
Proof Transformations and
Structural Invariance?

Stefan Hetzl and Alexander Leitsch

Institute of Computer Languages (E185),
Vienna University of Technology, Favoritenstraße 9,

1040 Vienna, Austria
{hetzl|leitsch}@logic.at

Abstract. In this paper we define the concept of a profile, which is
a characteristic clause set, corresponding to an LK-proof in first-order
logic, which is invariant under rule permutations. It is shown (via cut-
elimination) that the profile is even invariant under a large class of proof
transformations (called “simple transformations”), which includes trans-
formations to negation normal form. As proofs having the same profile
show the same behavior w.r.t. cut-elimination (which can be formally
defined via the method CERES), proofs obtained by simple transforma-
tions can be considered as equal in this sense. A comparison with related
results based on proof nets is given: in particular it is shown that proofs
having the same profile define a larger equivalence class than those hav-
ing the same proof net.

1 Introduction

Cut-elimination introduced by Gerhard Gentzen [7] is the most prominent form
of proof transformation in logic and plays an important role in automating the
analysis of mathematical proofs. The removal of cuts corresponds to the elim-
ination of intermediate statements (lemmas) from proofs resulting in a proof
which is analytic in the sense, that all statements in the proof are subformulas
of the result. Therefore, the proof of a combinatorial statement is converted into
a purely combinatorial proof. Cut-elimination is therefore an essential tool for
the analysis of proofs, especially to make implicit parameters explicit.

In [3] the cut-elimination method CERES has been defined that works by
employing the resolution technique from automated theorem proving. It has
been shown in [4] that it can be considered as a generalization of the usual
reductive cut-elimination methods. The main proof-theoretic tool of CERES is
the characteristic clause set which gives a concise representation of the logical
material that is used to build the cut-formulas. From the fact that two proofs
have the same characteristic clause set one can deduce that they basically have
the same set of cut-free proofs under the CERES-method.

In this paper we define the profile of a proof as an improved version of the
characteristic clause set that, among others, has the property of being invariant
? supported by the Austrian Science Fund (project no. P17995-N12)

under arbitrary rule permutations. This implies that two proofs having the same
proof net (in the sense of [10]) also have the same profile.

The central part of this paper is an investigation of a certain class of proof
transformations, so called simple transformations, containing as a special case
for example the transformation of formulas into negation-normal-form. We show
that the profile is invariant under application of simple transformations to cut
formulas. This result means that proofs differing only by such a transformation
show the same behavior w.r.t. cut-elimination (by the method CERES).

1.1 Related Work

In [5] Danos, Joinet and Schellinx give an elegant formulation of a class of con-
fluent and strongly terminating cut-elimination procedures for classical logic. In
[6] they build on this work to show that the normal forms are not changed after
application of transformations called computational isomorphisms. Our work is
similar to [6] in its conceptual aims: to isolate a class of transformations that
have no effect on the cut-elimination of a proof. However, the frameworks in
which these analyses are carried out are very different: [6] builds on the conflu-
ence (and termination) result established in [5] to show that the normal form
is preserved. In this paper, we isolate a structural invariant, the proof profile
whose preservation induces the equality of the set of normal forms of the cut-
elimination method CERES. The former can be considered a restriction, the
latter an extension of Gentzen’s original cut-elimination procedure. In contrast
to [6] however, we have to restrict the application of our transformations to the
parts of a proof that go into cuts. We conjecture that our result also holds with-
out this restriction, but proving this will be more difficult because the profile
changes in a more complicated way.

2 Sequent Calculus

In order to distinguish different occurrences of the same formula in a sequent
without having to introduce exchange rules to the calculus, we formally use
sequents of indexed formulas.

Definition 1 (indexed formula). An indexed formula is pair consisting of a
formula and an index from some countable infinite index set I.

A sequent is a pair of multisets of formulas. An indexed sequent is a pair of
sets of indexed formulas.

We distinguish countable sets of free and bound variables.
We use the following variant of sequent calculus for classical first-order logic:

Definition 2 (LK-proof). An LK-proof ϕ is a tree. The nodes of ϕ are labelled
with indexed sequents, the edges are labelled with rules and the leaves are axiom
sequents. Furthermore each formula index occurs at most once in a proof.

1. Axiom sequents are of the form

A ` A for an atomic formula A

2. Logical Rules
(a) Conjunction

Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ,A ∧B ∧ : r

A,B, Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l

(b) Disjunction

A,Γ ` ∆ B,Π ` Λ
A ∨B,Γ,Π ` ∆,Λ ∨ : l

Γ ` ∆,A,B
Γ ` ∆,A ∨B ∨ : r

(c) Implication

Γ ` ∆,A B,Π ` Λ
A→ B,Γ,Π ` ∆,Λ →: l

A, Γ ` ∆,B
Γ ` ∆,A→ B

→: r

(d) Negation
Γ ` ∆,A
¬A,Γ ` ∆ ¬ : l

A, Γ ` ∆
Γ ` ∆,¬A ¬ : r

(e) Universal Quantification

A{x← t}, Γ ` ∆
(∀x)A,Γ ` ∆ ∀ : l

Γ ` ∆,A{x← α}
Γ ` ∆, (∀x)A ∀ : r

For the variable α and the term t the following must hold:
i. t must not contain bound variables,
ii. α is a free variable, called eigenvariable, which must not occur in

