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Abstract

This short note aims at putting the above question into perspective and to provide a
brief but precise answer for the case of Peano arithmetic.

We work with classical first-order logic. A sentence is a formula without free variables, a
theory is a set of sentences (the axioms of the theory). An example for a theory is minimal
arithmetic @ in the language L = {0,s,+, x,=} which is defined by a finite number of II;-
axioms, see e.g. [2]. The theory Peano arithmetic (PA) is defined as @ plus all first-order
induction axioms, i.e. all formulas of the form

(1(0) AV (¥(x) = (s(x)))) = V().

for ¢ being an arbitrary formula. The theory I3 is defined as @ plus all induction axioms of
the above form where ¢ is a Xj-formula.

Since we want to speak about cut-elimination we will work with the sequent calculus. Which
variant of the sequent calculus we use is not of importance for the points discussed here; for the
sake of precision let us fix it to be the calculus LK of [1]. A sequent is denoted as I' — A.
For a theory T and a formula ¢ we write T F ¢ if there is a finite set Ty C T and an LK-proof
of the sequent Ty — . By the completeness theorem this is equivalent to ¢ being true in all
models of T'.

Theorem 1 (cut-elimination). If there is an LK-proof of a sequent I' — A, then there is a
cut-free LK-proof of I' — A.

An important feature of cut-free proofs is that they have the subformula property. In the
context of first-order logic this means that every formula that occurs in a cut-free proof of the
sequent I' — A is an instance of a subformula of a formula that occurs in I' — A. A proof
that has the subformula property is also called analytic.

Since the cut-elimination theorem considers arbitrary first-order sequents, it can also be
applied to theories containing induction axioms:

Corollary 1. If PA F ¢ then there is a finite Ay C PA and a cut-free LK-proof of the sequent
AQ — .

So we see that in the sense of the above corollary, inductive theories do not require cut;
we can obtain LK-proofs of sequents of the form Ay — ¢ with Ag € PA which have the
subformula property, i.e., every formula occurring in such a proof is an instance of a subformula
of Ag — . However, Ag may contain induction axioms on induction formulas which are not
instances of subformulas of ¢, i.e. non-analytic induction formulas. Therefore the answer to the
question posed in the title is rooted in the necessity of non-analytic induction formulas.

The necessity of non-analytic induction formulas follows for example from Goédel’s second
incompleteness theorem. Recall that, by arithmetising the syntax of formulas and proofs, one



can formulate the consistency of an arithmetical theory as an arithmetical sentence. More
specifically, for all k£ > 1 there is a IT;-sentence Con(IXy) expressing the consistency of IX, see
for example [2]. We then have:

Theorem 2. For all £ > 1: PA F Con(IX) but IX; ¥ Con(IXy).

Note that this result embodies a very strong non-analyticity requirement: given any k > 1,
in order to prove Con(IXj) not only do we need a non-analytic induction formula, but we need
one with at least k quantifier alternations even though Con(IX;) is only a II;-sentence.

Coming back to the question posed in the title, this theorem entails the necessity of cut in
the following sense. First, formulate induction as the inference rule

I — A g0) T,o(z) — A, h(s(x))
' — A, Vzi(z)

Ind

with the usual side condition and 1 being an arbitrary formula. Observe that PA F ¢ iff there
is an LK + Ind-proof of ) — ¢. Now, in contrast to LK, the calculus LK + Ind does not have
cut-elimination:

Corollary 2. There is a formula ¢ s.t. @ — ¢ has an LK + Ind-proof but no cut-free
LK + Ind-proof.

Proof. Let ¢ = Con(IXy) for any k > 2. Then, by Theorem 2, PA - Con(IXj) and consequently
there is an LK + Ind-proof of @ — Con(IXj). On the other hand, suppose there would
be a cut-free LK + Ind-proof of @ — Con(IX;). Then, due to the subformula property, all
formulas, and in particular: all induction formulas, in this proof would be ¥; thus contradicting
Theorem 2. O

The reason for the failure of cut-elimination in LK + Ind can thus be seen to be the fact
that the elimination of cuts would require the elimination of non-analytic induction formulas
which is impossible.
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