∗ denote the reflexive transitive closure of �. If π � π′ then 
the reduced cut either no longer exists, is replaced by cuts on formulæ with either lower logical complexity 
or fewer applied contractions, or permuted to a subproof. In any given proof there may, however, be many 
cuts and eliminating one can (through duplicating a sub-proof) result in introducing several copies of other 
cuts. To obtain a cut-free proof, it is necessary to provide a (terminating) cut elimination strategy i.e. a 
procedure that given any proof π � Γ induces a sequence of cut reduction and permutation steps π �∗ π′

such that π′ � Γ and the rule cut is not used in π′.

Theorem 2.2 (Gentzen’s Hauptsatz). There is a cut elimination strategy that transforms any proof in first-
order logic to a cut-free proof.

There are many cut elimination strategies such as top-most reduction strategy or the elimination of the 
cut with highest logical complexity. Different strategies provide different cut-free proofs, commonly also 
referred to as normal forms. In fact, there exist proofs with infinitely many normal forms (see e.g. [41, 
Example 2.1.3]). We now turn to the relationship between cut elimination and Herbrand’s theorem.

2.2. Herbrand’s theorem and cut elimination

Herbrand’s theorem is considered a classic result in proof theory. It can be thought of as reducing validity 
in first-order logic to validity in propositional logic. From the modern perspective it can also be seen as 
extracting computational content to first-order proofs. A simple case of the theorem is the following.

Theorem 2.3 (Herbrand’s theorem). A formula ∃�vAqf is valid if and only if there exists a finite set of 
sequences of terms {�t0, �t1,. . . ,�tk} such that 

∨k
i=0 Aqf(�ti/�v) is valid.

If a formula ∃�vAqf is valid then any set of terms {�t0, . . . , �tk} that validate the disjunction 
∨k

i=0 Aqf(�ti/�v)
is called a Herbrand set, and the disjunction itself a Herbrand disjunction for the formula.

Herbrand’s theorem pre-dates Gentzen’s Hauptsatz but the latter readily provides an instructive proof 
of the theorem: Suppose ∃�vAqf is valid and fix a quasi cut-free proof π � ∃�vA. It is possible to permute 
the rules applied in π so that no quantifier inference occurs above a purely propositional rule (Gentzen’s 
mid-sequent theorem [15]). Once the proof is partitioned into a propositional part and a quantifier part, the 
terms that validate the formula can be directly read off from the mid-sequent, the sequent separating the 
two parts.

Herbrand’s original statement is much more general than that stated above and applies to any formula 
of first-order logic thanks to Herbrandisation, the dual notion of Skolemization. Given an arbitrary formula 
A, by introducing suitable constant and function symbols it is possible to remove universal quantifiers in A
and obtain a Σ1 prenex-formula which is equi-valid to A. Herbrandisation can also be applied to a proof of 
a sequent Γ transforming it to a proof of the Herbrandisation of Γ.

If a Herbrand set (disjunction) is obtained via cut elimination it is customary to refer to it as a Herbrand 
set (disjunction) of the proof. Note that these are not unique: different reduction strategies can lead to 
non-elementary many pairwise distinct Herbrand disjunctions [7]. For both computing and representing 
Herbrand disjunctions it is therefore desirable to bypass cut elimination. There has been a number of 
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successful approaches such as via Herbrand nets [28], proof forests [19], expansion trees with cut [5] and 
functional interpretation [17]. In the next section we introduce a fresh approach based on higher order 
recursion schemes. The aim of this approach is twofold. On the one hand, we wish to provide a representation 
of Herbrand’s theorem specifically tailored for the classical sequent calculus which is faithful to the non-
deterministic process of computing Herbrand expansions via (reductive) cut elimination. On the other hand, 
the framework of higher order recursion schemes opens the door to applying techniques and results from 
formal language theory directly to structural proof theory.

3. Recursion schemes

We begin this section introducing the type system and terms that will be used throughout the paper. 
In Sections 3.2 and 3.3, higher order recursion schemes for this type hierarchy are introduced. The upper 
bounds on language size we establish in Theorem 3.16 allow us to deduce the numerical bound claimed in 
Theorem 1.1. The association of proofs with recursion schemes is given in Section 4.

3.1. Types and terms

The type system we utilise extends the hierarchy of simple types (over a type of individuals ι) by pair 
types and two additional type constants. These are the unit type, denoted ε, and a type ς of (stacks of) 
substitutions, elements of which are finite sequences of pairs (α, r) where α and r are elements of some (and 
the same) type. We are interested specifically in the case that α is a constant symbol (of simple type) from 
a particular ranked alphabet Σ, and refer to the type ς as the type of substitution stacks (over Σ), or simply 
Σ-substitutions.

The informal reading behind the type ς is that of an accumulator for a sequence of substitutions that 
are generated by reading a particular thread through a formal proof: when a witness to an existential 
quantifier is encountered along such a thread, the witness is outputted accompanied by the current stack of 
substitutions. The substitutions are not evaluated at the formal level but recorded as an element of ς.

We begin with a formal definition of the types and conventions for their representation, followed by 
ranked alphabets and the recursive definition of (typed) terms including the precise form of inhabitants of 
the type of substitution stacks.

Definition 3.1. The types are defined in the following way.

• ι is a type, called the type of individuals.
• ε is a type, called the unit type.
• ς is a type, called the type of substitution stacks.
• Function types: if ρ, σ are types then ρ → σ is a type.
• Pair types: if ρ, σ are types then ρ × σ is a type.

A type formed without reference to ς is called basic, and one formed only out of ι and → is simple. The 
types ι and ε are referred to collectively as ground types and any type that is not a function type is called 
prime. The sequence types are the types of the form ιn for any n, where ι0 = ε and ιn+1 = ι × ιn. The set 
of all types is denoted Type.

We follow the convention that the two type forming operations × and → associate to the right, and that 
→ binds more strongly than ×, so for ρ0, . . . , ρk types we have

ρ0 × ρ1 × · · · × ρk = ρ0 × (ρ1 × · · · × ρk)
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ρ0 → ρ1 → · · · → ρk = ρ0 → (ρ1 → · · · → ρk)

ρ0 × · · · × ρi → ρi+1 × · · · × ρk = (ρ0 × · · · × ρi) → (ρi+1 × · · · × ρk)

Every type ρ has a unique decomposition ρ = ρ1 → ρ2 → · · · → ρk → co(ρ) where co(ρ) is a prime type. 
Given such a decomposition of ρ we refer to co(ρ) as the co-domain of ρ, to k as the arity of ρ, and to ρi
(1 ≤ i ≤ k) as the i-th domain of ρ. Note that the co-domain of a ground type or pair type is the type itself.

The order of a type ρ generalises the usual definition of order for simple types. Motivated by later 
technicalities however, it convenient to assume any function type whose co-domain is the unit type has 
order 0, which in our Herbrand schemes will always be observationally equivalent to a single constant 
function, has order 0.

Definition 3.2 (Order). The order of a type ρ, ord(ρ), is defined as follows.

ord(ι) = ord(ε) = ord(ς) = 0 ord(ρ× σ) = max{ord(ρ), ord(τ)}

ord(ρ → σ) =
{

0, if co(σ) = ε,
max{ord(ρ) + 1, ord(σ)}, otherwise.

Definition 3.3 (Ranked alphabet). A (ranked) alphabet is a pair A = 〈S, λ〉 where S is a set, called the carrier
of A, and λ : S → Type is a type assignment for elements of S. If λ(S) is a simple (basic) type for every 
S ∈ S we call A simple (resp. basic). Two ranked alphabets are disjoint just in case their carriers are disjoint 
sets.

Given an alphabet A = 〈S, λ〉, we write αρ ∈ A if α ∈ S and λ(α) = ρ, and hence frequently identify A
with the set {αλ(α) | α ∈ S} of symbols with type annotations. For alphabets A = 〈S, λ〉 and B = 〈S′, λ′〉, 
we write A ⊂ B if S ⊆ S′ and λ = λ′ � S. In case A and B are disjoint, A ∪ B denotes the alphabet formed 
by the union of A and B, namely 〈S ∪ S′, λ ∪ λ′〉. The empty alphabet is denoted ∅.

Definition 3.4 (Terms and substitutions). Fix alphabets Σ ⊂ A where Σ is simple. The A-terms over Σ
(henceforth A-terms) and the types they inhabit are defined inductively as follows, where r : ρ expresses 
that r is an A-term of type ρ.

1. 〈〉 is an A-term of type ε.
2. If αρ ∈ A then α is an A-term of type ρ.
3. If r : ρ and s : σ then 〈r, s〉 is a A-term of type ρ × σ.
4. If r : σ → τ and s : σ then rs is a A-term of type τ .
5. ⊥ is an A-term of type ς.
6. If a : ς and r : ρ, and αρ ∈ Σ then [α ← � r]a is an A-term of type ς.
7. If r : ρ, a : ς and ρ is basic then r · a is an A-term of type ρ.

Note that λ-abstraction is not present in the term calculus, so the existence of terms of function type 
depends the A-symbols.

In addition to the notation r : ρ used above, we may also write rρ to express that r is an A-term of 
type ρ. We drop mention of Σ and A if they can be inferred from the context or are not important to the 
given setting, in which case A-terms are referred to simply as terms. Terms arising from clauses 1, 2 and 
5 are called constants; terms arising from 3 and 4 are called pairs and applications respectively; terms of 
type ς are called substitution stacks; and terms of the form in 7 are called explicit substitutions (or simply 
substitutions if there is no cause for confusion). A basic term is any term constructed via the rules 1 to 4
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only, i.e. a B-term for some basic alphabet B. A term of a sequence type is called a sequence. Application is 
assumed to associate to the left, and pairing and the formation rule for substitution stacks both associate 
to the right.

The sub-term relation is defined as usual over the basic terms, and is extended to terms containing 
substitutions by defining the sub-terms of ⊥ to be {⊥}, the sub-terms of a = [α ← � r]b to be a and any 
sub-term of r or b, and the sub-terms of r = s · a to be r and any sub-term of s or a. Thus the basic terms 
are precisely those terms that do not have a substitution stack as a sub-term.

Given a finite sequence of terms (ri : ρi)i≤k, let 〈r0, r1, . . . , rk〉 be the term r0 if k = 0 and, otherwise, 
the pair 〈r0, 〈r1, . . . 〈rk−1, rk〉 · · ·〉〉 of type ρ0 × ρ1 × · · · × ρk. The order of a term is the order of its type.

Proposition 3.5. If Σ ⊂ Σ′ are simple alphabets and A is an alphabet extending Σ′, then every A-term over 
Σ is an A-term over Σ′.

In addition to the term-level explicit substitutions, there is of course the usual operation of substituting 
given symbols by terms of corresponding type which we refer to as implicit substitution. Explicit substitutions 
can be interpreted as implicit substitutions by reading terms r · a as the image of r under the (implicit) 
substitution described by a, a process we call evaluation. The following definitions explicate these two 
operations. Fix an alphabet A.

Definition 3.6 (Implicit substitution). For A-terms r : ρ, t0 : τ0, . . . , tk : τk and distinct symbols 
ατ0

0 , . . . , ατk
k ∈ A, the term r(�t/�α) is the A-term given by simultaneously replacing every occurrence of 

αi (for i ≤ k) in r by ti, defined recursively by:

β(�t/�α) =
{
β, if β ∈ A and β /∈ {αi | i ≤ k},
ti, if β = αi,

〈〉(�t/�α) = 〈〉 (rs)(�t/�α) = r(�t/�α)s(�t/�α)

⊥(�t/�α) = ⊥ 〈r, s〉(�t/�α) = 〈r(�t/�α), s(�t/�α)〉
([β ← � s]a)(�t/�α) = [β ← � s(�t/�α)](a(�t/�α)) (r · a)(�t/�α) = r(�t/�α) · (a(�t/�α))

If the choice of �α can be inferred from context, we write r(�t) in place of r(�t/�α).

Definition 3.7 (Evaluating substitutions). Given an A-term r and a substitution stack a = [α1 ← �

s1] · · · [αk ← � sk]⊥ : ς over some simple alphabet Σ ⊂ A, the evaluation of r relative to a is the A-term over 
Σ given by

ra := r(s1/α1) · · · (sk/αk).

The evaluation of r is the term r◦ given by recursively evaluating relative to each substitution in r, namely 
evaluation leaves basic terms unchanged, commutes with application and pairing, is defined by ⊥◦ = ⊥ and 
([α ← � r]a)◦ = [α ← � r◦]a◦ on substitution stacks, and by (r · a)◦ = (r◦)a◦ for explicit substitutions.

Note that the evaluation of a substitution stack on a term is well-defined due to the typing constraints 
on their formation.

An alphabet generally specifies a set of symbols which are associated certain re-write rules in a recursion 
scheme. In this context, an explicit substitution acts as a delayed substitution which is not evaluated until 
no further re-writes to sub-terms are possible. For instance, over the alphabet {Fι→ι, Gι, eι, ◦ι→ι→ι, αι} with 
associated re-write rules Fx → (G ◦ x) · [α ← � e]⊥ (for any instantiation of x) and G → α, a derivation 
starting from the term t = Fα is
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t → (G ◦ α) · ([α ← � e]⊥) → (α ◦ α) · ([α ← � e]⊥).

The final term evaluates to e ◦ e. Attempting to read the explicit substitution implicitly leads also to the 
derivation

t → (G ◦ α) · ([α ← � e]⊥) = G ◦ e → α ◦ e.

Lemma 3.8. If r : ρ is a Σ-term for some simple alphabet Σ and ρ is a basic type then r◦ is a basic Σ-term 
of type ρ.

Proof. All substitution stacks that may occur in a term of basic type built from an alphabet of simply-
typed symbols must be within the context of an explicit substitution. As evaluation replaces every explicit 
substitution by an implicit one, the result is a basic term of the same type. �
Lemma 3.9. If r and a = [α ← � s]b : ς are A-terms such that α does not occur in r, then ra = rb.

Definition 3.10 (Σ-length). Given alphabets Σ ⊂ A and an A-term s, the Σ-length of s, written |s|Σ, is the 
number of occurrences of symbols in s that are not Σ-terms, formally: |α|Σ = 0 if α ∈ Σ ∪ {〈〉}; |α|Σ = 1 if 
α ∈ A and α /∈ Σ; and |r|Σ = |s|Σ + |t|Σ if r ∈ {〈s, t〉, st, s · t, [α ← � s]t}.

In particular, the Σ-length of a Σ-term is 0 and if Σ is the empty alphabet then Σ-length of any term is 
the number of leaves in the tree representation of the term not labelled by 〈〉.

Notational conventions Symbols ρ, σ and τ (also with indices) range over types. We commonly notate 
alphabets by upper-case Roman symbols in calligraphic typeface: A, B, etc., though Greek symbols Σ and 
Σ′ will be used for simple alphabets. Sans-serif typeface (f, F, s, S, etc.) and lowercase Greek symbols α, β, 
etc. range over elements of ranked alphabets, with the latter particularly used for constants of simple type. 
In the Herbrand schemes we introduce in Section 4, the constant symbols of simple type will be precisely 
the eigenvariables of sequent calculus proofs, hence our use of the same symbols. Italicised letters r, s, t, R, 
S, etc. range over terms and a, b over substitution stacks, i.e. terms of type ς.

3.2. Higher order recursion schemes

Higher order recursion schemes (HORS) are a generalisation of regular and context-free grammars to the 
simple type hierarchy. Their origin lies in Park’s program schemes [34] from the late 1960s. More recently, 
HORS have found notable applications in the verification of higher-order functional programs [31,26] (see, 
e.g. [33], for an overview).

In this section we recall the notion of higher order recursion schemes, which we generalise to the type 
system introduced above. We establish bounds on the size of languages of acyclic HORS (Corollary 3.17), 
which will be utilised later to deduce upper bounds on the length of Herbrand disjunctions.

Definition 3.11 (Higher order recursion scheme). A (non-deterministic) higher order recursion scheme, or 
simply recursion scheme, is a tuple R = 〈Σ, N , S, P〉 where Σ is a simple alphabet, N is a alphabet of 
non-terminals disjoint from Σ, S ⊆ N is a designated finite set of starting symbols of sequence type, P is a 
set of pairs (Fρ, t), called production rules, such that Fρ ∈ N and t : co(ρ) is a (Σ ∪N ∪{xρ1

1 , . . . , xρk

k })-term 
over Σ where xi is a fresh symbol not in N and ρi is the i-th domain of ρ. A production rule (Fρ, t) where 
the arity of ρ is k is written as

Fx1 · · ·xk →R t,
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or F�x →R t. Notice that by definition the term Fx1 · · ·xk is of type co(ρ).
A non-terminal F ∈ N of R is determined if there is a unique production rule (Fρ, t) in P. By an R-term

we mean a (Σ ∪N )-term over Σ. The order of R is the supremum over orders of the types of non-terminals 
of R.