Γ ∪∆ ∪ {A} (eigenvariable condition).
(f) Existential Quantification

Γ ` ∆,A{x← t}
Γ ` ∆, (∃x)A ∃ : r

A{x← α}, Γ ` ∆
(∃x)A,Γ ` ∆ ∃ : l

The restrictions on α and t are the same as for universal quantification.
3. Structural Rules

(a) Weakening
Γ ` ∆
Γ ` ∆,A w : r Γ ` ∆

A,Γ ` ∆ w : l

(b) Contraction
A,A, Γ ` ∆
A,Γ ` ∆ c : l

Γ ` ∆,A,A
Γ ` ∆,A c : r

(c) Cut
Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ cut

Definition 3 (pseudo-LK-proof). A pseudo-LK-proof (also called an LKps-
proof) is an LK-proof where the following rules are replaced:

1. Contraction by pseudo-contraction:

A,B, Γ ` ∆
A,Γ ` ∆ psc : l

Γ ` ∆,A,B
Γ ` ∆,A

psc : r

if A and B are logically equivalent (in first-order logic).
2. Cut by pseudo-cut:

Γ ` ∆,A B,Π ` Λ
Γ,Π ` ∆,Λ

pscut

if A and B are logically equivalent (in first-order logic).

We need the technical notion of pseudo-LK-proofs, as many useful proof
transformations destroy the proof property in intermediary steps, but keep this
of a pseudo-proof. Moreover the analysis of proofs via profiles and characteristic
clause sets (see [3] and Section 3) can be generalized to pseudo-proofs without
any problems.

Definition 4. An LKps-proof is called regular if all eigenvariables are different
from each other.

Definition 5 (main and auxiliary occurrence). Let ϕ be an LK-proof and
let ρ be a rule in ϕ. The formula occurrence whose main symbol has been in-
troduced by ρ in the sequent immediately below ρ is called the main occurrence
of ρ. The formula occurrence(s) that has/have been used to compose the main
occurrence of ρ is/are called auxiliary occurrence(s) of ρ.

Definition 6 (→G). We define the Gentzen-style cut-elimination as the reduc-
tion relation →G on regular LK-proofs which is the union of the reduction rela-
tions →Gp ,→Gq ,→Ga ,→Gw ,→Gc ,→Gr defined as follows:

Let ϕ be an LK-proof of the form:

(ϕ1)
Γ ` ∆,A

(ϕ2)
A,Π ` Λ

Γ,Π ` ∆,Λ cut

1. Reduction of propositional rules →Gp :
The cut formula is introduced by propositional rules on both sides immedi-
ately above the cut.
(a) A = B ∧ C, ϕ =

(ϕ′1)
Γ1 ` ∆1, B

(ϕ′′1)
Γ2 ` ∆2, C

Γ1, Γ2 ` ∆1,∆2, B ∧ C
∧ : r

(ϕ′2)
B,C,Π ` Λ
B ∧ C,Π ` Λ ∧ : l

Γ1, Γ2,Π ` ∆1,∆2, Λ
cut

then ϕ→Gp ϕ
′ :=

(ϕ′′1)
Γ2 ` ∆2, C

(ϕ′1)
Γ1 ` ∆1, B

(ϕ′2)
B,C,Π ` Λ

C, Γ1,Π ` ∆1, Λ
cut

Γ1, Γ2,Π ` ∆1,∆2, Λ
cut

(b) A = B ∨ C: symmetric to case 1a.
(c) A = B → C, ϕ =

(ϕ′1)
B,Γ ` ∆,C
Γ ` ∆,B → C

→: r

(ϕ′2)
Π1 ` Λ1, B

(ϕ′′2)
C,Π2 ` Λ2

B → C,Π1,Π2 ` Λ1, Λ2
→: l

Γ,Π1,Π2 ` ∆,Λ1, Λ2
cut

then ϕ→Gp ϕ
′ :=

(ϕ′2)
Π1 ` Λ1, B

(ϕ′1)
B,Γ ` ∆,C

Π1, Γ ` Λ1,∆,C
cut

(ϕ′′2)
C,Π2 ` Λ2

Γ,Π1,Π2 ` ∆,Λ1, Λ2
cut

(d) A = ¬B, ϕ =
(ϕ′1)

B,Γ ` ∆
Γ ` ∆,¬B ¬ : r

(ϕ′2)
Π ` Λ,B
¬B,Π ` Λ ¬ : l

Γ,Π ` ∆,Λ cut

then ϕ→Gp ϕ
′ :=

(ϕ′2)
Π ` Λ,B

(ϕ′1)
B,Γ ` ∆

Γ,Π ` ∆,Λ cut

2. Reduction of quantifier rules →Gq :
The cut formula is introduced by quantifier rules on both sides immediately
above the cut.
(a) A = (∀x)B, ϕ =

(ϕ′1)
Γ ` ∆,B{x← α}
Γ ` ∆, (∀x)B ∀ : r

(ϕ′2)
B{x← t},Π ` Λ

(∀x)B,Π ` Λ ∀ : l

Γ,Π ` ∆,Λ cut

then ϕ→Gq ϕ
′ :=

(ϕ′1{α← t})
Γ ` ∆,B{x← t}

(ϕ′2)
B{x← t},Π ` Λ

Γ,Π ` ∆,Λ cut

(b) A = (∃x)B: symmetric to case 2a.
3. Reduction of axioms →Ga :

The cut formula is introduced by an axiom on (at least) one of the two sides
immediately above the cut.
(a) ϕ1 is an axiom sequent, ϕ =

A ` A
(ϕ2)

A,Π ` Λ
A,Π ` Λ cut

then ϕ→Ga ϕ2

(b) ϕ2 is an axiom sequent, then ϕ→Ga ϕ1

4. Reduction of weakening →Gw :
The cut formula is introduced by weakening on (at least) one of the two sides
immediately above the cut.
(a) ϕ1 ends with w : r, ϕ =

(ϕ′1)
Γ ` ∆
Γ ` ∆,A w : r (ϕ2)

A,Π ` Λ
Γ,Π ` ∆,Λ cut

then ϕ→Gw ϕ
′ :=

(ϕ′1)
Γ ` ∆

Γ,Π ` ∆,Λ w : ∗

(b) ϕ2 ends with w : l: symmetric to case 3b.
5. The cut formula is introduced by a contraction on (at least) one of the two

sides immediately above the cut.
(a) ϕ1 ends with c : r, ϕ =

(ϕ′1)
Γ ` ∆,A,A
Γ ` ∆,A c : r (ϕ2)

A,Π ` Λ
Γ,Π ` ∆,Λ cut

then ϕ→Gc ϕ
′ :=

(ϕ′1)
Γ ` ∆,A,A

(ϕ2)
A,Π ` Λ

Γ,Π ` ∆,Λ,A cut
(ϕ′2)

A,Π ` Λ
Γ,Π,Π ` ∆,Λ,Λ cut

Γ,Π ` ∆,Λ c : ∗

where ϕ′2 is a variant of ϕ2, defined by renaming all eigenvariables in ϕ2

by fresh ones (in order to keep the regularity of the proof).
(b) ϕ2 ends with c : l: symmetric to case 5a

6. rank-reduction →Gr :
The cut formula is not introduced immediately above the cut on (at least)
one of the two sides.
(a) on the right side

i. ϕ2 ends with a unary rule, ϕ =

(ϕ1)
Γ ` ∆,A

(ϕ′2)
A,Π ′ ` Λ′
A,Π ` Λ r

Γ,Π ` ∆,Λ cut

Then ϕ→Gr ϕ
′ :=

(ϕ1)
Γ ` ∆,A

(ϕ′2)
A,Π ′ ` Λ′

Γ,Π ′ ` ∆,Λ′ cut

Γ,Π ` ∆,Λ r

which is a valid LK-proof. Note that regularity ensures that the eigen-
variable condition cannot be violated.

ii. ϕ2 ends with a binary rule µ
A. the ancestor of A is in the left premise of µ, ϕ =

(ϕ1)
Γ ` ∆,A

(ϕ′2)
A,Π ′

1 ` Λ′1
(ϕ′′2)

Π ′
2 ` Λ′2

A,Π ` Λ r

Γ,Π ` ∆,Λ cut

Then ϕ→Gr ϕ
′ :=

(ϕ1)
Γ ` ∆,A

(ϕ′2)
A,Π ′

1 ` Λ′1
Γ,Π ′

1 ` ∆,Λ′1
cut

(ϕ′′2)
Π ′

2 ` Λ′2
Γ,Π ` ∆,Λ r

which is a valid LK-proof.
B. the ancestor of A is in the right premise of µ: symmetric to the

previous case.
(b) on the left side: symmetric to case 6a

The reduction relation →Gr can be carried over to LKps-proofs; however
→Gr is not capable of eliminating all cuts in LKps-proofs (in contrast to the
CERES-method [3] which also eliminates pseudo-cuts).

3 The Profile

The profile of an LKps-proof is a set of labelled clauses. In order to give the
definition of the profile, we first explain labelled clause logic.

3.1 Labelled Clauses

We use L to denote a countable infinite set of labels (e.g. L = N).

Definition 7 (clause). A clause is a sequent consisting only of atomic formu-
las. A labelled clause is a clause that is assigned a non-empty set of labels from
L. For a clause c we write L(c) to denote this set.

We will use the notation A1, . . . , An `{l1,...,lk} B1, . . . , Bm for the clause
A1, . . . , An ` B1, . . . , Bm with the set of labels {l1, . . . , lk}. For the sake of
readability we will sometimes omit the curly braces.

Definition 8 (merge, product). Let c = Γ `L1 ∆ and d = Π `L2 Λ be
labelled clauses. We define the merge of c and d as c◦d := Γ,Π `L1∪L2 ∆,Λ. Let
C,D be sets of labelled clauses. We define the product of C and D as C ×D :=
{c ◦ d | c ∈ C, d ∈ D}.

The labels will be used in order to describe subsets of sets of labelled clauses
as follows: For a clause c and a set of labels L we will say that c is an L-clause
if there exists a label l that is both in L and L(c).