Notice that we do not require that R contains only finitely many non-terminals, nor that the set of start 
symbols is non-empty. This is for technical convenience as it allows us to consider the recursion schemes of 
the next section as finitely generated ‘sub-schemes’ of a single infinite recursion scheme. Moreover, higher 
order recursion schemes are traditionally presented in the context of simple types, wherein start symbols 
are all of type ι (and indeed a single start symbol suffices) and production rules have the form F�x → t with 
t : ι. The above definition is a direct extension of recursion schemes that accommodates non-trivial prime 
types.

A given non-terminal may be assigned multiple production rules, leading to non-determinism. To simplify 
presentation of production rules in this case we adopt the convention of writing

F�x →R t0 | · · · | tk

to express that R contains exactly the production rule F�x → ti for each i ≤ k, i.e. F�x →R ti for each i ≤ k

and if F�x →R t then t = ti for some i ≤ k.

Definition 3.12 (Derivations and language). Let R = 〈Σ, N , S, P〉 be a higher order recursion scheme. We 
extend the relation →R to a relation on R-terms defined by setting r →R s if either

• r = Fr1 · · · rk for some Fρ ∈ N with arity k and there exists a production rule F�x →R t such that 
s = t(�r/�x);

• r = t(r0/x), s = t(s0/x) and r0 →R s0.

A derivation of s from r is a sequence r = r0 →R · · · →R rk = s, the length of which is k. We say s
is derivable from r in R, in symbols r →∗

R s (or r →∗ s if R is clear from the context), if there exists a 
derivation of s from r, and s is derivable in R if s is derivable from some S ∈ S. The language of R, written 
L(R), is the set of pairs (S, t) such that S ∈ S, t is a basic Σ-term and S →∗

R t.

Definition 3.13. Let R = 〈Σ, N , S, P〉 be a higher order recursion scheme. R is finite if N and P are both 
finite sets, and is acyclic if there exists a transitive, irreflexive relation < on N such that for every production 
rule F�x →R t and every non-terminal G occurring in t, G < F.

Lemma 3.14. A finite acyclic recursion scheme induces a finite language.

An upper bound on the size of the language of acyclic recursion schemes can be obtained by reducing 
the problem to the length of reduction sequences for the simply-typed λ-calculus. Bounds on normalisation 
in the simply-typed λ-calculus have been given by Schwichtenberg [36] and improved to exact bounds by 
Beckmann [11]. In the following we use Beckmann’s result to obtain concrete bounds for acyclic recursion 
schemes. Let 2n0 = n and 2nk+1 = 22n

k and extend the length function of the previous section to include 
λ-abstractions by setting |λxs|Σ = |s|Σ + 1.

Theorem 3.15 (Beckmann [11]). Let t be a term in the simply-typed λ-calculus over a simple alphabet Σ. 
The length of any β-reduction sequence starting from t is bounded by 2|t|Σd(t) where d(t) denotes the maximum 
order among sub-terms of t.
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Beckmann’s bound still applies if t is an arbitrary λ-term over the calculus of Σ-terms given in Defini-
tion 3.4 subject to the restriction that 〈〉 is the only Σ-term of type ε (a necessary restriction due to our 
requirement that ord(σ → ε) = 0). Non-deterministic reductions can also be incorporated via a fresh oper-
ator | and permitting β-reductions of the form (λx. t0| · · · |tk)s →β ti(s/x) for each i ≤ k. In this case the 
length and the function d is given by |s|t|Σ = max{|s|Σ, |t|Σ} and d(s|t) = max{d(s), d(t)}. Finally, we wish 
to allow for so-called η-long reductions, i.e., reductions (λx0 · · ·xk. s)t0 · · · tk →β s(�t/�x) where s is not an 
abstraction. Provided that only η-long reductions are permitted and each counts as one step in a β-reduction 
sequence, Beckmann’s bound holds with the analogous change to the length function: |λ�xs|Σ = |s|Σ + 1 if 
s not an abstraction.

From these observations we may deduce the following result. We restrict ourselves to recursion schemes 
over basic types (i.e. without substitution stacks) as this will suffice for later use.

Theorem 3.16. Let R = 〈Σ, N , S, P〉 be a finite acyclic order n recursion scheme such that every non-
terminal has basic type, and for every production rule F�x → t in R, |t|Σ < k. The length of every derivation 
in R is bounded by 2|N |(k+1)

n+1 .

Proof. Let R = 〈Σ, N , S, P〉 be an order n recursion scheme fulfilling the requirements in the statement. 
Without loss of generality we may assume that S is a singleton, that every non-terminal is associated at 
least one production rule, and that X is the alphabet of variable symbols disjoint from both Σ and N such 
that every term occurring in a production rule in R is an (Σ ∪N ∪ X )-term.

Fix an enumeration FρN

N < · · · < Fρ2
2 < Fρ1

1 of the non-terminals of R according to a total ordering (<) 
witnessing acyclicity of R. We may assume S = {F1}, so ρ1 is prime. Let Y = {yρ1

1 , yρ2
2 , . . . , yρN

N } be a 
set of fresh variable symbols of marked type. We define by recursion a sequence s1, . . . , sN of well-typed 
λ-terms all of type ρ1 such that si contains only the variables yi+1, . . . , yN free and the length of every 
derivation from F1 which only re-writes non-terminals Fj for j ≤ i is bounded by the length of the longest 
β-reduction sequence starting from si. Suppose {Fi�x → Tj : j ≤ m} is the set of production rules associated 
to Fi in R. For each j ≤ m, let tj = Tj(yi+1, . . . , yN/Fi+1, . . . ,FN ) be the (Σ ∪ X ∪ Y)-term resulting from 
Tj by substituting the non-terminals Fi+1, . . . , FN by variables yi+1, . . . , yN respectively. It follows that 
|tj |Σ ≤ |Tj |Σ < k. Finally, define si = λ�x. t0| · · · |tm if i = 1, and si = (λyi. si−1)(λ�x. t0| · · · |tm) otherwise. 
Notice |sN |Σ ≤ N(k + 1) and the maximal order among sub-terms of sN is no greater than n + 1. Every 
R-derivation from F1 can be replicated as a sequence of one-step η-long β-reductions starting from sN , the 
length of which, by Beckmann’s bound, is no greater than 2N(k+1)

n+1 . �
As a corollary we obtain we obtain bounds on the size of languages.

Corollary 3.17. Let R and k be as in the previous theorem and suppose every non-terminal in R is associated 
at most two production rules. Then the size of L(R) is bounded by 2|N |(k+1)

n+2 .

Proof. Given a recursion scheme R all terms in L(R) can be derived via the leftmost reduction strategy. 
By the previous theorem, the length of these derivations is bounded by 2|N |(k+1)

n+1 , leading to a bound of 
2|N |(k+1)
n+2 on the size of L(R). �

The bound given in Corollary 3.17 is optimal in the parameter n as the next lemma demonstrates.

Lemma 3.18. Let Σ be the ranked alphabet {aι, bι, dι→ι→ι→ι}. There exists a sequence of acyclic higher order 
recursion schemes Rn = 〈Σ, Nn, Sn, Pn〉 such that

1. the order of Rn is n,
2. |Nn|, |Pn| = O(n),
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3. max{|t|Σ : F�x →Rn
t} = O(n),

4. |L(Rn)| ≥ 21
n+2.

Proof. It suffices to translate Beckmann’s lower bounds from [11] to the context of recursion schemes. Define 
τ0 = ι and τi+1 = τi → τi for each i < ω. So τi has order and arity i for each i. Fix n > 0. The recursion 
scheme Rn comprises a single start symbol Sn : ι and a non-terminal Fi : τi for each i ≤ n. The production 
rules are

F0 → a | b Sn → Fn(FnFn−1)Fn−2 . . .F1F0

F1x0 → dF0x0x0 Fi+2x0x1 · · ·xi+1 → x0(x0x1)x2 · · ·xi+1

Requirements 1–3 are clearly satisfied. To deduce 4, observe that applying deterministic production rules 
only, Sn →∗ F(21

n)
1 F0, where X(k) denotes the k-fold iteration of X. Thus we see that L(Rn) is the set 

of complete binary trees of height 21
n + 1 with each leaf and inner node labelled by either a or b, i.e. 

|L(Rn)| ≥ 21
n+2. �

3.3. Recursion schemes with pattern-matching

To control the space of derivations we will utilise recursion schemes equipped with pattern-matching, 
introduced in [32]. In their full generality pattern-matching recursion schemes form a Turing complete 
model of computation [32], though we will require only the decidable subclass in which pattern-matching is 
restricted to decomposing sequences. The following definition presents the particular schemes we utilise.

Definition 3.19 (Pattern-matching recursion scheme). A pattern-matching recursion scheme is a tuple R =
〈Σ, N , S, P〉 where Σ, N and S are as in Definition 3.11 and P may include type-preserving production 
rules of the form

Fx0 · · ·xk−1〈xk, . . . , xk+l〉 →R t

where t is a Σ ∪N ∪ {xi | i ≤ k + l}-term over Σ of prime type.
The associated reduction relation r →R s is defined by the two conditions in Definition 3.12 and an 

additional clause:

• r = Fr0 · · · rk−1〈rk, . . . , rk+l〉 for some F ∈ N of arity k and terms �r = (ri)i≤k+l, and there is a 
production rule Fx0 · · ·xk−1〈xk, . . . , xk+l〉 →R t such that s = t(�r/�x).

The definition of a derivation and language for pattern-matching recursion schemes are analogous.

Pattern-matching recursion schemes can be simulated by higher order recursion schemes using constants 
representing projection functions for pairs in place of pattern-matching. In particular, the upper-bounds 
given by Theorem 3.16 and Corollary 3.17 apply to pattern-matching recursion schemes without change. 
There is, however, a subtle difference between the two in the presence of non-determinism and this will be 
exploited heavily in the next section. In the remainder of this paper recursion scheme refers to pattern-
matching recursion schemes unless otherwise stated.

4. Herbrand schemes

We now turn to the task of associating to each sequent calculus proof π with Σ1 end-sequent a non-
deterministic higher order recursion scheme Hπ. The recursion scheme Hπ, which we term the Herbrand 
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scheme of π, contains a non-terminal Ni
π for each sub-proof π � A0, . . . , Ak and each i ≤ k. The interpreta-

tion of Ni
π is of a function which returns a witness (possibly involving explicit substitutions) for each weak 

quantifier in Ai given input for every strong quantifier in the sequent. The arity of Ni
π is k + 2, namely one 

greater than the length of the sequent: the first argument is a substitution stack and the (j+1)-th argument 
is the ‘input’ for the formula Aj . The type of Ni

π depends only on the quantifier structure of the formulæ in 
the sequent. In particular, the types of Ni

π and Nj
π differ only in their co-domain. Reduction rules governing 

the non-terminal Ni
π are determined by the final inference in π and value of i, and re-write the non-terminal 

to a term built from non-terminals for the immediate sub-proofs of π. Hence, they are independent of the 
particular starting proof. This property implies that the typing and re-write rules for a non-terminal Ni

π are 
invariant across all Herbrand schemes for proofs that feature π as a sub-proof, whence we may consider two 
Herbrand schemes as comprising identical sets of non-terminals and production rules and differing only in 
the selection of start symbols.

For proofs with only Π2 ∪ Σ2 cuts, Herbrand schemes closely resemble the context-free grammars in-
troduced in [4]. The ‘generic’ case of the representation, enabling the interpretation of cuts of arbitrary 
quantifier complexity, is when the cut formula on both sides of a cut feature weak/strong quantifier alter-
nations, i.e. Πn ∪ Σn for n ≥ 3.

We start by introducing the types that occur most prominently in Herbrand schemes. To each prenex 
formula F we assign two types, the output type, τF , and the input type, τ̂F , representing the ‘existential’ 
and ‘universal’ structure of F respectively. These types are determined by the quantifiers in F and are 
defined as follows. For quantifier-free F , τF = τ̂F = ε; otherwise,

τ∀vF = τF τ∃vF =
{
ι× τF , if u(F ) = 0,
ι× (τF̄ → τF ), if u(F ) > 0,

τ̂∀vF = τ∃vF̄ τ̂∃vF = τ∃vF → τF̄

Example 4.1. We compute the input and output types for prenex Π2 and Σ2 formulæ. Let �u and �v be 
sequences of variables of non-zero length |�u| and |�v| respectively and Cqf any quantifier-free formula. Then

τ∃�vCqf = ι|�v| τ∀�vCqf = ε τ̂∃�vCqf = ι|�v| → ε τ̂∀�vCqf = ι|�v|

τ∀�u∃�vCqf = ι|�v| τ∃�u∀�vCqf = ι× · · · × ι︸ ︷︷ ︸
|�u|

×(ι|�v| → ε) τ̂∀�u∃�vCqf = ι|�u| τ̂∃�u∀�vCqf = ι|�u| → ι|�v|

Lemma 4.2. Let F be a prenex formula and �v a sequence of variables of length k. Then

1. τF is a non-simple basic prime type.
2. τF = τF (�r/�α) and τ̂F = τ̂F (�r/�α).
3. If e(F ) > 0 then τ̂F = τ̂F̄ → τF̄ .
4. τ∃�vF = ι× · · · × ι︸ ︷︷ ︸

k

×τ̂F̄ and τ̂∀�vF = ι× · · · × ι︸ ︷︷ ︸
k

×τ̂F .

Proof. By definition. �
Lemma 4.3. Fix a prenex formula A. The order of τA, τ̂A are as presented in Table 1 where .− denotes 
subtraction truncated at 0, i.e. n .−m = max{n −m, 0}.

Proof. By induction on complexity of A. If A is quantifier free then τA = ε = τ̂A so ord(τA) = ord(τ̂A) = 0. 
Moreover, by Example 4.1, the lemma holds for A ∈ (Σ1 \ Π1) ∪ (Π1 \ Σ1). Suppose n > 1. For A = ∃�vB
where B ∈ Πn−1 \ Σn−1,
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Table 1
Order of types τA and τ̂A.

A Σ0 Σn \ Πn Πn \ Σn

ord(τA) 0 n .− 2 n .− 3
ord(τ̂A) 0 n .− 1 n .− 2

ord(τA) = ord(τ̂B̄) (Lemma 4.2(4))

= n− 2 (induction hypothesis)

ord(τ̂A) = max{ord(τA) + 1, ord(τB̄)} (definition)

= n− 1 (induction hypothesis)

For A = ∀�vB where B ∈ Σn−1 \ Πn−1,

ord(τA) = ord(τB) (definition)

= n .− 3 (induction hypothesis)

ord(τ̂A) = ord(τĀ) (definition)

= n− 2 �
We have been describing the types τF and τ̂F as representing, respectively, the existential and universal 

structure of F . Beyond the basic case of Π1 ∪Σ1 formulæ this view may not be obvious from the definition 
and requires explanation. Consider first the case of a Π2 formula F = ∀x∀y∃zGqf(x, y, z). (We assume two 
universal quantifiers to provide contrast between the ‘type’ of the universal quantifiers, ∀x∀y, corresponding 
to the pair ι × ι, and the existential, ∃z, whose type is ι.) As was seen in the example above, τ̂F = ι × ι

and τF = ι represent the ‘type’ of the two quantifier kinds in F . However, thinking of the ‘computational 
content’ of a Π2 formula such as F suggests an alternate explanation, namely a function f : τ̂F → τF such 
that ∀x∀yGqf(x, y, f〈x, y〉). The type of this function is precisely the type we associate to the universal 
structure of the dual of F . That is, for a formula H = ∃x∃y∀zIqf(x, y, z) we have τ̂H = ι × ι → ι which, 
by the above, is simply the type of the universal quantifier in the Skolemised form ∀g∃x∃yIqf(x, y, g〈x, y〉). 
The existential structure of H is defined as τH = ι × ι × (ι → ε). Morally, this is no different from the type 
of the existential quantifiers ι × ι (as ε is the unit type, any function a : σ → ε is observationally equivalent 
to the constant function λxσ〈〉). The additional structure arises because, for the purposes of defining its 
existential ‘content’, we treat the Σ2 formula H as a Σ3 formula with a vacuous inner existential block, H ′ =
∃xι∃yι∀zι∃wεI ′qf(x, y, z, w). Skolemising the inner quantifier yields ∃xι∃yι∃f ι→ε∀zιI ′qf(x, y, z, fz) which has 
the desired type.

The astute reader will have observed the similarity between the types and formulæ above and those 
arising in Gödel’s functional interpretation. Indeed, the pattern extends to the whole prenex quantifier 
hierarchy.

Theorem 4.4. Shoenfield’s variant of the functional interpretation [38] translates a prenex formula A in the 
language of (classical) first-order logic to a prenex Π2 formula which is provably equivalent to a formula 
∀xτ̂A∃yτAFqf over a system of first-order logic in finite types extended with pairing and unit.

Proof. Shoenfield’s functional interpretation [38] associates to each formula A in the language of arithmetic 
a prenex Π2 formula AS = ∀x∃yAS(x, y) of HAω such that if PA � A then for some term t, HAω �
∀xAS(x, tx). In [17], Gerhardy and Kohlenbach apply the interpretation to pure predicate logic yielding 
Π2 formulæ in the language of “extensional predicate logic in all finite types”, denoted E-PLω. For the 
present lemma we utilise the expansion of E-PLω to the hierarchy of basic types (including new constant 
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symbols). Utilising pair types to collapse blocks of like quantifiers, we may assume AS always has the form 
∀xρA∃yσAAS where AS is quantifier free and ρA, σA are basic types. If A is quantifier-free we may take 
ρA = σA = ε, in which case AS is already of the desired form. If A = ∀vB and BS = ∀xρB∃yσBBS then 
by construction AS = ∀xι×ρB∃yσBAS . Since τ̂A = ι × τ̂B and τA = τB , the induction hypothesis shows AS

is equivalent to a formula ∀xτ̂A∃yτAA∗
qf. For the existential case, let A = ∃vB with u(B) > 0 and suppose 

BS = ∀xρB∃yσBBS . Then AS = ∀xρA∃yι×σAAS where σA = ρB → σB and ρA = ι × σA → ρB . Using the 
fact that τA = ι × (τ̂B → τB) and τ̂A = τA → τ̂B , the induction hypothesis shows AS is logically equivalent 
to a formula ∀xτ̂A∃yτAA∗

qf for appropriate A∗
qf. The case that A leads with a block of existential quantifiers 

is analogous. �
We now present the definition of the Herbrand scheme associated to LK proofs.

Definition 4.5 (Herbrand scheme). Fix a proof π � A0, . . . , Ak with Σ1 end-sequent and let Σπ be the 
simple alphabet consisting of a constant symbol c of type ι and the function symbols and eigenvariables 
occurring in π (typed accordingly). The Herbrand scheme for π is the higher order recursion scheme Hπ =
〈Σπ, Nπ, Sπ, Pπ〉 with the following non-terminals and production rules.

1. A non-terminal cρ : ρ for each basic type ρ /∈ {ι, ε} that occurs as a sub-type of a type τB or τ̂B for a 
formula B occurring in π, with production rules

cρ → 〈cτ0 , cτ1〉 if ρ = τ0 × τ1,

cρxρ0
0 · · ·xρk

k → cco(ρ) if ρ = ρ0 → · · · → ρk → co(ρ),

with cι and cε defined to be the constants c and 〈〉 respectively.
2. A non-terminal Ni

π′ for each sub-proof π′ � B0, . . . , Bl of π and for each i ≤ l, with type

Ni
π′ : ς → τ̂B0 → · · · → τ̂Bl

→ τBi

and production rule(s) as given in Table 2, determined in each case by the final inference of π′.
3. A start symbol Sπ,i : τAi

for each i ≤ k with associated production rules

Sπ,i → Ni
π⊥cτ∗

A0
· · · cτ∗

Ak

The language of π is the set L(π) = {(i, r◦) | i ≤ k and (Sπ,i, r) ∈ L(Hπ)}.

It remains to check that the production rules of Herbrand schemes are well-typed. This task will be 
taken up later in Lemma 4.13. For now we take for granted the fact that Herbrand schemes are well-
defined and continue with some basic properties of them (Lemmas 4.7 to 4.10) followed by the intended 
interpretation of the schemes as generating Herbrand disjunctions (Definition 4.11) and the observation 
that this interpretation coincides with the Herbrand set for quasi cut-free proofs (Lemma 4.12). We start, 
however, with a brief explanation of some of the production rules from Table 2.

Remark 4.6. We comment on some of the rules from Table 2.

• Axiom. We are restricting axioms to quantifier-free formulæ only, which motivates the simple production 
rule given in the table. One may wish to permit axioms π � A0, A1 where A1 = Ā0 has arbitrary (prenex) 
complexity. These can be accommodated by the production rules
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Table 2
Production rules for Herbrand schemes. �x and �y are sequences of distinct variable symbols of length m := |Γ|
and n := |Δ| respectively.

Inference deriving π Production rule(s)

ax : π � A, Ā Ni
πax0x1 → 〈〉

π0 � Γ, A,B
∨ −−−−−−−−−−−−−−−
π � Γ, A ∨ B

Ni
πa�xz →

{
Ni

π0
a�xzz, if i < m,

〈〉, otherwise.

π0 � Γ, A π1 � Δ, B
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−

π � Γ,Δ, A ∧ B
Ni

πa�x�yz →

⎧⎪⎨
⎪⎩

Ni
π0

a�xz, if i < m,
Ni−m

π1
a�yz, m ≤ i < m + n,

〈〉, otherwise.
π0 � Γ, A(�α/�v)

∀�α −−−−−−−−−−−−−−−−−−
π � Γ,∀�vA

Ni
πa�x〈z0, . . . , zp+1〉 →

π0 � Γ, A(�r/�v)
∃�r −−−−−−−−−−−−−−−−−−

π � Γ,∃�vA
Ni

πa�xz →

⎧⎪⎨
⎪⎩
�r · a 
 (Nm

π0
a�x), if i = m and u(A) > 0,

�r · a 
 〈〉, if i = m and u(A) = 0,
Ni

π0
a�x

(
z(Nm

π a�xz)
)

if i �= m,

π0 � Γ, A π1 � Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−

π � Γ,Δ
Ni

πa�x�y →
{

Ni
π0

a�x((Nn
π1

a�y) ◦A (Nm
π0

a�x)), if i < m,
Ni−m

π1
a�y((Nm

π0
a�x) ◦Ā (Nn

π1
a�y)), if m ≤ i.

π0 � Γ
w −−−−−−−−−−
π � Γ, A

Ni
πa�xz →

{
cτA

, if i = m,
Ni

π0
a�x, otherwise.

π0 � Γ, A,A
c −−−−−−−−−−−−−−

π � Γ, A
Ni

πa�xz →
{

Ni
π0

a�xzz, if i < m,
Ni

π0
a�xzz | Ni+1

π0
a�xzz, if i = m.

π0 � Γ, B,A,Δ
p −−−−−−−−−−−−−−−−−−
π � Γ, A,B,Δ

Ni
πa�xz0z1�y →

⎧⎪⎨
⎪⎩

Ni+1
π0

a�xz1z0�y, if i = m,
Ni−1

π0
a�xz1z0�y, if i = m + 1,

Ni
π0

a�xz1z0�y, otherwise.

�α = (α0, . . . , αp)

�r = (r0, . . . , rp)

�r · a = (r0 · a, . . . , rp · a)

(uj)j≤q 
 t = 〈u0, . . . , uq, t〉

r ◦A s =

⎧⎪⎨
⎪⎩
r, if e(A) > 0,
rs, if u(A) > 0,
〈〉, otherwise.

Ni
πax0x1 →

{
x1−i, if u(Ai) = 0,
x1−ixi, if u(Ai) > 0,

which the interested reader can check are well-typed. This definition mimics the behaviour of the Her-
brand scheme for the natural proof of A0, A1 that uses only quantifier-free instances of axioms and 
alternate applications of ∃ and ∀ inferences. Our reason for favouring quantifier-free axioms is that, 
as a consequence, production rules never return their arguments as output, a fact that simplifies some 
technical aspects of the later analysis (specifically Lemma 6.9).

• ∧ and ∨. As proofs involve prenex formulæ only, conjunctions and disjunctions are necessarily quantifier-
free with associated type ε, and therefore possess no computational content relevant to the construction 
of a Herbrand disjunction. When focusing on such formulæ, the production rule in each case returns 
the empty sequence.

• ∃�r. The production rule in this case depends on both i and the quantifier form of the active formula. 
Consider the instance of ∃�r given in Table 2. As π is assumed regular, the active formula (A in the 
table) is either quantifier-free or universally quantified. If i marks the active formula (i.e. i = m) then 
the production rule for Ni

π directly outputs the witness terms provided by the proof and the current 
substitution (the sequence (r0 · a, . . . , rp · a)) as the first p + 1 components of a nested pair. The final 
component is either trivial (in case A is quantifier-free) or, if A is universally quantified, the continuation 
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of the trace to the immediate sub-proof in the form of a function. If i �= m, the production rule instead 
passes the above term to the corresponding argument.

• ∀�α. This is the only case that involves pattern matching in Herbrand schemes. Although it can be 
simulated by a recursion scheme without pattern-matching using projection functions for pair types, 
doing so introduces a duplication of arguments that is avoided in the chosen formulation. For instance, 
the production rule for ∀�α where �α consists of the single eigenvariable α and the sequent Γ is empty 
yields the production rule

N0
πa〈z0, z1〉 → N0

π0
([α ← � z0]a)z1

which may be simulated by the rule

N0
πaz → N0

π0
([α ← � p0z]a)(p1z) (1)

where p0 and p1 are constants representing the two projection functions for pair types. If s is a term 
such that s →∗

H 〈r0, s0〉 | 〈r1, s1〉 and the four sub-terms are pairwise distinct then the reduction in 
(1) permits the derivation N0

π⊥s →∗ N0
π0

([α ← � p0〈r0, s0〉]⊥)(p1〈r1, s1〉), essentially the term N0
π0

([α ← �

r0]⊥)s1, which is forbidden in the Herbrand scheme due to pattern-matching. In this sense pattern 
matching plays a role analogous to the rigidity conditions utilised in [21,1,2] for representing first-order 
proofs with Π1/Π2 cut complexity.

• cut. For each choice of i, the rule provides exactly one reduction for the non-terminal Ni
π: for i < m this 

is

Ni
πa�x�y →

⎧⎪⎪⎨
⎪⎪⎩

Ni
π0
a�x(Nn

π1
a�y(Nm

π0
a�x)), if u(A) > 0,

Ni
π0
a�x(Nn

π1
a�y), if e(A) > 0,

Ni
π0
a�x〈〉, if A is q.f.

Note that, in the case e(A) = 0 the type τ̂A (which marks the final argument to Ni
π0

) is prime, and 
is otherwise the function type τ̂Ā → τĀ. Moreover, the case distinction above is independent of i. For 
instance, if A = ∀vB exactly the following production rules arise from the cut.

Nj
πa�x�y →

{
Nj

π0
a�x(Nn

π1
a�y(Nm

π0
a�x)), if j < m,

Nm−j
π1

a�y(Nm
π0
a�x), if m ≤ j < m + n.

In the following let H = 〈Σ, N , S, P〉 be the Herbrand scheme for a regular proof π with prenex Σ1
end-sequent.

Lemma 4.7. H is an acyclic recursion scheme. Hence, L(π) is finite.

Proof. Let < be the transitive relation on non-terminals in H generated by the equations: cρ < cσ if ρ is 
a proper sub-type of σ; cρ < Ni

π0
for every ρ, sub-proof π0 of π and i; Ni

π0
< Nj

π1
if either π0 is a proper 

sub-proof of π1 or π0 = π1 and j < i; and Ni
π < Sπ,i for any i. Clearly < is acyclic and irreflexive. Moreover, 

for every production rule F�x →H t and any non-terminal G occurring in t we have G < F. �
Lemma 4.8. Every H -term of simple type is a Σ-term, and every H -term of substitution stack type has the 
form either ⊥ or [α ← � s]b for some α ∈ Σ, Σ-term s and b : ς.

Proof. The non-terminals of H all have type one of three forms: ε, pair type, or function type with non-
simple co-domain. It therefore follows that the only H -terms of simple type are the Σ-terms. Likewise, ⊥
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and [α ← � s]b are the only kind of H -terms of type ς. Given a substitution stack [α ← � s]b however, as α ∈ Σ
the first part of the lemma implies that s is a Σ-term. �
Lemma 4.9. If r : σ → τ is a H -term then τ is a basic type and σ is either basic or the type of substitution 
stacks. In the latter case, r = Ni

π or N̂i
π for some π and i.

Proof. By inspection of the types of non-terminals and terms. �
Lemma 4.10. Suppose r is an H -term of type ε containing no explicit substitutions (i.e. having no sub-term 
of the form t · a). If r →∗

H s for some basic term s then s = 〈〉.

Proof. By induction on the proof generating H , on the composition of r and the length of the derivation 
r →∗ s. �

We now describe how Herbrand schemes can be interpreted as ascribing existential content to first-order 
proofs.

Definition 4.11 (Herbrand expansion). Let π � Γ be a proof with Γ = ∃�v0A0, . . . , ∃�vkAk where Ai is 
quantifier-free for each i ≤ k. Let ki be the length of �vi. The Herbrand expansion of π is the quantifier 
free sequent Γπ given by

Γπ := {Ai(�ri/�vi) | �ri = (rj)j<ki
and (i, 〈r0, . . . , rki−1, 〈〉〉) ∈ L(π)}.

Lemma 4.12. If π � Γ is a quasi cut-free proof of a Σ1 end-sequent then the Herbrand expansion of π is a 
valid sequent and 

∨
Γπ is a Herbrand disjunction in the sense of Theorem 2.3.

Proof. Observe that in every production rule associated to a quantifier-free cut, the term r ◦A s becomes 
〈〉. Derivations in π are therefore in 1-1 correspondence with traces following the breakdown of formulæ 
in the end-sequent. As a result we observe that L(π) simply outputs all literal witnesses to the existential 
quantifiers in the end-sequent. �

The idea behind Herbrand schemes is to provide a generalisation of the above lemma to proofs containing 
quantified cuts. The analysis necessary for the result is carried out in Section 7. In the remainder of this 
section we prove the production rules of Herbrand schemes are well-typed and derive upper bounds on the 
size of Herbrand expansions.

Lemma 4.13. The production rules of Herbrand schemes are type preserving.

Proof. Fix a proof π with prenex end-sequent A0, . . . , Am and i ≤ m. We establish type-preservation of the 
production rules for the non-terminals N0

π, . . . , Nm
π via a case distinction on the final inference rule in π.

Suppose π � A0, . . . , Am−1, ∃�vA is obtained from proof π0 by ∃�r. Thus π0 � Γ, A(�r/�v) for some sequence 
�r = (rj)j≤k of simple Σ-terms of type ι. By regularity, e(A) = 0, i.e. either A is quantifier-free or u(A) > 0. 
Let Γ = A0, . . . , Am−1 and fix a term z : τ̂∃�vA and a sequence of terms �x of length m such that Ni

π�xz is 
well-typed. By definition Ni

π0
has type

Ni
π0

: ς → τ̂A0 → · · · → τ̂Am−1 → τ̂A →
{
τA, if i = m,
τAi

, otherwise.

To check type preservation there are two cases to consider:
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1. i = m. If u(A) = 0 then A is quantifier-free and τ̂Ā = ε. If u(A) > 0 then τ̂Ā = τ̂A → τA by Lemma 4.2(3), 
so the type of Ni

π0
a�x is τ̂Ā. Since also τ∃�vA = ι× · · · × ι︸ ︷︷ ︸

k

×τ̂Ā by Lemma 4.2(4), we are done.

2. i �= m. In this case it is necessary to check that τ̂∃�vA = τ∃�vA → τ̂A. But this follows directly from the 
definition and the fact that τ∀�vĀ = τĀ = τ̂A as e(A) = 0.