Definition 9 (clause selection based on labels). Let C be a set of labelled
clauses. Let F,G be propositional formulas built up from label sets L,L1, L2, . . .
as atoms and the connectives ∧,∨,¬. We define CF as follows:

1. CL := {c ∈ C | c is an L-clause}
2. C¬F := C \ CF

3. CF∧G := CF ∩ CG

4. CF∨G := CF ∪ CG

Example 1. Let C := {`1 P ; P `2,3 R ; R `3 ; P `2,3,4 Q ; Q `3,4}. Then

C{4}∨¬{3} = C{4} ∪ (C \ C{3}) = {`1 P ; P `2,3,4 Q ; Q `3,4}

Definition 10 (restricted product). Let C,D be sets of labelled clauses and
L be a set of labels. We define the operation ×L as

C ×L D := (CL ×DL) ∪ C¬L ∪D¬L

Example 2. Let C = {P `1 ; Q `2}, D = {`3 P ; `4 Q}. Then

C ∪D = {P `1 ; Q `2 ; `3 P ; `4 Q}
C ×D = {P `1,3 P ; P `1,4 Q ; Q `2,3 P ; Q `2,4 Q}

C ×{1,4} D = {P `1,4 Q ; Q `2 ; `3 P}

The reader can easily convice himself that - under the usual interpretation
of a clause set as a universally quantified conjunctive normal form - the logical
meaning of the union (∪) is conjunction, the meaning of the product (×) is
disjunction and that the restricted product is in-between in the sense that C∪D
implies C ×L D, which in turn implies C ×D, for all L ⊆ L.

Lemma 1. Let C,D,E be sets of labelled clauses and L,L1, L2 ⊆ L. Then

1. C ×L D = D ×L C
2. If C contains no L2-clauses and E contains no L1-clauses then

C ×L1 (D ×L2 E) = (C ×L1 D)×L2 E

Proof. 1. follows easily from commutativity of × and ∪
2. We start with the left-hand side of the equation:

C ×L1 (D ×L2 E) = (CL1 × ((DL2 × EL2) ∪D¬L2 ∪ E¬L2)L1) ∪
C¬L1 ∪ ((DL2 × EL2) ∪D¬L2 ∪ E¬L2)¬L1

by definition. Note that (X ∪ Y)L = XL ∪ Y L for all sets of labelled clauses
X,Y and all label sets L, so we have:

(CL1 × ((DL2 × EL2)L1 ∪DL1∧¬L2 ∪ EL1∧¬L2)) ∪
C¬L1 ∪ (DL2 × EL2)¬L1 ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2

Distributing × over ∪ we get:

(CL1 × (DL2 × EL2)L1) ∪ (CL1 ×DL1∧¬L2) ∪ (CL1 × EL1∧¬L2) ∪
C¬L1 ∪ (DL2 × EL2)¬L1 ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2

As E contains no L1-clauses we can write (DL2 × EL2)L1 = DL1∧L2 × EL2

and (DL2 × EL2)¬L1 = D¬L1∧L2 × EL2 and obtain:

(CL1 × (DL1∧L2 × EL2)) ∪ (CL1 ×DL1∧¬L2) ∪ (CL1 × EL1∧¬L2) ∪
C¬L1 ∪ (D¬L1∧L2 × EL2) ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2

As E does not contain L1-clauses, i.e. EL1 = ∅ also CL1 × EL1∧¬L2 = ∅.
Furthermore we can write E = E¬L1 and - as C does not contain L2-clauses
- also C = C¬L2 . We obtain

(CL1∧¬L2 × (DL1∧L2 × E¬L1∧L2)) ∪
(CL1∧¬L2 ×DL1∧¬L2) ∪ (D¬L1∧L2 × E¬L1∧L2) ∪

C¬L1∧¬L2 ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2

The right-hand side can be rewritten to the same expression in an analogous
way.
q.e.d.

3.2 Definition of the Profile

In addition to labelled clauses we will consider labelled LKps-proofs to define
the profile of a proof.

Definition 11 (labelled LKps-proof). A labelled LKps-proof is a pseudo-
proof where each axiom is assigned a unique label from L. Furthermore each
formula occurrence µ is assigned a set of labels in the following way:

1. If µ occurs in an axiom its set of labels is the singleton set containing the
axiom label.

2. If µ does not occur in an axiom its set of labels is the union of the sets of
labels of its immediate ancestor formula occurrences.

So the set of labels of a formula occurrence describes the set of axioms that
were used to build up this formula occurrence. For a formula occurrence µ in a
labelled LKps-proof we write L(µ) for its set of labels. For a rule ρ in a labelled
LK-proof L(ρ) denotes the union of the label sets of the auxiliary formula oc-
currences of ρ. The cut-elimination rules defined in Definition 6 can be carried
over to labelled LK-proofs with only minor modifications: in case of contrac-
tion elimination (→Gc) the renaming of eigenvariables has to be extended to the
renaming of labels.

From now on we consider only proofs with skolemized end-sequents; skolem-
ization is necessary for cut-elimination based on profiles and characteristic clause
sets [3]. Note that every proof can be transformed into a skolemized version [2].

Let Ω denote the set of all formula occurrences which are ancestors of pseudo-
cut formulas. A rule with auxiliary formulas in Ω is called an Ω-rule, with
auxiliary formulas not in Ω a Σ-rule. For a sequent occurrence ν and a set of
formula occurrences M , let S(ν,M) denote the sub-sequent of the sequent at ν
that contains only the formulas whose occurrences are in M .

Definition 12 (proof profile). Let ϕ be a regular labelled LKps-proof. We
define the profile P(ϕ) of ϕ by induction on a position ν in ϕ.