Suppose π is derived from π0 via the inference ∀�α and Am = ∀�vA with u(A) = 0 and �α = (αj)j<k. Let 
i ≤ m and fix terms �x, �z = (z0, . . . , zk) such that Ni

πa�x〈z0, . . . , zk〉 is well-typed. Lemma 4.2 implies that 
zj : ι for each j < k, and zk : τ̂A. Thus Ni

π0
b�xzk is well-typed and has type τA = τAm

.
Suppose π is derived via cut from sub-proofs π0 � Γ, A and π1 � Δ, Ā. Let m = |Γ| and n = |Δ| and fix 

�x and �y suitably typed. Without loss of generality we may assume i < m, in which case we require to show 
(Nn

π1
a�y) ◦A (Nm

π0
a�x) : τ̂A which reduces (via Remark 4.6) to proving

e(A) > 0 implies τ̂A = τ̂Ā → τĀ,

u(A) > 0 implies τ̂A = τĀ and τ̂Ā = τ̂A → τA,

both of which follow directly from Lemma 4.2.
The remaining cases are straightforward and omitted. �

Lemma 4.14. For a proof π � A0, . . . , Ak and i < k, the order of the non-terminal Ni
π is the smallest n such 

that {Aj : j ≤ k} ⊂ Πn+1, unless Ai is Π1, in which case the order of Ni
π is zero.

Proof. If Ai is Π1 then τAi
= ε and the order of Ni

π is 0 by definition. Otherwise, by Lemma 4.3, the order 
of Ni

π is one greater than the maximum among the orders of τ̂A0 , . . . , τ̂Ak
which is the smallest n such that 

every Aj is Πn+1. �
It is now possible to strengthen Lemma 4.7 to a concrete bound on the number of terms derivable from 

a Herbrand scheme. The idea is to eliminate occurrences of pattern-matching in a Herbrand scheme H in 
a way that does not decrease the length of derivations so that Theorem 3.16 and Corollary 3.17 can be 
applied.

Theorem 4.15. If π � Γ is a proof of a single prenex Σ1 formula in which all cut formulæ are contained in 
Πn ∪ Σn then the size of the Herbrand expansion Γπ is no greater than 24|π|3

n+2 where |π| is the number of 
inference rules in π.

Proof. The case n = 0 is covered by Lemma 4.12 so suppose n > 0. Let H be the Herbrand scheme of π. 
Since the cut rank of π is bounded by n, Lemma 4.14 implies that the order of H is no greater than n. 
To obtain the desired bounds we apply Theorem 3.16. However, this requires first eliminating the explicit 
substitutions introduced by the ∀ inferences. Let H ′ denote the higher order recursion scheme with non-
terminals of basic type obtained from H by removing all substitutions terms and types from non-terminals 
and production rules. In particular, the productions originating from ∀�α and ∃�r inferences are replaced by 
following in H ′:

∀�α : Ni
π′�x〈z0, . . . , zp+1〉 → Ni

π′
0
�xzp

∃�r : Ni
π�xz →

⎧⎪⎪⎨
⎪⎪⎩

Ni
π0
�x
(
z(Nm

π �x)
)
, i �= m,

〈c, . . . , c,Nm
π0
�x〉, i = m and u(A) > 0,

〈c, . . . , c, 〈〉〉, i = m and u(A) = 0.
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h : Γ � Iα,mαα̂
0 , Iα̂,mαα̂

1∃ −−−−−−−−−−−−−−−−−−−−−−−−−−−
g : Γ � Iα,mαα̂

0 , Iα̂
1∃ −−−−−−−−−−−−−−−−−−−−−−

f : Γ � Iα
0 , Iα̂

1∀α −−−−−−−−−−−−−−−−
e : Γ � I0, I

α̂
1∀α̂ −−−−−−−−−−−−−−−

d : Γ � I0, I1
∃ −−−−−−−−−−−−−−−

c : Γ � I, I1
∃ −−−−−−−−−−−−−−

b : Γ � I, I
c −−−−−−−−−−−−

a : Γ � I

7 : Δ � Ī0,β
γ , Īsβ,β̂

γ , Tβ,β̂∃ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 : Δ � Ī0,β

γ , Īsβ,β̂
γ , T

∀β̂
−−−−−−−−−−−−−−−−−−−−−−−−−
5 : Δ � Ī0,β

γ , Īsβ
γ , T

∃ −−−−−−−−−−−−−−−−−−−−−−−
4 : Δ � Ī0,β

γ , Īγ , T
∀β −−−−−−−−−−−−−−−−−−−−−−

3 : Δ � Ī0
γ , Īγ , T∃ −−−−−−−−−−−−−−−−−−−

2 : Δ � Īγ , Īγ , T
c −−−−−−−−−−−−−−−−−−−

1 : Δ � Īγ , T
∀γ −−−−−−−−−−−−−−−

0 : Δ � Ī, T
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ � T

Fig. 4. Proof π∞ of pigeonhole principle.

The second part of Lemma 4.8 implies that derivations in H ′ from the start symbol are in 1-1 correspondence 
with derivations in H . Repeating the argument of Corollary 3.17, the size of L(π) is therefore bounded by 
2K where K is the length of the longest derivation in H ′ from the single start symbol. The order of H ′

is no greater than n, the number of non-terminals is bounded by |π|2, and for each production rule F�x → t

in H ′, |t|Σ < 3 × |π| where Σ is the ranked alphabet of function symbols and constants occurring in π. 
Theorem 3.16 then implies K ≤ 24|π|3

n+1 . �
5. A Herbrand disjunction for the pigeonhole principle

We consider a formal proof of the pigeonhole principle for two boxes via the infinite pigeonhole principle. 
The question of the computational content of this proof is attributed to G. Stolzenberg [13]. A variety of 
analytic methods have since been applied to this proof [20,10,41,8,1] and its generalisations [37,35]. The 
version we present here is a formal proof with a single Π3 cut based on the proof with two Π2 cuts given in 
[1,41].

Let f : N → {0, 1} be a total Boolean function, let Ii (for i = 0, 1) express that there are infinitely many 
m ∈ N for which f(m) = i and T express that there exists m < n such that f(m) = f(n). A consequence 
of the law of excluded middle is ∃wIw. Moreover, Ii implies T for each i ∈ {0, 1}: assuming Ii there exists 
m ≥ 0 and n ≥ m + 1 for which f(m) = f(n) = i. Combining these observations we conclude T .

The following formalises the above argument into a proof with a single Π3 cut. The formal language, Σ, 
comprises two unary function symbols f, s, one binary function symbol m, a constant symbol 0 and a binary 
relation ≤. We make the following definitions and abbreviations:

• T = ∃u∃v(u < v ∧ fu = fv),
• I = ∃wIw where Ir = ∀u∃v(u ≤ v ∧ fv = r),
• Γ = {∀u∀v(u ≤ muv ∧ v ≤ muv), ∀u(fu = 0 ∨ fu = s0)},
• Δ = {∀u∀v∀w(u = v ∧ w = v → u = w), ∀u∀v(su ≤ v → u < v)},
• Isr and Is,tr denote, respectively, ∃v(s ≤ v ∧ fv = r) and (s ≤ t ∧ ft = r),
• Ts,t denotes (s < t ∧ fs = ft).

The intended interpretation of the symbols is: f represents the (arbitrary) function f , s the successor function 
on N, ≤ the standard ordering and m the binary max function.

A formal proof of the pigeonhole principle (namely Γ, Δ � T ) is given in Fig. 4 which we name π∞. 
The proof is displayed in two-sided sequent calculus as this simplifies the presentation and following 
discussion. The intended interpretation of the two-sided sequent A1, . . . , Ak � B1, . . . , Bl is the sequent 
Ā1, . . . , Āk, B1, . . . , Bl. For brevity, only eigenvariables and witnesses of the quantifiers and instances of the 
existential formula T are displayed in π∞. The proof fully fleshed out uses about 50 application of the 
axioms and rules of the calculus but the only cut in π∞ is the one displayed in the figure. Two normal forms 
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of the proof of size ∼200 have been computed in a case study [41] from which one can read off the Herbrand 
sets for the formula T (also for formulæ in Γ ∪ Δ but these are less interesting). Up to interpretation of 
the logical symbols by their intended semantics, the two Herbrand sets combined provide the witnesses 
{〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈0, 2〉, 〈1, 3〉} to the existential quantifiers in T .1 The Herbrand scheme Hπ∞ associated 
to the proof π∞ computes the same Herbrand set, a fact we demonstrate in the following.

Types and terms The Herbrand scheme for π∞ comprises a non-terminal for each sub-proof of π∞ and 
each formula in the end-sequent of that sub-proof. Recall, for each sub-proof p : Π � Λ of π∞ and each 
i < |Π| + |Λ| there is a non-terminal Ni

p in Hπ∞ representing the existential content of the i-th formula in 
the sequent at position p. In the following, in place of Ni

p we will write NA
p where A is the i-th formula in 

the sequent assuming this is unique. In case A occurs more than once in the sequent Π � Λ (such as at 
positions b and 2) the non-terminal NA

p refers to the first occurrence of A and we use the notation NA+

p for 
the second occurrence. Concerning the type of NA

p , we recall the types τF and τ̂F for each formula F in π∞. 
Let ι̂ = ι × (ι1 → ε) and ε̂ = ι2 → ε.

• For F ∈ Γ ∪ Δ we have τF̄ ∈ {ι1, ι2, ι3}, and τ̂F̄ = τF̄ → ε.
• T : τT = ι2, τ̂T = ε̂.
• Isr : τIs

r
= ι1 = τ̂Īs

r
, τ̂Is

r
= ι1 → ε and τĪs

r
= ε.

• Ir: τIr = ι1, τĪr = τ̂Ir = ι̂ and τ̂Īr = ι̂ → ι1.
• I: τI = ι × (ι̂ → ι1) = τ̂Ī , τĪ = ι̂ and τ̂I = τI → τĪ .
• The remaining formulæ that occur in π∞ are quantifier-free and are assigned type ε in all cases.

According to the definition, the type of NT
π∞ is ς → τ̂F̄ → τ̂Ḡ → τ̂C̄ → τ̂D̄ → τ̂T → τT where ς is the 

type of substitution stacks, F and G are the two formulæ in Γ and C and D are the formulæ in Δ. As 
the formulæ in Γ ∪ Δ are Σ1, their input type carries no computational content (cf. Lemma 7.3), and we 
can ignore these formulæ and identify the type above with ς → τ̂T → τT , and the term NT

π∞acτ̂F̄ cτ̂Ḡcτ̂C̄cτ̂D̄
with NT

π∞a. Likewise, the type of NI1
c is assumed to be ς → τ̂I → τ̂I1 → τI1 and the type of NĪ+

γ

2 is 
ς → (ι̂ → ι1) → (ι̂ → ι1) → ε̂ → ι̂.

Other abbreviations and simplifications we utilise are:

• 〈r〉 for either the sequence 〈r, 〈〉〉 or 〈r, cι1→ε〉, depending on type, and 〈r, s〉 as a term of type ι2 represents 
〈r, s, 〈〉〉.

• 0̂ = m00, 1 = s0̂, 1̂ = m01, 2 = s(m10) and 2̂ = m02.
• For each non-terminal NA

p where A is the i-th formula at position p, an additional non-terminal N̂A
p with 

the same arity as NA
p and associated production rule

N̂A
p ax0 · · ·xk → NA

p ax0 · · ·xi−1xkxi · · ·xk−1

is included in the Herbrand scheme Hπ∞ . These non-terminals ease the computation in derivation steps 
involving permutation.

• The Herbrand scheme also includes explicit non-terminals for non-determinism at each type, which are 
represented via set notation: for terms s0, . . . , sk : ρ of the same type, the set S = {si | i ≤ k} is a term 
of type ρ with reduction S → si for each i ≤ k.

• An equivalence relation � on terms of identical type defined as inducing the same language within all 
contexts. Formally, we set r � s iff r � s � r where r � s holds just if r, s : ρ and for every Hπ∞ ∪{xρ}-

1 In [41] π∞ is formalised as a proof with two Π2-cuts but as far as computing Herbrand sets, the two proofs are essentially 
identical.
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term t of basic type (where x is a fresh symbol of type ρ), whenever t(r/x) →∗ u for a Σ-term u, then 
t(s/x) →∗ v for some Σ-term v such that u◦ = v◦.

For instance, if r → s via an application of a deterministic production rule then r � s, and if S = S′ are 
two representations of the same set of terms then S � S′. In general, r(S/x) �� {r(s/x) | s ∈ S} as shown 
by considering r = Fx with reduction Fx →∗ mxx.2 However, suppose r = Ft1 · · · tkx, S is a set of pairs, F
is deterministic and Ft1 · · · tk〈x, x′〉 → t. Then r(S/x) � {r(s/x) | s ∈ S} � {t((u, v)/(x, x′)) | 〈u, v〉 ∈ S}.

Finally, we remark that, generalising Lemma 4.10, for every type ρ with co-domain ε and every term 
r : ρ, we have r � cρ.

Language of π∞ We now compute the language of Hπ∞ focusing on the formula T , i.e. set of terms (after 
evaluation) derivable from the term NT

π∞⊥cε̂. The first, and only, production rule applicable to this term is 
given by the cut rule at the root of the proof:

NT
π∞⊥cε̂ → NT

0 ⊥(NI
a⊥(N̂Ī

0⊥cε̂))cε̂. (2)

Analysing derivations directly from this term is complicated. As the right sub-proof at 0 culminates in a ∀γ
inference, the external non-terminal NĪ

0 cannot be reduced until its second argument (the term NI
a⊥(N̂Ī

0⊥cε̂)) 
is reduced to an explicit pair. But the inference at a in the left sub-proof is a contraction, so this immedi-
ately introduces non-determinism and duplication of arguments. After resolving the non-determinism and 
reducing the two continuations of NI

a to pairs (say in terms of NI0
d /NI1

d ), the external non-terminal can be 
reduced. The argument N̂Ī

0⊥cε̂ comes into play at this point: the productions for NI+

b and NI
c increase the 

nesting of non-terminals which must also be evaluated as pairs in order to proceed beyond NI0
d /NI1

d .
In the following, we compute the language via a top-down approach, analysing derivations starting from 

relatively simple terms, and building these together to compute the language of more complex interactions 
between non-terminals. We begin with the most simple derivations available. Recall that τ̂I0 = τ̂I1 = ι1. 
Concerning non-terminals from the left sub-proof we have the following derivation starting from NI0

d /NI1
d .

NIi
d a〈r〉〈s〉 → N2+i

e ([α̂ ← � s]a)〈r〉〈〉

→ N2+i
f ([α ← � r][α̂ ← � s]a)〈〉〈〉

→∗ 〈mαα̂ · [α ← � r][α̂ ← � s]a〉

(Note, as |Γ| = 2 the (2 + i)-th formula at positions e and f is the ancestor of Ii from d.) If r happens to 
be such that r · [α̂ ← � s]a � r · a, then since the derivation above follows deterministic reductions only, we 
deduce

NIi
d a〈r〉〈s〉 � 〈mrs · a〉. (3)

Examining the non-terminals from lower in the left sub-proof affords us

NI
cars → 〈0, N̂I0

d as〉 NI1
c ars →∗ NI1

d a(r〈0, N̂I0
d as〉)s

NI+

b ars → 〈1,NI1
c ar〉 NI

bars → NI
car(s(NI+

b ars))

→∗ 〈0, N̂I0
d a(s〈1,NI1

c ar〉)〉

2 Formally, we require an Hπ∞ analogue of F but this is not difficult to find.



24 B. Afshari et al. / Annals of Pure and Applied Logic 171 (2020) 102792
The derivation from NI1
c ars can be continued provided that the two arguments of NI1

d , namely r〈0, N̂I0
d as〉

and s, are reducible to pairs. Thus if r〈0, N̂I0
d a〈s〉〉 →∗ 〈r0, r′0〉 and r0 · [α̂ ← � s]a � r0 · a then

NI1
c ar〈s〉 →∗ NI1

d a〈r0〉〈s〉 � 〈mr0s · a〉.

Because the reductions governing NI1
c are all deterministic, when phrased in terms of equivalences, this 

becomes

r〈0, N̂I0
d a〈s〉〉 � {〈ri〉 | i ≤ k}

ri · [α̂ ← � s]a � ri · a each i ≤ k

}
implies NI1

c ar〈s〉 � {〈mris · a〉 | i ≤ k} (4)

Property (4) will be useful later.
Returning briefly to the derivations from non-terminals NI

b and NI+

b started earlier, each of these deriva-
tions is also deterministic, so therefore

NI
aar � {NI

barr,NI+

b arr} � {〈0, N̂I0
d a(r〈1,NI1

c ar〉)〉, 〈1,NI1
c ar〉} (5)

which provides the first step in the continuation of the derivation from NT
π∞. Before extending (2) however we 

consider some simple derivations arising from the right sub-proof. On this side, the alternation of universal 
and existential inference rules means that few non-terminals can be adequately analysed in isolation as we 

did above. Most straightforward are non-terminals NĪγ
4 and NĪγ

2 , for which we have

NĪγ
4 arst � 〈sβ · a〉 NĪγ

2 arst � 〈0 · a〉 � 〈0〉

This gives rise to, for example,

NĪγ
3 a〈r0〉st � NĪγ

4 ([β ← � r0]a)〈〉st � 〈sr0 · a〉

and hence if r : (ι × (ι1 → ε)) → ι1 is a term such that r〈0〉 � {〈ri〉 | i ≤ k} then also

NĪ+
γ

2 arst � NĪγ
3 a(r(NĪγ

2 arst))st

� NĪγ
3 a{〈ri〉 | i ≤ k}st

� {〈sri · a〉 | i ≤ k}

The equivalences for NĪγ
2 and NĪ+

γ

2 combine to yield, given the same r,

NĪγ
1 art � {NĪγ

2 arrt,NĪ+
γ

2 arrt} � {〈0〉} ∪ {〈sri · a〉 | i ≤ k}. (6)

In particular, choosing r = N̂I0
d ⊥〈s〉, this implies

NĪγ
1 a(N̂I0

d ⊥〈s〉)t � {〈0〉, 〈s(m0s) · a〉} (7)

which will be needed later. In addition to (7), it is necessary to analyse the complex term NĪγ
1 a(NI1

c ⊥
(N̂Ī

0⊥cε̂))cε̂. However, here we can use (6) again. If δ : ι is a fresh symbol then, applying (7) and (4) (using 
r = NĪ

0⊥cε̂), we get
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NĪ
0⊥〈0, N̂I0

d ⊥〈δ〉〉cε̂ � NĪγ
1 ([γ ← � 0]⊥)(N̂I0

d ⊥〈δ〉)cε̂ � {〈0〉, 〈s(m0δ)〉} (8)

NI1
c ⊥(N̂Ī

0⊥cε̂)〈δ〉 � {〈m0δ〉, 〈m(s(m0δ))δ〉} (9)

whence (6) implies

NĪγ
1 a(NI1

c ⊥(N̂Ī
0⊥cε̂))cε̂ � {〈0〉, 〈1〉, 〈2〉}. (10)

We have still not examined derivations starting from the non-terminals NT
0 , NT

1 , and NT
i for i ≥ 2, which 

will arise in the computation of L(π∞). The first three non-terminals behave according to

NT
0 a〈r, s〉t � NT

1 ([γ ← � r]a)st

� NT
2 ([γ ← � r]a)sst

� NT
3 ([γ ← � r]a)(s〈0〉)st

The remaining behave similarly to the NA
i non-terminals analysed earlier, except that it is NT

6 that provides 
the only ‘outputs’ in the derivation. In particular,

NT
6 ars � 〈β, β̂〉 · a NT

5 ar〈s0〉t � 〈β, s0〉 · a
NT

3 a〈r0〉st � NT
5 ([β ← � r0]a)〈〉(s〈sr0 · a〉)t

Let δ : ι be a fresh symbol. Combining the two sets of equations above, if s : ι̂ → ι1 is such that s〈δ〉 �
{〈si〉 | i ≤ k} and si contains neither β or γ for each i, it follows that

NT
0 ⊥〈r, s〉t � {〈si · [δ ← � 0]⊥, sj · [δ ← � ssi][δ ← � 0]⊥〉 | i, j ≤ k} . (11)

We can now proceed with calculating the language of NT
π∞⊥cε̂. Let w = N̂Ī

0⊥cε̂. Following on from (2)
and (5) we have

NT
π∞⊥cε̂ � NT

0 ⊥(NI
a⊥w)cε̂

�
{

NT
0 ⊥〈0, N̂I0

d ⊥(w〈1,NI1
c ⊥w〉)〉cε̂,NT

0 ⊥〈1,NI1
c ⊥w〉cε̂

}
(12)

Thus, we need only compute

NI0
d ⊥〈δ〉(w〈1,NI1

c ⊥w〉) NI1
c ⊥(N̂Ī

0⊥cε̂)〈δ〉

and apply (11) (assuming that the terms obtained will be free of β and γ). The latter was already established 
in (9):

NI1
c ⊥(N̂Ī

0⊥cε̂)〈δ〉 � {〈m0δ〉, 〈m(s(m0δ))δ〉}

For the former, we have w〈1,NI1
c ⊥w〉 � NĪγ

1 ([γ ← � 1]⊥)(NI1
c ⊥w)cε̂, whence (10) implies

NI0
d ⊥〈δ〉(w〈1,NI1

c ⊥w〉) � NI0
d ⊥〈δ〉(NĪγ

1 ([γ ← � 1]⊥)(NI1
c ⊥w)cε̂)

�
{

NI0
d ⊥〈δ〉〈s〉 | s ∈ {0, 1, 2}

}
� {〈mδ0〉, 〈mδ1〉, 〈mδ2〉}
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Hence, by (11) and (12), we deduce

NT
π∞⊥cε̂ �

{
〈r, s[δ← �sr]〉 | r ∈ {0̂, 1̂, 2̂}, s ∈ {mδ0,mδ1,mδ2}

}
∪
{
〈r, s[δ← �sr]〉 | r ∈ {0̂,m10}, s ∈ {m0δ,m(s(m0δ))δ}

}
Under the standard interpretation of the symbols 0, s and m (as zero, successor and binary ‘max’) L(π∞)
ascribes to T the set

{(0, 1), (0, 2), (1, 2), (2, 3), (1, 3)} .

6. Substitution, subsumption and normality

In the previous section we introduced a preorder on terms, r � s, specifying that the language induced 
by s extends the language induced by r. Formally, r � s holds if r and s are of the same type ρ and for 
every H ∪ {xρ}-term t of basic type, if t(r/x) →∗ r0 for a Σ-term r0 then there exists a Σ-term s0 such 
that t(s/x) →∗ s0 and r◦0 = s◦0.

This relation can be extended to proofs in a natural way, by defining π′ � π if π and π′ have the same 
end-sequent and Ni

π′ � Ni
π for each i. For many one-step cut reductions π � π′ indeed π′ � π (and even 

π � π′), from which it immediately follows that L(π′) ⊆ L(π) (resp. L(π′) = L(π)). However, there exist 
reductions π � π′ for which L(π′) ⊆ L(π) but π′ ⊀ π. These scenarios all arise in reductions which interact 
with quantifiers and alter the contexts in which explicit substitutions occur in derivations. In order to prove 
language preservation, i.e. that π � π′ implies L(π′) ⊆ L(π), for these reductions, we will replace the 
preorder � with a coarser relation which we call subsumption, that quantifies not over all possible contexts 
(the ‘t’ in the definition of r � s above) but only over contexts of a particular syntactic shape. Such terms 
we name normal terms and will be defined (along with our relation of term subsumption) in Section 6.1
below.

Before embarking on these definitions, it will be convenient to abstract the notion of Herbrand scheme 
slightly and observe that we can specify a single, universal, recursion scheme in which every Herbrand 
scheme for a regular proof can be viewed as a natural finite sub-scheme.

Definition 6.1 (Universal Herbrand scheme). Let Σ be the signature of first-order logic. We let H denote 
the infinite recursion scheme comprising:

1. a non-deterministic non-terminal Dρ : ρ → ρ → ρ for each basic type ρ with production rules Dρrs → r

and Dρrs → s,
2. all non-terminals Ni

π, Sπ,i and cρ from Definition 4.5 with their associated production rules formulated 
deterministically in terms of the Dρ non-terminals above,

3. for each non-terminal Ni
π : ς → τ0 → · · · τm → τ from the above with τ prime, a non-terminal N̂i

π with 
type and associated production rule

N̂i
π : ς → τ0 → · · · → τi−1 → τi+1 → · · · τm → τi → τ

N̂i
πax0 · · ·xm → Ni

πax0 · · ·xi−1xmxi · · ·xm−1

We refer to H as the universal Herbrand scheme.

Henceforth, a term is an H -term and we write → in place of →H . Finite sets of H -terms will represent 
applications of the non-deterministic non-terminals Dρ. Specifically, the set {sρ0, . . . , s

ρ} represents any term 
k
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formed by combining all the terms s0, . . . , sk (possibly with repetitions) via the non-terminal Dρ. If S is a 
finite set of terms of the same type, it follows that S →∗ s for each s ∈ S.

Notice that there are no start symbols in H . In this regard we may consider the individual Herbrand 
scheme Hπ as obtained from H by specifying an appropriate set of start symbols. The new ‘hat’ non-
terminals do not play a role in viewing H as a universal Herbrand scheme. Rather, they become useful in 
‘transferring’ non-terminals lacking their final argument through applications of permutation. For example, 
the following partial proof (where we assume u(A) > 0) gives rise to the production rules on the right:

π1 � A(r/v), B
p −−−−−−−−−−−−−−−−−
π0 � B,A(r/v)

∃r −−−−−−−−−−−−−−−−−
π � B,∃vA

Ni
π0
axz → N1−i

π1
azx

N1
πaxz → 〈r · a,N1

π0
x〉

N0
πaxz → N0

π0
ax

(
z(N1

πaxz)
)

yielding the derivation N0
πaxz →∗ N1

π1
a
(
z〈r · a,N1

π0
ax〉

)
x. The derivation cannot be extended as it stands 

because N1
π0

lacks an argument, meaning that it is not formally possible to express the term N0
πaxz by refer-

ence to the proof π1 only without instantiating x and z by concrete terms. However, N1
π0
ax is extensionally 

equal to the term N̂0
π1
ax, allowing us to equate N0

πaxz with the term N1
π1
a
(
z〈r · a, N̂0

π1
ax〉

)
x for any choice 

of a, x and z. Equations such as these are useful in the close examination of the cut elimination process 
carried out in the sections below.

In the previous section a natural subsumption and equivalence relation on terms was introduced given 
by equating terms that induce the same language in all contexts. In the context of the universal Herbrand 
scheme H , this subsumption is given by r � s which holds just if r, s : ρ for some ρ and, for every H ∪{xρ}-
term t of basic type, whenever t(r/x) →∗ r0 for a Σ-term r0, then t(s/x) →∗ s0 for some Σ-term s0 such 
that r◦0 = s◦0. The corresponding equivalence relation � is defined by r � s iff r � s � r. The following 
properties of the relations � and � were remarked in the last section.

Lemma 6.2. Let r, s : ρ be H -terms of the same type and S a finite set of terms of pair type σ = σ0×· · ·×σl.

1. If r → s then s � r. If, in addition, the reduction follows from a production rule for a deterministic 
non-terminal then r � s.

2. If r and s are representations of the same finite set of H -terms then r � s.
3. If r = Fs0 · · · sk−1x

σ for a non-terminal F with production rule Fx0 · · ·xk−1〈xk, . . . , xk+l〉 → t then

r(S/x) � {r(s/x) | s ∈ S}

� {t((s0 . . . , sk+l)/(x0, . . . , xk+l)) | 〈sk, . . . , sk+l〉 ∈ S}.

4. If the co-domain of ρ is ε then r � cρ.

Proof. Properties 1–3 are straight-forward, though for 3 we note that only deterministic non-terminals have 
production rules that invoke pattern-matching. 4 generalises Lemma 4.10 and is proved by induction on ρ
and r, noting that 〈〉 · a � 〈〉 for any substitution a. �
6.1. Normal terms and subsumption

In order to focus on the impact of substitutions in H -terms it is necessary to introduce a notion of free 
and bound occurrences of Σ-symbols in these terms where, recall, Σ is the signature of first-order logic. The 
free symbols of a basic Σ-term are simply the Σ-symbols that occur in the term; Σ-terms have no bound
symbols. For a basic H -term t, the free symbols of t are the Σ-symbols occurring in t combined with the 
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Σ-symbols occurring in any proof π for which a non-terminal Ni
π or N̂i

π appears in t; the bound symbols 
of t are the eigenvariables of the proofs which occur leftmost in t. For non-basic terms, substitutions and 
substitution stacks are interpreted as contributing to the set of bound symbols, and limiting the set of free 
symbols in the natural way. Explicitly, for a substitution stack a : ς and H -term r : ρ we define

Bd(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if r is a Σ-term or r = cρ,
EV (π), if r = Ni

π or r = N̂i
π for some i,

Bd(s) ∪Bd(t), if r = 〈s, t〉,
Bd(s) ∪Bd(t), if r = Dρst,
Bd(s) ∪Bd(a), if r = sa or r = s · a for a : ς,
Bd(s), if r = st and t : τ where τ �= ς,

Bd(a) =
{
∅, if a = ⊥,
{α} ∪Bd(b), if a = [α ← � s]b,

Fr(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if r = cρ or r = Dρ′ ,
{r}, if r ∈ Σ,
Fr(π), if r = Ni

π or r = N̂i
π for some i,

Fr(s) ∪ Fr(t), if r = 〈s, t〉,
(Fr(s) \Bd(a)) ∪ Fr(a), if r = sa or r = s · a for a : ς,
Fr(s) ∪ Fr(t), if r = st and t : τ where τ �= ς,

Fr(a) =
{
∅, if a = ⊥,
(Fr(s) \Bd(b)) ∪ Fr(b), if a = [α ← � s]b,

EV (π) denotes the set of eigenvariables in the proof π, and Fr(π) the set of all non-eigenvariable Σ-symbols 
occurring in the π. Notice that Bd(Ni

π) and Fr(Nj
π) are disjoint sets by definition.

Definition 6.3 (Normal terms). A normal term is an H -term r satisfying:

1. if a is substitution stack which is a sub-term of r then Bd(a) ∩ Fr(a) = ∅,
2. if st is an application which is a sub-term of r then Bd(s) ∩ Fr(t) = ∅,
3. if s · a is a substitution occurring as a sub-term of r then s is of simple type.

As mentioned at the beginning of this section, the aim of the above definition is to provide a class of terms 
for which we can examine a more refined subsumption relation on H -terms that captures both language 
inclusion and equality for a wide range of cut reduction rules. The subsumption relation that achieves this 
is essentially the restriction of � that only quantifies over normal contexts.

Definition 6.4 (Subsumption). Given normal H -terms r, s : ρ of the same type, s subsumes r, in symbols 
r � s, just if, for every H ∪{xρ}-term t of basic type such that t(r/x) and t(s/x) are both normal, whenever 
t(r/x) →∗ u for a Σ-term u then t(s/x) →∗ v for some Σ-term v satisfying u◦ = v◦. Define r ∼ s if r � s

and s � r.

Clearly, for normal terms r and s, r � s implies r � s, and r � s implies r ∼ s. Hence, if π, π′ are 
two regular proofs of a Σ1 sequent Γ and Sπ′,i � Sπ,i for every i < |Γ| then L(π′) ⊆ L(π). However, what 
we require is the more general property that if for every H -derivation Sπ′,i →∗ u of a Σ-term there exists 
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H -terms r, s and t such that Sπ′,i →∗ t(r/x) →∗ u, Sπ,i →∗ t(s/x) and r � s, then we may conclude 
L(π′) ⊆ L(π). This result holds trivially for � in place of �. For it to work for subsumption, the terms r, s
and t must all be normal, i.e., we require

Lemma 6.5. If r → s and r is normal then s is normal. In particular, if Sπ,i →∗ s then s is a normal term.

Lemma 6.5 is not difficult to establish but requires some technical observations concerning the preserva-
tion of free and bound symbols through H -derivations. The proof is given in Section 6.2 below.

To accompany Lemma 6.5 it is necessary to know that every maximal derivation from a start symbol 
terminates in a Σ-term. By the previous lemma, it would suffice to show an arbitrary normal term of basic 
type is either reducible or a Σ-term but this claim is easily seen to be false. In place of the general statement 
we have the next two lemmas.

Lemma 6.6 (Finite basis lemma). For every normal H -term r of pair type there exists terms 〈s0, t0〉, . . . , 
〈sk, tk〉 such that r ∼ {〈si, ti〉 | i ≤ l}.

Lemma 6.7. Suppose A ∈ Σ1. If r : τA is a normal term and not a Σ-term then r → s for some term s.