1. If ν is an axiom:
P(ϕ).ν := {S(ν,Ω)}.

2. If ν is a unary rule with ancestor rule µ, then:

P(ϕ).ν := P(ϕ).µ

3. If ν is a binary rule with ancestor rules µ1, µ2 then
(a) If ν is an Ω-rule:

P(ϕ).ν := P(ϕ).µ1 ∪ P(ϕ).µ2

(b) If ν is a Σ-rule:

P(ϕ).ν := P(ϕ).µ1 ×L(ν) P(ϕ).µ2

Note that this definition of a proof profile does not depend on syntactic
details of the sequent calculus variant. Exactly the same definition can be used
for example for additive calculi or for a calculus with arbitrary atomic axiom
sequents, etc. Another important feature of the proof profile is that for the
CERES method [3] it can be used instead of the characteristic clause set and
will always yield cut-free proofs that are at most as long as those corresponding
to the characteristic clause set.

3.3 Compatibility

Lemma 2 (compatibility of P). Let χ[ϕ]µ be an LKps-proof, let ϕ′ be an-
other LK-proof with the same end-sequent as ϕ. Let σ1, . . . , σn be the formula
occurrences in the end-sequent of ϕ and let σ′1, . . . , σ

′
n be the corresponding for-

mula occurrences in the end-sequent of ϕ′. Let θ be a substitution whose domain
is included in the set of eigenvariables of ϕ. We write χ′ for χ[ϕ′]µ. If

1. P(χ′).µ = (P(χ).µ)θ and
2. for i = 1, . . . , n : L(σ′i) = L(σi)

then
P(χ′) = P(χ)θ

Proof. Let ν be a formula occurrence in χ that is not in ϕ, let ν′ be the corre-
sponding formula occurrence in χ′. If ν is not on the path between µ and the
end-sequent then we clearly have L(ν′) = L(ν). If it is then by induction on the
length of this path and by using 2 we have L(ν′) = L(ν).

Now, using L(ν′) = L(ν) we proceed by induction on the length of the path
between µ and the end-sequent. If the last rule is unary then the induction
step obviously extends to give P(χ′) = P(χ)θ. If the last rule is binary, observe
that θ cannot change variables of the part that does not contain µ because its
domain is restricted to the eigenvariables of ϕ and the proof is regular, so also
P(χ′) = P(χ)θ q.e.d.

3.4 Permutation of Independent Rules

It is a well-known fact about the sequent calculus that the order of rule applica-
tions can be permuted up to a high degree (see e.g. [8]). In this section we will
formally define these rule permutations and show that the proof profile is not
changed by permuting rules.

Definition 13 (adjacent). Two rules in an LKps-proof are said to be adjacent
if one occurs immediately above the other.

Definition 14 (independent). Two adjacent rules in an LKps-proof are said
to be independent if neither

1. the main occurrence of the upper rule is an auxiliary occurrence of the lower
rule, nor

2. the lower rule is unary with two auxiliary occurrences that are split by the
binary upper rule, nor

3. the lower rule is a strong quantifier rule and the upper rule is a weak quan-
tifier rule introducing a term that contains the eigenvariable of the lower
rule

Definition 15 (permutation of independent rules). Let ϕ be an LKps-
proof whose last two rules are independent. Let ϕ′ be the proof that differs from
ϕ only by swapping the order of the last two rules. Then we write ϕ ∼π ϕ

′.
We will denote with ≈π the reflexive, transitive and compatible closure of the

rule swapping relation ∼π.

Lemma 3 (invariance under ≈π). Let χ, χ′ be two LKps-proofs with χ ≈π

χ′. Then
P(χ′) = P(χ)

Proof. By transitivity of =, it suffices to show the invariance of P for a single
rule swapping. Let µ be the position in χ where the rule swapping occurs, so we
have ϕ ∼π ϕ

′ with χ = χ[ϕ]µ and χ′ = χ[ϕ′]µ.
We will first show P(χ′).µ = P(χ).µ.
If both swapped rules are unary rules, then we simply have

P(χ).µ = C = P(χ′).µ

For some set of labelled clauses C.
If one of the swapped rules is a unary rule and one a binary rule, we have

P(χ).µ = C ◦D

where ◦ = ∪ or ◦ = ×L(ρ) where ρ is the binary rule. In both cases also

P(χ′).µ = C ◦D

because L(ρ) clearly is not changed by the swapping of two rules.
If both rules are binary then the last rules ρ1 and ρ2 of ϕ,ϕ′ have the form

(omitting the sequents and concrete rule types):

(ϕ1, C) (ϕ2, D)
ρ1 (ϕ3, E)

ρ2 and
(ϕ1, C)

(ϕ2, D) (ϕ3, E)
ρ2

ρ1

From the existence of the left proof one can deduce that E does not contain any
clauses with labels from L(ρ1) because all labels in E refer to axioms in ϕ3 and
L(ρ1) cannot contain any labels from axioms in ϕ3 because it is parallel to it.
Symmetrically from the right proof one can deduce that C does not contain any
clauses with labels from L(ρ2).

For the profiles at µ we have

P(χ).µ = (C ◦1 D) ◦2 E and P(χ′).µ = C ◦1 (D ◦2 E)

for operators ◦1, ◦2 associated to the rules ρ1 and ρ2.
If both ◦1 = ∪ and ◦2 = ∪ then P(χ).µ = P(χ′).µ follows from associativity

of ∪. If ◦1 = ×L(ρ1) and ◦2 = ×L(ρ2) then with the observation above we can
apply Lemma 1 to obtain P(χ).µ = P(χ′).µ.