There are two scenarios in which explicit substitutions can block derivations. In the first, there is a term 
r of pair type which cannot be reduced to an explicit pair because it has the form, say, s ·a. Even if r itself is 
a Σ-term, i.e., does not contain any non-terminals, it may appear as the argument of a non-terminal whose 
reduction depends on pattern-matching r against an explicit pair. The second scenario is if there exists a 
sub-term of the form Fr1 · · · rk · a where F is a non-terminal of arity greater than k. Normality rules out 
both scenarios. This is the main idea behind Lemmas 6.6 and 6.7.

6.2. Proofs of Lemmas 6.5–6.7

We now prove the three lemmas stated above. The arguments rely on a number of technical details 
concerning derivations of normal terms. Following, we examine the interaction of subsumption and explicit 
substitutions which will prove important for establishing language preservation for the case quantifier in-
ferences. At this point the reader may wish to proceed directly to Section 7 and refer back the technical 
results as needed.

We begin with Lemma 6.5 which requires two technical observations on free and bound symbols in normal 
terms. Their effect is to reduce the problem of proving the lemma to checking that each production rule of 
the universal Herbrand scheme preserve normality.

Lemma 6.8. If r(s/x) is a normal term, t is a normal term of the same type as s, Fr(t) ⊆ Fr(s) and 
Bd(t) ⊆ Bd(s) then r(t/x) is normal.

Proof. By definition. �
Lemma 6.9. If Fx0 · · ·xk−1〈xk, . . . , xk+l〉 → t is a production rule of H , and r0, . . . , rk+l are such that 
s = Fr0 · · · rk−1〈rk, . . . , rk+l〉 is normal, then Fr(t(�r/�x)) ⊆ Fr(s) and Bd(t(�r/�x)) ⊆ Bd(s).

Proof. We examine two particular cases, namely the quantifier rules, and leave the remaining for the reader 
to check. Consider an instance of the production rule for ∀α for a single eigenvariable:

Ni
πar0 · · · rk−1〈s, rk〉 → Ni

π0
([α ← � s]a)r0 · · · rk



30 B. Afshari et al. / Annals of Pure and Applied Logic 171 (2020) 102792
where r0, . . . , rk and s are terms of suitable type and number, and a : ς is a substitution stack. Let m and 
n abbreviate the left- and righthand term in the above rule respectively. Assume m is a normal term.

Bd(m) = Bd(Ni
πa)

= EV (π) ∪Bd(a)

= EV (π0) ∪ {α} ∪Bd(a)

= Bd(n)

Concerning free symbols, we have

Fr(m) = (Fr(π) \Bd(a)) ∪ Fr(a) ∪ Fr(r0, . . . , rk, s)

Fr(n) = (Fr(π0) \Bd([α ← � s]a)) ∪ Fr([α ← � s]a) ∪ Fr(r0, . . . , rk)

= (Fr(π0) \ ({α} ∪Bd(a))) ∪ (Fr(s) \Bd(a)) ∪ Fr(a) ∪ Fr(r0, . . . , rk)

where Fr(u0, . . . , ul) =
⋃

i≤l Fr(ui). By normality of m, Fr(s) \Bd(a) = Fr(s) and as Fr(π) = Fr(π0) \{α}, 
so Fr(n) ⊆ Fr(m).

For production rules resulting from the inference rule ∃s, suppose

Ni
πar0 · · · rk → Ni

π0
ar0 · · · rk−1

(
rk〈s · a,Nk

π0
ar0 · · · rk−1〉

)
(13)

for suitable terms r0, . . . , rk and a. Recall that s is the Σ-term instantiating the existential quantifier in 
the active formula of π0. By our regularity condition on proofs, Fr(s) ⊆ Fr(π), so, letting m and n denote 
the left and right side of the reduction in (13), we have

Fr(n) = Fr(Ni
π0
a) ∪ Fr(r0, . . . , rk) ∪ Fr(s · a) ∪ Fr(Nk

π0
a)

⊆ Fr(Ni
πa) ∪ Fr(r0, . . . , rk)

= Fr(m). �
We can now prove Lemma 6.5.

Proof of Lemma 6.5. By the previous two lemmas it suffices to show that every production rule of H locally 
preserves normality. As in the proof of Lemma 6.9, we offer the argument for the important cases of the 
two quantifier rules and leave the remaining cases to the reader. Let the derivation

Ni
πar1 · · · rk〈s, rk+1〉 → Ni

π0
([α ← � s]a)r1 · · · rkrk+1

arise from an inference ∀α. Let m and n denote respectively the left and righthand term of the above 
equation. Assume m is normal. In particular,

(EV (π) ∪Bd(a)) ∩ (Fr(a) ∪ Fr(s)) = ∅ (14)

We first show that for every application s′t′ occurring in n, Bd(s′) ∩ Fr(t′) = ∅. This is evident if s′t′ is a 
sub-term of a, r1, . . . , rk, s or t. Moreover, it holds for the case s′ = Ni

π0
and t′ = [α ← � s]a because

Bd(s′) ∩ Fr(t′) = EV (π0) ∩ ((Fr(s) \Bd(a)) ∪ Fr(a))

⊆ EV (π) ∩ (Fr(s) ∪ Fr(a))

= ∅
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and for s′ = Ni
π0

([α ← � s]a)r1 · · · rj , t′ = rj+1 (j ≤ k) because Bd(Ni
π0

([α ← � s]a)) ⊆ Bd(Ni
πa). The other 

requirement to check for normality is that the sets Bd([α ← � s]a) and Fr([α ← � s]a) are disjoint, but this 
follows from (14), given that Fr([α ← � s]a) ⊆ Fr(s) ∪ Fr(a) and Bd([α ← � s]a) ⊆ EV (π) ∪Bd(a). Hence n
is normal.

The second production rule is the one arising from the inference ∃s:

Ni
πar0 · · · rk → Ni

π0
ar0 · · · rk−1

(
rk〈s · a,Nk

π0
ar0 · · · rk−1〉

)
Suppose Ni

πar0 · · · rk is a normal term so, in particular, Bd(Ni
πa) is disjoint from Fr(ri) for each i ≤ k. In 

this case it suffices to show

Bd(Ni
π0
ar0 · · · rk−1) ∩ Fr(rk〈s · a,Nk

π0
ar0 · · · rk−1〉) = ∅

i.e., that

Bd(Ni
π0
a) ∩

(⋃
i≤k

Fr(ri) ∪ Fr(s · a) ∪ Fr(Nk
π0
a)
)

= ∅,

as all other cases follow immediately from normality of Ni
πar0 · · · rk. But by regularity of π, Fr(s) ⊆ Fr(π), 

so we have

Bd(Ni
π0
a) = EV (π) ∪Bd(a)

Fr(s · a) ⊆ (Fr(π) \Bd(a)) ∪ Fr(a)

Fr(Nk
π0
a) = (Fr(π) \Bd(a)) ∪ Fr(a)

and, as Bd(a) is disjoint from Fr(a) and EV (π) is disjoint from Fr(π) ∪ Fr(a), we are done. �
We now turn to the task of proving Lemma 6.7 which follows from the next two lemmas. The first char-

acterises the syntactic form of normal H -terms and will be useful in the subsequent analysis of derivations 
in Herbrand schemes.

Lemma 6.10. If r : ρ is a normal H -term and ρ is a basic type whose co-domain is a pair σ × τ in which 
σ is simple and τ is not simple, then either r = 〈s, t〉 for a Σ-term s and H -term t, or r = Fr1 · · · rk for 
some non-terminal F and terms r1, . . . , rk.

Proof. By induction on r. Let r : ρ = ρ1 → · · · → ρl → σ×τ be a normal H -term satisfying the hypothesis 
of the lemma. Since ρ is not a simple type, r is not a Σ-symbol nor of the form s · a for a substitution stack 
a (by definition of normal terms). This leaves three cases: i) l = 0 and r = 〈s, t〉 for s : σ and t : τ ; ii) r = st

for s : τ ′ → ρ and t : τ ′; or iii) r is a non-terminal of H . If (i), as σ is simple, s is a Σ-term by Lemma 4.8
and we are done. In case (ii), suppose r = st is an application and s : σ′ = τ ′ → ρ and t : τ ′. If σ′ is not 
basic then Lemma 4.9 implies s = F for some π and i, whence r = Ft. On the other hand, if σ′ is basic 
the induction hypothesis applies and s = Fr1 · · · rk for terms r1, . . . , rk, and so similarly for r. So we are 
done. �
Lemma 6.11. If r : ι × ρ is a normal H -term of pair type but not a pair then r → s for some H -term s.

Proof. Assume to the contrary that r : ι × ρ is an H -term which is not a pair and that there is no s such 
that r → s. Without loss of generality assume r is minimal in length. By Lemma 6.10, r = Fr1, . . . , rk for 
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some non-terminal F and terms r1, . . . , rk. It follows that F �= cσ for any σ as otherwise r → 〈c, cρ〉. Also 
F �= Dι×ρ (as then r → r1) and F �= N̂i

π for any π and i. So F = Ni
π for some π and i. The fact that r is 

not reducible means that the production rule for Ni
π requires pattern-matching on the final argument. But 

then rk : ι × σ for some σ, is not a pair and is not reducible, contradicting minimality of r. �
We can now prove the two remaining lemmas.

Proof of Lemma 6.6. Let r : ρ be a H -term where ρ = σ × τ . Without loss of generality, we may assume 
r �= Dρr0r1 for any r0 and r1. If r has the form 〈s, t〉 then trivially r ∼ {〈s, t〉} and if r = cρ then 
r ∼ {〈cσ, cτ 〉}. Otherwise, Lemma 6.10 implies that r ∼ Ni

πar0 · · · rk for some π, i, a, r0, . . . , rk. An induction 
on π determines terms s0, . . . , sl and t0, . . . , tl such that r ∼ {〈sj , tj〉 | j ≤ l}. Note that Lemma 6.11 implies 
there is no issue with pattern-matching stopping derivations from fully writing out. �
Proof of Lemma 6.7. Let A be a Σ1 formula and suppose r : τA is an irreducible normal term that is not 
a Σ-term. Without loss of generality, we assume every sub-term of r satisfies the statement of the lemma. 
Considering the types of non-terminals that form the H -terms we deduce ρ is a pair type. By Lemma 6.6
we may assume r is a pair, say r = 〈s, t〉. As s is of simple type, it is a Σ-term. Hence t is an irreducible 
normal term which is not a Σ-term and, by the assumption on A, is of type τB for some B ∈ Σ1. �
6.3. Substitution and normality

Here we present some results concerning the interaction of subsumption with explicit substitutions which 
are needed for analysing the cut reduction and permutation rules for quantifiers.

Lemma 6.12. If t(r/x) and t(s/x) are normal terms and r � s then t(r/x) � t(s/x).

Proof. Direct consequence of the definition. �
Lemma 6.13. If ru � su for every term u then r � s.

Proof. For every derivation t(r/x) →∗ r0 of a Σ-term, there are terms t′, u0, . . . , uk such that t(r/x) →∗

t′((rui)i≤k/�x) →∗ r0 and t(s/x) →∗ t′((sui)i≤k/�x). Since normality is preserved through derivations, we 
are done. �
Lemma 6.14. Let r be a basic H -term and a be a substitution stack over Σ. Then,

1. Fr(r(s/α) · a) ⊆ Fr(r · ([α ← � s]a)),
2. Bd(r(s/α) · a) ⊆ Bd(r · ([α ← � s]a)) provided s is basic,
3. if Fr(r) ∩Bd(a) = ∅ then ra = r,
4. if α /∈ Bd(a) ∪ Fr(a) then r(s/α)a = ra(sa/α) provided s is basic.

Proof. By induction on r and a. �
Lemma 6.15. Let r : ρ and a : ς be Σ-terms, s : σ a basic Σ-term, αρ ∈ Σ and π a regular proof. Under the 
assumption that Ni

π([α ← � r]a) is normal the following hold.

1. s · ([α ← � r]a) ∼ s(r/α) · a,
2. r ∼ r◦,
3. [α ← � r]a ∼ [α ← � r · a]a,
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4. If EV (π) ∩ Fr(r) = ∅ then Ni
π([α ← � r]a) ∼ Ni

π(r◦/α)a,
5. If α /∈ Fr(π) then Ni

πa ∼ Ni
π([α ← � r]a).

Proof. 1 is proved via induction on the basic term s. That r and a are Σ-terms is necessary for showing 
s(r/α) · a � s · ([α ← � r]a). 2 follows from 1 by induction on r. Regarding 3, Lemma 6.14(1, 2) imply 
Fr(a◦) ⊆ Fr(a) and Bd(a◦) ⊆ Bd(a), so α /∈ Fr(a◦) by normality. Hence, if t is a basic term then

t · [α ← � r]a ∼ t(r◦/α)a
◦ ∼ ta

◦
((r◦)a

◦
/α)

∼ ta
◦
(((r◦)a

◦
)a

◦
/α)

∼ t((r◦)a
◦
/α)a

◦

∼ t · [α ← � r · a]a.

The first and last equivalence are applications of 2; the second and fourth equivalence are consequences of 
Lemma 6.14(4); and the third equivalence uses Lemma 6.14(3) and the fact that Fr(a◦) ∩Bd(a◦) = ∅. Via 
2 the above holds for t an arbitrary Σ-term, and from there generalises to deduce [α ← � r]a ∼ [α ← � r · a]a.

4 is derived by induction on π. By 2 we may assume r is a basic term, i.e., r = r◦. In the base case, where 
π is an axiom, the equivalence is trivial as Ni

π([α ← � r]a)r1r2 ∼ Ni
π(r/α)ar1r2 for any choice of r1 and r2 of 

appropriate type. The induction step is straightforward except in the case of quantifier rules. If π ends in 
the inference

π0 � Γ, A(�s/�v)
∃�s −−−−−−−−−−−−−−−−−

π � Γ,∃�vA

where �s = (sj)j≤k then we have, if i = |Γ|, b = [α ← � r]a and r1, . . . , r|Γ| and t are suitable normal terms,

N|Γ|
π br1 · · · r|Γ|t ∼ 〈s0 · b, . . . , sk · b,N|Γ|

π0
br1 · · · r|Γ|〉

∼ 〈s0(r/α) · a, . . . , sk(r/α) · a,N|Γ|
π

(r/α)
0

ar1 · · · r|Γ|〉

∼ N|Γ|
π(r/α)ar1 · · · r|Γ|t

where the second equivalence due to the induction hypothesis for N|Γ|
π0 ([α ← � r]a). The case i < |Γ| is similar. 

For applications of the ∀ inferences, we consider the inference

π0 � Γ, A(�β/�v)
∀�β

−−−−−−−−−−−−−−−−−
π � Γ,∀�vA

for �β = (βι
j)j≤k. By normality of Ni

π([α ← � r]a) and the assumption that Fr(r) ∩ EV (π) = ∅, it fol-
lows that βj /∈ Fr(a) ∪ Fr(r) for each j. Let r1, . . . , r|Γ|, s0, . . . , sk and t be such that n := Ni

π([α ← �

r]a)r1 · · · r|Γ|〈s0, . . . , sk, t〉 is well-typed and normal. In particular, α, β0, . . . , βk /∈ Fr(〈s0, . . . , sk, t〉). More-
over, as sj has simple type for each j ≤ k, Lemma 4.8 implies that �s is a sequence of Σ-terms. Then assuming 
α /∈ {βj | j ≤ k}, and writing [�β ← � �s]b in place of [β0 ← � s0] · · · [βk ← � sk]b, we have

n ∼ Ni
π0

([�β ← � �s][α ← � r]a)r1 · · · r|Γ|t

∼ Ni

π
(�s/�β)(r/α)
0

ar1 · · · r|Γ|t

∼ Ni
(r/α)(�s/�β)ar1 · · · r|Γ|t
π0
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∼ Ni

π
(r/α)
0

([�β ← � �s]a)r1 · · · r|Γ|t

∼ Ni
π(r/α)ar1 · · · r|Γ|〈s0, . . . , sk, t〉.

The third equivalence holds since α /∈ Fr(〈s0, . . . , sk, t〉) and βj /∈ Fr(r) for any j. If α = βj then π(r/α) = π

and, using again that α /∈ Fr(〈s0, . . . , sk〉), we have

n ∼ Ni
π0

([�β ← � �s][α ← � r]a)r1 · · · r|Γ|t
∼ Ni

π
(�s/�β)(r/α)
0

ar1 · · · r|Γ|t

∼ Ni

π
(�s/�β)
0

ar1 · · · r|Γ|t

∼ Ni
π0

([�β ← � �s]a)r1 · · · r|Γ|t
∼ Ni

πar1 · · · r|Γ|〈s0, . . . , sk, t〉
∼ Ni

π(r/α)ar1 · · · r|Γ|〈s0, . . . , sk, t〉.