Now, let ◦1 = ×L(ρ1) and ◦2 = ∪. Then – abbreviating L(ρ1) as L – we have

C ×L (D ∪ E) = (CL × (D ∪ E)L) ∪ C¬L ∪ (D ∪ E)¬L

= (CL × (DL ∪ EL)) ∪ C¬L ∪D¬L ∪ E¬L

but as E does not contain labels from L we know that EL = ∅ and E¬L = E
and so

= (CL ×DL) ∪ C¬L ∪D¬L ∪ E
=p.d. (C ×L D) ∪ E

If ◦1 = ∪ and ◦2 = ×L(ρ2) the proof proceeds analogously using the observa-
tion that C does not contain labels from L(ρ2).

Condition 2 of Lemma 2 is fulfilled, because rule swappings do not change the
ancestor relation in the proof, so we can apply Lemma 2 and conclude P(χ′) =
P(χ) q.e.d.

In [10] E. Robinson defines proof nets for classical propositional logic and
shows ([10], proposition 6.2):

Proposition 1. Two LK-proofs ϕ and ϕ′ (for classical propositional logic) in-
duce isomorphic proof nets iff ϕ ≈π ϕ

′.

Building on this and Lemma 3 we can easily conclude

Corollary 1. If two LK-proofs ϕ and ϕ′ (for classical propositional logic) in-
duce isomorphic proof nets then P(ϕ) = P(ϕ′).

R. McKinley defines in his PhD thesis [9] an extension of Robinson’s proof
nets to first-order classical logic by treating quantifiers with boxes. We conjecture
that the result of Corollary 1 also extends to this notion of proof net.

4 The Profile and Cut-Elimination

In [4] an analysis of the behavior of the original characteristic clause sets under
Gentzen’s cut-elimination procedure has been given. It has been shown that,
if ϕ is reduced to ϕ′ by cut-elimination steps, the characteristic clause set of
ϕ subsumes that of ϕ′. The subsumption relation consists of the three basic
parts of 1) duplication of clauses (including variable renaming), 2) instantiation
of clauses and 3) deletion of clauses. However, due to the nature of this cut-
elimination procedure and the characteristic clause sets these three parts occur
in a mixed fashion at different cut-elimination steps.

In this section we carry out an analogous analysis but with the important
difference that we move from Gentzen’s original calculus (which is a mixture of
multiplicative and additive rules) to the purely multiplicative calculus LKps and
from the original characteristic clause sets to the proof profiles defined in this
paper. This allows to carry out the analysis of [4] in a much “cleaner” fashion
which will make it possible to use the lemmas in the analysis of the effect of
transformations defined by cut-elimination (as done in Section 5). We will now
show that

1. duplication of clauses arises iff a contraction rule is eliminated, that
2. instantiation of clauses arises iff a quantifier rule is eliminated and that
3. deletion of clauses arises iff a weakening rule is eliminated.

In all other cases the profile remains unchanged.

Lemma 4 (rank-reduction).

χ→Gr χ
′ =⇒ P(χ′) = P(χ)

Proof. As rank-reduction →Gr is contained in the permutation of adjacent in-
dependent rules ≈π, we can apply Lemma 3. q.e.d.

Lemma 5 (propositional reduction).

χ→Gp χ
′ =⇒ P(χ′) = P(χ)

Proof. Let µ be the position where the reduction is applied, so χ = χ[ϕ]µ and
χ′ = χ[ϕ′]µ. We first show P(χ′).µ = P(χ).µ by case distinction on the main
connective of the cut at µ:

1. Conjunction: Then ϕ has the form:

(ϕ1, C)
Γ ` ∆,A

(ϕ2, D)
Π ` Λ,B

Γ,Π ` ∆,Λ,A ∧B ∧ : r

(ϕ3, E)
A,B,Θ ` Σ
A ∧B,Θ ` Σ ∧ : l

Γ,Π,Θ ` ∆,Λ,Σ cut

and ϕ′ has the form:

(ϕ2, D)
Π ` Λ,B

(ϕ1, C)
Γ ` ∆,A

(ϕ3, E)
A,B,Θ ` Σ

B,Γ,Θ ` ∆,Σ cut

Γ,Π,Θ ` ∆,Λ,Σ cut

So we have
P(χ).µ = (C ∪D) ∪ E

and
P(χ′).µ = D ∪ (C ∪ E)

which are equal by commutativity and associativity of ∪.
2. Disjunction: analogous: by commutativity and associativity of ∪
3. Implication: analogous: by commutativity and associativity of ∪
4. Negation: analogous: by commutativity and associativity of ∪

Also condition 2 of Lemma 2 is fulfilled because →Gp does not change the
ancestor axioms of the formula occurrences in the end-sequent of the rewritten
part. So we can use Lemma 2 to conclude P(χ′) = P(χ) q.e.d.

Lemma 6 (quantifier reduction). Let χ be a regular LKps-proof and let

χ→Gq χ
′

where the substitution {α← t} is applied to the reduced sub-proof of χ. Then

P(χ′) = P(χ){α← t}

Proof. Let µ be the position where the reduction is applied, so χ = χ[ϕ]µ and
χ′ = χ[ϕ′]µ. We will show this only for the universal quantifier, for the existential
quantifier the proof is analogous:

Then ϕ has the form

(ϕ1, C)
Γ ` ∆,B{x← α}
Γ ` ∆, (∀x)B ∀ : r

(ϕ2, D)
B{x← t},Π ` Λ

(∀x)B,Π ` Λ ∀ : l

Γ,Π ` ∆,Λ cut

and ϕ′ has the form

(ϕ1{α← t}, C{α← t})
Γ ` ∆,B{x← t}

(ϕ2, D)
B{x← t},Π ` Λ

Γ,Π ` ∆,Λ cut

So we have
P(χ).µ = C ∪D

and
P(χ′).µ = C{α← t} ∪D

but α does not occur in D so

P(χ′).µ = (P(χ).µ){α← t}

And as the label sets of the formula occurrences in the sequent at µ do not
change we can apply Lemma 2. q.e.d.