Note, 5 is a special case of 4. �
7. Language preservation for Gentzen-style cut elimination

Recall the relation π � π′ which expresses that π′ is obtained from π by the application of a reduction 
rule in Figs. 2 and 3 to a sub-proof of π. In the present section we determine in which cases � supports: (i) 
language inclusion: π � π′ implies L(π′) ⊆ L(π); and (ii) language equality: π � π′ implies L(π′) = L(π). 
Establishing language inclusion for the cut reduction steps will suffice to derive the main theorem; language 
equality offers a finer study of the Herbrand content of proofs since if π0 and π1 can be connected by a 
sequence of forward and backward language preserving reductions then L(π0) = L(π1).

Let π and π′ be regular proofs of some sequent Γ. We say that π subsumes π′, in symbols π′ � π, if 
Ni

π′ � Ni
π for every i < |Γ|. If π and π′ each subsumes the other then π and π′ are equivalent, in symbols 

π ∼ π′.

Lemma 7.1. Suppose π and π′ are proofs of the same Σ1 sequent. If π′ � π then L(π′) ⊆ L(π).

Proof. By definition. �
Herbrand schemes have the property that their languages are invariant under many basic proof transfor-

mations. The first example we give concerns the operation of substitution in proofs:

Lemma 7.2. Suppose π and π′ are proofs with the same end-sequent such that π′ is the result of replacing a 
sub-proof π0 of π by π′

0. If π0 � π′
0 then π � π′.

Proof. Let π, π0, π′ and π′
0 be as in the statement. We assume π and π′ have the same end-sequent, say Γ. 

Given a subproof π̂ of π which is not a proper subproof of π0, let π̂′ denote the corresponding subproof of π′. 
Observe that if π̂ is a subproof of π but not a proper subproof of π0 then the non-terminals Nj

π̂ and Nj
π̂′ are 

of the same type for each j. Fix i < |Γ| and a normal term t0 = t(Ni
π/x). Suppose t0 → t1 → · · · → tk = r is 

a derivation in H of a Σ-term r. By Lemma 6.5, ti is normal for every i ≤ k and, without loss of generality, 
we may assume t does not feature any non-terminals labelled by proofs with π0 as a sub-proof. Throughout 
this derivation, recursively replace each occurrence of a non-terminal Nj

π̂ for which π̂ is not a proper subproof 
of π0 by the non-terminal Nj

π̂′ . Arguing by induction on k, using π0 � π′
0, we deduce t(Ni

π′/x) →∗ s for 
some Σ-term s with s◦ = r◦. �
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We begin our analysis of cut elimination by observing three common scenarios in which language com-
putations can be simplified.

Lemma 7.3. Let π � A1, . . . , Am, B, C1, . . . , Cn and let a : ς, ri : τ̂Ai
, s : τ̂B and tj : τ̂Cj

be terms for 
1 ≤ i ≤ m and 1 ≤ j ≤ n such that Nm

π a�rs�t is normal. Let ρ = τ̂B.

1. If B is prenex Σ1 then Nm
π a�rs�t ∼ Nm

π a�rcρ�t.
2. If e(B) > 0 and there are no applications of contraction to B in π then Nm

π a�rs�t ∼ Nm
π a�rcρ�t.

3. If the final inference in π is an application of p with immediate sub-proof π′ � A1, . . . , Am, C1, B, C2, . . . ,
Cn then for each j ∈ [0, m) ∪ [m + 2, m + n],

Nj
πar1 · · · rmst1 · · · tn ∼ Nj

π′ar1 · · · rmt1st2 · · · tn.

Proof. 1. Since B is Σ1, τ̂B = τB → ε, whereby Lemma 6.2 completes the proof. 2 and 3 are proved by 
induction on π. �

We now turn our attention to the analysis of the subsumption relation with respect to the cut reduction 
and permutation steps of Figs. 2 and 3. Only the most interesting cases will be covered in detail: the cut 
and quantifier permutation, and contraction and quantifier reduction. As before, we leave instances of the 
permutation inference implicit and make use of Lemma 7.3(3) without reference. Recall the characterisation 
of the cut inference from Remark 4.6:

π0 � Γ, A π1 � Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−

π � Γ,Δ
Ni

πa�x�y ∼

⎧⎪⎪⎨
⎪⎪⎩

Ni
π0
a�x(Nn

π1
a�y(Nm

π0
a�x)), if u(A) > 0,

Ni
π0
a�x(Nn

π1
a�y), if e(A) > 0,

Ni
π0
a�x〈〉, if A is q.f.,

where i < |Γ| and �x, �y and a are terms of suitable type.

7.1. Cut permutation

Suppose π � π′ are the two proofs

π0

Γ, A,B

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−

π̂ � Γ, B,Δ

π2

Λ, B̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

π � Γ,Δ,Λ

�

π0

Γ, A,B

π2

Λ, B̄
cut −−−−−−−−−−−−−−−−−−−−

π̂′ � Γ, A,Λ

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

π′ � Γ,Δ,Λ

Due to the asymmetry in the production rules for cut, it is necessary to split the analysis of this reduction 
into two cases, depending on whether or not A and B are both universally quantified. Provided at least 
one of the two formulæ is existentially quantified or quantifier free, the two proofs above are equivalent and 
their languages are equal. This is proved in Lemma 7.4. If both A and B are universally quantified we do 
not expect equivalence to hold in general. However, if there are no contractions to the formula Ā in π1 or 
the formula B̄ in π2, the proofs π and π′ are equivalent. This is relevant to the cut reduction strategies 
employed in Theorem 1.1 and is treated in Lemma 7.7.

Lemma 7.4. For π � π′ as above, if at least one of u(A) and u(B) is zero then π ∼ π′.
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Proof. If one of A or B is quantifier-free the argument is straightforward following the production rules for 
cut. This leaves the following three cases to consider: u(Ā), u(B) > 0, u(A), u(B̄) > 0 and u(Ā), u(B̄) > 0. 
We consider only the first case as the second is symmetric and the third follows a simpler argument. Thus 
assume e(A), u(B) > 0.

Let �r, �s, �t be sequences of terms of length m = |Γ|, n = |Δ| and o = |Λ| respectively, and let a : ς be an 
arbitrary substitution stack. By the production rules for cut we have, for each i ≤ m, j < n and k < o, and 
each term w, w′ of suitable type,

Ni
π̂a�rw�s ∼

{
Ni

π0
a�r(Nn

π1
a�s)w, if i < m,

Nm+1
π0

a�r(Nn
π1
a�s)w, if i = m,

Nm+1+j
π̂ a�rw�s ∼ Nj

π1
a�s(Nm

π0
a�r(Nn

π1
a�s)w)

Ni
π̂′a�rw′�t ∼ Ni

π0
a�rw′(No

π2
a�t(Nm+1

π0
a�rw′))

Nm+1+k
π̂′ a�rw′�t ∼ Nk

π2
a�t(Nm+1

π0
a�rw′)

In particular,

N̂m
π̂ a�r�s ∼ Nm+1

π0
a�r(Nn

π1
a�s) (15)

and so, for i ≤ m,

Ni
π̂′a�r(Nn

π1
a�s)�t ∼ Ni

π0
a�r(Nn

π1
a�s)(No

π2
a�t(N̂m

π̂ a�r�s)). (16)

We prove Ni
πa�r�s�t ∼ Ni

π′a�r�s�t for every i < m + n + o, from which Lemma 6.13 implies Ni
π ∼ Ni

π′ . For i < m

we have

Ni
πa�r�s�t ∼ Ni

π̂a�r(No
π2
a�t(N̂m

π̂ a�r�s))�s ∼ Ni
π0
a�r(Nn

π1
a�s)(No

π2
a�t(N̂m

π̂ a�r�s))

∼ Ni
π̂′a�r(Nn

π1
a�s)�t

∼ Ni
π′a�r�s�t

by applying (16). For j < n,

Nm+j
π a�r�s�t ∼ Nm+1+j

π̂ a�r(No
π2
a�t(N̂m

π̂ a�r�s))�s

∼ Nj
π1
a�s(Nm

π0
a�r(Nn

π1
a�s)(No

π2
a�t(N̂m

π̂ a�r�s)))

∼ Nj
π1
a�s(Nm

π̂′a�r(Nn
π1
a�s)�t)

∼ Nm+j
π′ a�r�s�t

again applying (16). For k < o, using (15):

Nm+n+k
π a�r�s�t ∼ Nk

π2
a�t(N̂m

π̂ a�r�s) ∼ Nk
π2
a�t(Nm+1

π0
a�r(Nn

π1
a�s))

∼ Nm+1+k
π̂′ a�r(Nn

π1
a�s)�t

∼ Nm+n+k
π′ a�r�s�t. �

As noted above, in the case u(A) and u(B) are both positive, language equality holds only in particular 
circumstances. A sufficient condition for this is given by the next lemma.
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Lemma 7.5. Let π � π′ be as above and assume u(A), u(B) > 0. Let ρ = τ̂Ā, σ = τ̂B̄, R = N̂m
π̂′a�r�t and 

S = N̂m
π̂ a�r�s. If R ∼ N̂m

π0
a�r(No

π2
a�tS) and S ∼ N̂m+1

π0
a�r(Nn

π1
a�sR) then π ∼ π′.

Proof. Recall that R and S have type ρ and σ respectively. Then for i < m,

Ni
πa�r�s�t ∼ Ni

π̂a�r(No
π2
a�tS)�s

∼ Ni
π0
a�r(Nn

π1
a�s(N̂m

π0
a�r(No

π2
a�tS)))(No

π2
a�tS)

∼ Ni
π0
a�r(Nn

π1
a�sR)(No

π2
a�t(N̂m+1

π0
a�t(Nn

π1
a�sR)))

∼ Ni
π̂′a�r(Nn

π1
a�sR)�t

∼ Ni
π′a�r�s�t

The other cases, namely m ≤ i < n + o follow similar reasoning. �
Lemma 7.6. If A, B ∈ Π1 ∪ Σ1 then π ∼ π′.

Proof. Assume Ā and B̄ are both Σ1 formulæ (if not, apply Lemma 7.4). Let R and S be as in Lemma 7.5. 
We have, by Lemma 7.3,

Rw ∼ Nm
π0
a�rw(Nn

π2
a�t(N̂m+1

π0
a�rw)) Sw′ ∼ Nm+1

π0
a�r(Nn

π1
a�s(N̂m

π0
a�rw′))w′

∼ Nm
π0
a�rw(Nn

π2
a�tS) ∼ Nm+1

π0
a�r(Nn

π1
a�sR)w′

and hence

R ∼ N̂m
π0
a�r(No

π2
a�tS) S ∼ N̂m+1

π0
a�r(Nn

π1
a�sR).

The previous lemma then implies π ∼ π′. �
Lemma 7.7. For the same π and π′, if there are no contractions to either the formula Ā in the sub-proof π1
or the formula B̄ in the sub-proof π2 then π ∼ π′.

Proof. Suppose there are no contractions to B̄ in π2 and let R and S be as above. By Lemma 7.3, Nk
π2
a�tu ∼

Nk
π2
a�tv for any two terms u, v : τ̂B̄ . Hence, in particular,

R ∼ N̂m
π0
a�r(No

π2
a�tS) No

π2
a�tS ∼ N̂m+1

π0
a�r(Nn

π1
a�sR)

which suffice, by the proof of Lemma 7.5, to show π ∼ π′. �
7.2. Contraction reduction

Consider the two proofs

π0

Γ, A,A
c −−−−−−−−−
π̂ � Γ, A

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−−

π � Γ,Δ

�

π0

Γ, A,A

π1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−

π̂′ � Γ, A,Δ

π∗
1

Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Δ,Δ
c∗ −−−−−−−−−−
π′ � Γ,Δ
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where π∗
1 denotes a copy of π1 with fresh eigenvariables. Observe that π1 ∼ π∗

1 .
Although the reduction above does not in general induce language inclusion, for the two scenarios required 

in Theorem 1.1, namely either u(A) = 0 or there are no applications of contraction are applied to the formula 
Ā in the sub-proof π1, we have π′ � π. The following two lemmas deal with these two cases.

Lemma 7.8. If u(A) = 0 then π′ � π.

Proof. If A is quantifier-free then π ∼ π′ is easily established by following the reduction rules for cut. So 
assume u(A) = 0 < u(Ā). Let m = |Γ| and n = |Δ|, and fix i < m and j < n. Let r = Nn

π1
a�y and 

r∗ = Nn
π∗
1
a�y. Unravelling the production rules for the two proofs yield

Ni
πa�x�y ∼ Ni

π0
a�xrr Nm+j

π a�x�y � {Nj
π1
a�y(Nm+1

π0
a�xrr),Nj

π1
a�y(Nm

π0
a�xrr)}

Ni
π′a�x�y ∼ Ni

π0
a�xr∗r Nm+j

π′ a�x�y ∼ {Nj
π1
a�y(Nm+1

π0
a�xr∗r),Nj

π∗
1
a�y(Nm

π0
a�xr∗r)}

Since π1 ∼ π∗
1 , Lemma 6.12 implies π′ � π. �

Lemma 7.9. If u(A) > 0 and there are no contractions on the formula Ā in π1, then π′ ∼ π.

Proof. Suppose u(A) > 0. Let τ = τ̂Ā. Lemma 7.3 implies Nj
π1
a�ys ∼ Nj

π1
a�ycτ for every s : τ . Concerning 

derivations from π, this yields the following equivalences for i < |Γ| and j < |Δ|.

Ni
πa�x�y ∼ Ni

π̂a�x(Nn
π1
a�y(N̂m

π̂ a�x)) Nm+j
π a�x�y ∼ Nj

π1
a�y(N̂m

π̂ a�x)

∼ Ni
π̂a�x(Nn

π1
a�ycτ ) ∼ Nj

π1
a�ycτ

∼ Ni
π0
a�x(Nn

π1
a�ycτ )(Nn

π1
a�ycτ )

Starting from π′ we obtain

Ni
π′a�x�y ∼ Ni

π̂′a�x
(
Nn

π∗
1
a�y

(
N̂m

π̂′a�x�y
))

�y Nm+j
π′ a�x�y ∼ {Nm+1+j

π̂′ a�x(Nn
π∗
1
a�ycτ )�y,Nj

π∗
1
a�ycτ}

∼ Ni
π̂′a�x(Nn

π∗
1
a�ycτ )�y ∼ {Nj

π1
a�ycτ ,Nj

π∗
1
a�ycτ}

∼ Ni
π0
a�x(Nn

π∗
1
a�ycτ )(Nn

π1
a�ycτ )

So π′ ∼ π. �
7.3. Quantifier permutation

Concerning permuting quantifier rules with cut, consider the following two proofs.

π0

Γ, A(�α/�v), B
∀�α −−−−−−−−−−−−−−−−

π̂ � Γ,∀�vA,B

π1

Δ, B̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

π � Γ,∀�vA,Δ

�

π0

Γ, A(�α/�v), B

π1

Δ, B̄
cut −−−−−−−−−−−−−−−−−−−−−−−−−−

π̂′ � Γ, A(�α/�v),Δ
∀ −−−−−−−−−−−−−−−−−−−−

π′ � Γ,∀�vA,Δ

(17)

Let �α = (αj)j≤p and �v = (vj)j≤p. Regularity ensures that u(A) = 0. In the following, if �u = (uj)j≤p is a 
sequence of terms of type ι and up+1 : τ̂A, we write �u�up+1 to abbreviate the sequence term 〈u0, . . . , up+1〉 :
τ̂∀�vA.
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Like with the case of permuting cuts, an application of the quantifier permutation reduction does not 
preserve equivalence of proofs in all cases. For the main theorem it suffice to prove only π′ � π. This is 
taken up in Lemma 7.11 below. First, however, we show that if B is not universally quantified then indeed 
π ∼ π′.

Lemma 7.10. For π and π′ above, if u(B) = 0 then π′ ∼ π.