The reduction of a weakening rule deletes a sub-proof and - by introducing
new weakening rules - makes some formula occurrences further down in the
proof weak that have not been weak before. This may have the result that an
auxiliary formula of a binary rule, that goes into the end-sequent, becomes weak
and thus this binary rule becomes superfluous (because it could be replaced by
a weakening). The effect of this transformation on the profile is that of deletion
of certain clauses: All clauses from the deleted sub-proof as well as all clauses
that share a label with a superfluous binary rule are deleted.

Lemma 7 (weakening reduction). Let χ be an LKps-proof and µ a position
in χ of a cut that can be reduced by →Gw . Then

χ[ϕ]µ →Gw χ[ϕ′]µ

We write χ′ for χ[ϕ′]µ. Let D be the set of axiom labels of the sub-proof deleted
by this →Gw -step. Let furthermore σ1, . . . , σn be those binary Σ-rules on the
path between µ and the end-sequent of χ that each have an auxiliary occurrence
α1, . . . , αn with L(αi) ⊆ D. Let β1, . . . , βn be the other auxiliary formula occur-
rences of these rules and abbreviate Li := L(βi). Then

P(χ′) = P(χ)¬D∧¬L1∧...∧¬Ln

Proof. Let ν be a formula occurrence in χ but not in ϕ and let ν′ be the cor-
responding formula occurrence in χ′. Then one can easily show by induction on
the length l of the path between µ and the end-sequent of χ that:

(?) L(ν′) = L(ν) \D

We abbreviate D∗ := ¬D ∧¬L1 ∧ . . .∧¬Ln and show P(χ′) = P(χ)D∗
again

by induction on the length l of the path between µ and the end-sequent.
If l = 0 then n = 0. Furthermore, P(χ) = X ∪ Y for sets of labelled clauses

X and Y and P(χ′) = X. But X contains no labels from D while Y contains
only labels from D, so P(χ′) = X = (X ∪ Y)¬D = P(χ)¬D.

If l > 0 we make a case distinction according to the type of the last rule ρ in
χ: If ρ is unary then the result follows immediately from (IH). If ρ is a binary
Ω-rule then P(χ) = X ∪ Y and P(χ′) = XD∗ ∪ Y , but Y contains no labels
from D nor any from L1, . . . , Ln, so Y = Y D∗

and thus P(χ′) = XD∗ ∪ Y =
XD∗∪Y D∗

= (X∪Y)D∗
= P(χ)D∗

. If ρ is a binary Σ-rule, let α be the auxiliary
occurrence on the path between µ and the root. We distinguish two cases:

1. L(α) ⊆ D, i.e. α becomes weak after the reduction, so α = αn+1, the
other auxiliary occurrence is βn+1 and its labels L(βn+1) = Ln+1. We have
P(χ) = X ×L(α)∪Ln+1 Y and by (?) and (IH) that P(χ′) = XD∗ ×Ln+1 Y .
By algebraic manipulations one shows that P(χ′) = (X ∪ Y)D∗∧¬Ln+1 and
P(χ)D∗∧¬Ln+1 = X¬L(α)∧D∗∧¬Ln+1 ∪ Y D∗∧¬Ln+1 . By our case assumption
L(α) ⊆ D, so ¬L(α)∧D∗ can be simplified to D∗ because ¬D is contained in
D∗ and thus P(χ)D∗∧¬Ln+1 = XD∗∧¬Ln+1∪Y D∗∧¬Ln+1 = (X∪Y)D∗∧¬Ln+1 .

2. L(α) * D: In this case we have P(χ) = X ×L Y for a set of labels L, and
by (?) and (IH) that P(χ′) = XD∗ ×L\D Y . Writing L \ D as L ∧ ¬D,
using algebraic manipulations and simplifying D∗ ∧L∧¬D to D∗ ∧L gives
P(χ′) = (XL×Y L)D∗∪XD∗∧¬(L∧¬D)∪Y ¬(L∧¬D). By further simplifications
one shows that P(χ′) = (XL×Y L)D∗ ∪(X¬L)D∗ ∪(Y ¬L)D∗

= P(χ)D∗
q.e.d.

Corollary 2. Let χ be an LKps-proof and µ a position in χ of a cut that can
be reduced by →Gw . Let D be the set of axiom labels of the sub-proof deleted by
this →Gw -step. If all formula occurrences in the deleted sub-proof are ancestors
of cut formulas then

P(χ′) = P(χ)¬D

Proof. By applying Lemma 7 and observing that in this case there can be no
binary Σ-rule with an auxiliary formula α s.t. L(α) ⊆ D, thus n = 0 and
P(χ′) = P(χ)¬D q.e.d.