Proof. Suppose u(B) = 0 and B is not quantifier-free. The other cases involve much similar arguments. Fix 
�r and �s sequences of normal terms of length m = |Γ| and n = |Δ| respectively, and normal terms t and 
�u � u′ of type τ̂∀�vA. By regularity of π and Lemma 6.15,

Nj
π1

([�α ← � �u]a)�s ∼ Nj
π1
a�s

for each j ≤ n. Concerning π the following equivalences therefore appear for i ≤ m, j < n and k ≤ m + 1,

Ni
πa�rt�s ∼ Ni

π̂a�rt(Nn
π1
a�s) Nk

π̂a�r(�u � u′) ∼ Nk
π0

([�α ← � �u]a)�ru′

Nm+1+j
π a�rt�s ∼ Nj

π1
a�s(Nm+1

π̂ a�rt(Nn
π1
a�s))

So, if t is a normal term and t ∼ {�u0 � u
′
0, . . . , �ul � u

′
l} is given by Lemma 6.6 then for i ≤ m and j < n,

Ni
πa�rt�s ∼

{
Ni

π0
([�α ← � �uk]a)�ru′

k(Nn
π1
a�s) | k ≤ l

}
Nm+1+j

π a�rt�s ∼
{
Nj

π1
a�s(Nm+1

π0
([�α ← � �uk]a)�ru′

k(Nn
π1
a�s)) | k ≤ l

}
Examining π′, we observe

Ni
π′a�rt�s ∼

{
Ni

π̂′([�α ← � �uk]a)�ru′
k�s | k ≤ l

}
∼

{
Ni

π0
([�α ← � �uk]a)�ru′

k(Nn
π1
a�s) | k ≤ l

}
Nn+j

π′ a�rt�s ∼ {Nj
π1
a�s(Nm+1

π0
([�α ← � �uk]a)�ru′

k(Nn
π1
a�s)) | k ≤ l

}
Hence Ni

π′ ∼ Ni
π for every i ≤ m + n and so π′ ∼ π. �

Lemma 7.11. For π and π′ as in (17), π′ � π.

Proof. Fix �r and �s sequences of terms of length m = |Γ| and n = |Δ| respectively. Let �u�u′ : τ̂∀�vA. Suppose 
u(B) > 0 and i ≤ m. The other cases have been considered earlier or involve similar but simpler arguments. 
As was observed earlier,

Nj
π1

([�α ← � �u]a)�s ∼ Nj
π1
a�s

for each j ≤ n. With respect to π′ the following equivalences therefore appear.

Ni
π′a�r(�u � u′)�s ∼ Ni

π̂′([�α ← � �u]a)�ru′�s

∼ Ni
π0

([�α ← � �u]a)�ru′(Nn
π1
a�s(Nm+1

π0
([�α ← � �u]a)�ru′))

whereas the rules for π yield, for arbitrary t : τ̂∀�vA,

Ni
πa�rt�s ∼ Ni

π̂a�rt(Nn
π1
a�s(Nm+1

π̂ a�rt)) Ni
π̂a�r(�u � u′) ∼ Ni

π0
([�α ← � �u]a)�ru′
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If t is a normal term and t ∼ {�u0 � u
′
0, . . . , �ul � u

′
l} is given by Lemma 6.6 then for each i ≤ m,

Ni
π̂a�rt ∼

{
Ni

π0
([�α ← � �uk]a)�ru′

k | k ≤ l
}

Ni
πa�rt�s ∼

{
Ni

π0
([�α ← � �uk]a)�ru′

k(Nn
π1
a�s(Nm+1

π0
([�α ← � �uj ]a)�ru′

j)) | k, j ≤ l
}

(18)

whereas, due to pattern-matching in the production rule for π′,

Ni
π′a�rt�s ∼ {Ni

π0
([�α ← � �uk]a)�ru′

k(Nn
π1
a�s(Nm+1

π0
([�α ← � �uk]a)�ru′

k)) | k ≤ l
}

(19)

Hence Ni
π′ � Ni

π and π′ � π. �
The contrast between equations (18) and (19) demonstrates why π � π′ need not hold in general.

7.4. Quantifier reduction

Consider the reduction

π0

Γ, A(�α/�v)
∀�α −−−−−−−−−−−−−

π̂0 � Γ,∀�vA

π1

Δ, Ā(�s/�v)
∃�s −−−−−−−−−−−−−−

π̂1 � Δ,∃�vĀ
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

π � Γ,Δ

�
π

(�s/�α)
0

Γ, A(�s/�v)

π1

Δ, Ā(�s/�v)
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

π′ � Γ,Δ

Lemma 7.12. If π � π′ is the reduction above then π ∼ π′.

Proof. Let m = |Γ|, n = |Δ|, �α = (αi)i≤p and �s = (si)i≤p. Recall that �s ·a = (si ·a)i≤p. Note that regularity 
of π implies u(A) = 0. This leaves two cases to consider: A is quantifier-free or e(A) > 0. Suppose the latter, 
so the cut in π′ remains a quantified cut (the case A is q.f. follows an analogous argument). The following 
equivalences arise, where i < m and j < n.

Ni
πa�r�t ∼ Ni

π̂0
a�r(Nn

π̂1
a�t(Nm

π̂0
a�r)) Nm+j

π a�r�t ∼ Nj
π̂1
a�t(Nm

π̂0
a�r)

∼ Ni
π̂0
a�r(�s · a � Nn

π1
a�t) ∼ Nj

π1
a�t(Nm

π̂0
a�r(�s · a � Nn

π1
a�t))

∼ Ni
π0

([�α ← � �s · a]a)�r(Nn
π1
a�t) ∼ Nj

π1
a�t(Nm

π0
([�α ← � �s · a]a)�r(Nn

π1
a�t))

∼ Ni

π
(�s/�α)
0

a�r(Nn
π1
a�t) ∼ Nj

π1
a�t(Nm

π
(�s/�α)
0

a�r(Nn
π1
a�t))

∼ Ni
π′a�r�t ∼ Nm+j

π′ a�r�t.

The penultimate equivalence in each column is given by Lemma 6.15. �
7.5. Remaining reductions

The remaining rules are all straightforward to analyse and all induce language equality with the exception 
of weakening reduction for which only language inclusion holds in general.

7.6. Proof of main theorem

We can now prove Theorem 1.1. Let π � ∃�vFqf be a regular proof and π = π0 � π1 � · · · � πn be a 
reduction of π to a quasi cut-free proof πn such that for each i < n, the reduction πi � πi+1 applies a cut 



B. Afshari et al. / Annals of Pure and Applied Logic 171 (2020) 102792 41
reduction or permutation rule from Figs. 2 or 3 to a sub-proof of πi with the restriction that a rule reducing 
the strong quantifier side of a cut is applied only if no other reduction of this cut is possible. By Lemma 7.2
and the analysis in the previous section, L(πi+1) ⊆ L(πi) for each i < n. This together with Lemma 4.12
establishes part (iii) of the theorem. The existence of a reduction of the form above is well-known: see, 
e.g. [40], hence (i). Acyclicity of Hπ is shown in Lemma 4.7, the bound on the order of Hπ is given by 
Lemma 4.14, and the language bound in (ii) follows from Theorem 4.15.

8. Discussion

This work contributes to the structural analysis of first-order proofs with respect to their Herbrand 
content. To a first-order classical proof π � F of a Σ1 formula we associate a recursion scheme H with 
a finite language that constitutes a Herbrand set for F . More generally, the language of H covers the 
Herbrand set implicit in any quasi cut-free proof obtained from π by a sequence of reductions fulfilling the 
following two restrictions.

1. A contraction on a universally quantified formula is reduced only when no other reduction rule is 
applicable to this cut;

2. If two cuts are permuted in the following form then either there are no contractions on the formula B̄
in the relevant subproof, or one of A and B is not universally quantified.

Γ, A,B Δ, Ā
cut −−−−−−−−−−−−−−−−

Γ,Δ, B Λ, B̄
cut −−−−−−−−−−−−−−−−−−−−

Γ,Δ,Λ
�

Γ, A,B Λ, B̄
cut −−−−−−−−−−−−−−−−

Γ,Λ, A Δ, Ā
cut −−−−−−−−−−−−−−−−−−−−

Γ,Δ,Λ

The size of the Herbrand set is bounded by 24|π|3
n+2 where |π| is the number of inferences in π and n is the 

maximal quantifier rank of a cut in π. Comparing with related work, the bound on the cardinality of the 
Herbrand expansion obtained by Gerhardy and Kohlenbach [17, Corollary 15] is 23‖t‖

dg(φ)+1 where φ is a proof 
in Shoenfield’s calculus [38], t is the realiser extracted from φ, and ‖t‖ is the number of symbols in t. The 
degree dg(φ) is the maximal ¬-depth of a cut formula in φ. The ¬-depth of a formula is defined precisely 
in the discussion on pp. 17–25 of [16] as the maximal number of nested negations over quantifier-free sub-
formulæ (that may contain an arbitrary number of negations). This is sufficient for describing the height of 
the tower of exponentials since, in Shoenfield’s system, ∃x is considered an abbreviation of ¬∀x¬. Thus (the 
translation of) a Πn ∪ Σn formula has ¬-depth at most n. Presumably it is possible to give a polynomial 
translation from the sequent calculus into Shoenfield’s system which preserves the maximal ¬-depth of cut 
formulæ (but, to the knowledge of the authors, this has not been done in the literature) and, moreover, to 
bound ‖t‖ polynomially in terms of the number of inferences of φ. Under these assumptions, the bound of 
Gerhardy and Kohlenbach would yield the upper bound 2p(|π|)n+1 on the cardinality of a Herbrand expansion 
for some polynomial p and any sequent calculus proof π with Πn ∪ Σn-cuts. This would be one exponent 
less than our own.

Closely related is the bound obtained by Buss in [12]. The proof of Theorem 9 of [12] shows, given a proof 
π where all cut formulæ are contained in Πn∪Σn, that there is a cut-free proof whose number of inferences is 
no greater than 2|π|n+2. As an immediate corollary this also yields the upper bound of 2|π|n+2 on the cardinality 
of the Herbrand expansion. If one is interested in the cardinality of the Herbrand expansion, Buss’s bound 
and our Theorem 1.1 give the same number of iterations of the exponential function, but Gerhardy and 
Kohlenbach’s would give one less. If one is interested in the number of inferences in the cut-free proof, Buss’s 
bound is one exponential better than ours but has the same number of exponentials as the one that could 
be obtained from Gerhardy and Kohlenbach’s since the number of inferences is at most exponential in the 
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cardinality of the Herbrand expansion (considering the symbolic complexity of the end-sequent is constant). 
That being said, the bounds we obtain apply to any cut-free proof (and Herbrand expansion) that can be 
reached by the class of reductions pertaining to 1 and 2 above. In particular, it places no restriction on 
which cut is to be reduced at any given step, and therefore accommodates a variety of strategies, including 
top-most and maximal cut-complexity. Whether this freedom of strategies necessitates the larger bound is 
not entirely clear, and requires further investigation.

Below we highlight finer features of our representation of Herbrand’s theorem and some potential appli-
cations.

8.1. Sequent versus trace grammars

In this paper, the grammar associated to a proof is ‘sequent based’ in the following sense. Consider an 
inference of the form

G0, . . . , Gn
r −−−−−−−−−−−−−
F0, . . . , Fm

The production rules corresponding to r can be seen as transforming a sequence of inputs (x0, . . . , xm) for 
the formulæ F0, . . . , Fm to a sequence of terms (t0, . . . , tn) which are used as inputs for G0, . . . , Gn in the 
inference rule immediately above r. The production rules affect the whole sequence of inputs regardless 
of which formula is active. This is in contrast with the ‘trace’-based grammars of, e.g., [21,1,2] where an 
inference of the form

Γ, G
r −−−−−
Γ, F

is associated a production rule that updates an input for F to an input for G, entirely ignoring presence of 
formulæ in Γ. In the latter type of grammars the derivations can be viewed as traces that climb up and also 
down the proof tree mimicking the traces revealed through Gentzen-style cut-elimination. These grammars 
are generally cyclic and it is necessary to place equality constraints (the ‘rigidity’ conditions of [21,1]) on 
derivations to ensure finite languages. For proofs that contain cuts with complexity greater than Π2/Σ2

the trace-based analysis quickly becomes infeasible. In contrast, the sequent-based approach generates an 
acyclic term grammar that not only ensures a finite language but allows one to obtain upper bounds on 
language size by standard language-theoretic arguments.

8.2. Providing a minimal grammar

Part of the motivation behind this study is to ultimately invert the cut-elimination procedure and find 
an algorithmic method for introducing cuts into cut-free proofs. The idea has been successfully carried out 
for Π1/Σ1-cut introduction and more recently for the introduction of a single Π2/Σ2-cut (see [24,23,22,27]). 
The general method proceeds as follows. Given a cut-free proof π, one computes a concise representation of 
π as a term grammar (such as a regular tree grammar whose language contains the Herbrand set induced 
by π). The grammar is then viewed as a proof with cut, in which the cut-formulæ are yet to be determined. 
Finding the cut-formulæ involves solving a unification problem induced by the grammar. Key to successfully 
carrying out this procedure is identifying natural classes of formal grammars that describe the instantiation 
structure of a proof with cut. Higher order recursion schemes are a promising candidate to lift the method 
of cut-introduction above the Π2 level.
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8.3. First-order logic in finite types

A natural extension to consider is first-order logic in finite types, namely many-sorted predicate logic 
with a sort of individuals for each simple type and well-typed application as a term forming operation. On 
the sequent calculus side, we add new quantifier inferences for each type:

Γ, A(ασ/vσ)
∀σ
α −−−−−−−−−−−−−−

Γ,∀vσA
Γ, A(rσ/vσ)

∃σ
r −−−−−−−−−−−−−−

Γ,∃vσA

At the level of types, the definition of τA and τ̂A is extended to incorporate higher-type quantification: 
for example, τ∀vσF = τF and τ∃vσF = σ × τ̂F̄ . The production rules corresponding to the new quantifier 
inferences will be as before, though the move to higher-type means substitution stacks may contain symbols 
of non-ground types. With appropriate modifications to the notion of normal terms, we expect the analogous 
language preservation lemmas to hold.

8.4. Lifting the prenex restriction

Our representation of first-order proofs as recursion schemes forces an asymmetric interpretation of 
formulæ to types that does not easily generalise to non-prenex cuts. Specifically, the type of an existentially 
quantified formula is, except in the case of Σ1, an order higher than the dual universally quantified formula. 
This disparity is due to the production rules for cut which treat the cut formula from one premise as 
a function which receives as its input ‘witnesses’ for the dual (cut) formula in the other premise. If the 
same representation is to be applied to non-prenex cuts we should expect the types associated to, say, a 
conjunction to be an order higher than those assigned to the dual disjunction. Motivated by the existing 
connection to the functional interpretation (Theorem 4.4), the duality of the logical connectives in accounts 
of Shoenfield’s functional interpretation (such as is examined in [39]) may well be relevant. Nevertheless, 
the primary desideratum is that the associated production rules respect the local operations of reductive 
cut elimination, so the types of any additional connectives should respect the ‘proof-theoretic’ semantics 
imbued by cut-elimination over other computational interpretations.

8.5. Functional interpretation for sequent calculus

Shoenfield’s functional interpretation [38] maps every first-order formula A to a Π2 formula in finite 
types AS = ∀�x∃�yAS(�x, �y) where AS is quantifier-free. Gerhardy and Kohlenbach [17] show how a sequence 
of terms �t can be extracted from a proof of A such that AS(�x, �t) is derivable in a quantifier-free predicate 
logic for simple types. As we saw in Theorem 4.4, modulo a calculus for basic types we may assume AS has 
the specific form ∀xτ̂A∃yτAAS(x, y), whence the approach of [17] extracts, from a proof π � A, a realiser
tπ : τ̂A → τA and a proof of AS(x, tπx). The Herbrand schemes of this article operate similarly. Given a 
proof π � A with singleton end-sequent, the term N0

π⊥ has the type of realisers for A, namely τ̂A → τA. 
Moreover, it is easily shown that the induced quantifier-free formula AS(cτ̂A , N0

π⊥cτ̂A) can be derived in a 
quantifier-free first-order logic extended by an equational calculus for the production rules of the Herbrand 
scheme Hπ (recall cτ̂A is a canonical constant inhabiting the type τ̂A).

At this stage it is unclear how close our approach is to the functional interpretation. For instance, an 
obvious question is whether there exists a class of classical sequent calculus proofs for which Herbrand 
schemes behave, in a suitable sense, identically to the functional interpretation. Although we do not know 
the answer to this question, even the superficial connection between the two formalisms that has come to 
light points to an unexpected correlation between witness extraction and classical cut elimination.
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