Lemma 8 (contraction reduction). Let χ be an LKps-proof and µ a position
in χ of a cut that can be reduced by →Gc . Then

χ[ϕ]µ →Gc χ[ϕ′]µ

Let D be the set of axiom labels of the sub-proof duplicated by this →Gc-step and
let π be the permutation on labels and variables applied to the new copy of the
duplicated sub-proof. We write χ′ for χ[ϕ′]µ. Then

P(χ′) = P(χ) ∪ P(χ)Dπ

Proof. Let ν be a formula occurrence in χ but not in ϕ and let ν′ be the cor-
responding formula occurrence in χ′. Then one can show by induction on the
length l of the path between µ and the end-sequent of χ that:

(?) L(ν′) = L(ν) ∪ (L(ν) ∩D)π

We show P(χ′) = P(χ) ∪ P(χ)Dπ again by induction on the length l of
the path between µ and the end-sequent. If l = 0 then P(χ) = X ∪ Y and
P(χ′) = X ∪Xπ ∪ Y but as (X ∪ Y)D = X we obtain P(χ)Dπ = Xπ. If l > 0
we make a case distinction according to the type of the last rule ρ: If ρ is a
unary rule then the result holds immediately by (IH). If ρ is a binary Ω-rule
then P(χ) = X ∪ Y and by (IH): P(χ′) = X ∪XDπ ∪ Y but as Y contains no
labels from D we have P(χ)Dπ = XDπ.

If ρ is a binary Σ-rule then P(χ) = X ×L Y and by (IH) and (?): P(χ′) =
(X ∪XDπ)×L∪(L∩D)π Y . By observing that neither X nor Y contain any labels
from the image of π and that thus for Z ∈ {X,Y } and any label sets M,N :
ZM∨Nπ = ZM and Z¬(M∨Nπ) = Z¬M one shows that

P(χ′) = P(χ) ∪ ((XDπ)L∨(L∧D)π × Y L) ∪ (XDπ)¬(L∨(L∧D)π)

So it remains to show

P(χ)Dπ = ((XDπ)L∨(L∧D)π × Y L) ∪ (XDπ)¬(L∨(L∧D)π)

As Y cannot contain any labels from D, we have

P(χ)Dπ = ((XL × Y L)D ∪X¬L∧D)π = (XL∧Dπ × Y L) ∪X¬L∧Dπ

By algebraic manipulations concerning the variable and label permutation π one
shows the remaining equations:

XL∧Dπ = (XDπ)L∨(L∧D)π and X¬L∧Dπ = (XDπ)¬(L∨(L∧D)π)

q.e.d.

5 A General Invariance Property

Definition 16. Let A and B be formulas. Then any cut-free proof of A ` B is
called a transformation of A to B (generally denoted by τA,B).

We define the effect of transformations on proofs via cut-elimination. To this
aim we define a refinement of →G and corresponding normal forms:

Definition 17. Let τA,B be a transformation, ϕ be a proof of a sequent Γ ` ∆,A
and ψ be a proof of a sequent B,Π ` Λ . We consider the proofs T (ϕ, τA,B):

ϕ
Γ ` ∆,A

τA,B

A ` B
Γ ` ∆,B cut

and T (τA,B , ψ):
τA,B

A ` B
ψ

B,Π ` Λ
A,Π ` Λ cut

We mark in T (ϕ, τA,B)(T (τA,B , ψ)) all ancestors of the final cut and refine →G

to →Gt by the following restrictions:

(1) apply the reduction rules only cuts whose auxiliary formulas are marked.
(2) apply the elimination rules for axioms only if all other →G-reduction rules

on marked formulas fail.
(3) Eliminate a cut between two (atomic) axioms by eliminating the axiom com-

ing from τA,B (i.e. the axiom with the labels coming from τA,B). In more
detail: replace the subproof

B{i} ` B{i} B{j} ` B{j}

B{i} ` B{j} cut

(where i is a label in the ϕ-part (in the ψ-part) and j is a label in the τA,B-
part) by

B{i} ` B{i}.

Then by τA,B(ψ)((ϕ)τA,B) we denote the set of all →Gt-normal forms of
T (τA,B , ψ) (T (ϕ, τA,B)).

Remark 1. Note that Gentzen normal forms of proofs are not unique in general.
Therefore the elimination of the cut with the transformation τA,B may yield
different proofs. So any element from the set (ϕ)τA,B can be considered as the
transformed proof.

Below we investigate a class of transformations τA,B where A is logically
equivalent to B:

Definition 18. Two formulas A, B are called V -equivalent if they contain the
same variables.

Definition 19. Let τ be a transformation τA,B and let A,B be V -equivalent.
Moreover let x1, . . . , xn be the bound variables in A (respectively in B). Then τ
is called Q-simple if

(a) For every variable xi there are exactly two quantifier introductions in τ .
(b) If {xi ← αi} is a substitution corresponding to a strong quantifier introduc-

tion on an ancestor of A then {xi ← αi} is also a substitution corresponding
to a weak quantifier introduction on an ancestor of B.

(c) If {xi ← αi} is a substitution corresponding to a strong quantifier introduc-
tion on an ancestor of B then {xi ← αi} is also a substitution corresponding
to a weak quantifier introduction on an ancestor of A.

Remark 2. In a Q-simple transformation the strong substitutions for A are the
weak ones for B and vice versa. In particular, all quantifier introductions have
variable substitutions.

Example 3. The following transformation τ is Q-simple:

P (α1, α2) ` P (α1, α2)
` ¬P (α1, α2), P (α1, α2)

¬ : r

` ¬P (α1, α2), (∃y)P (α1, y)
∃ : r

` (∀y)¬P (α1, y), (∃y)P (α1, y)
∀ : r

` (∃x)(∀y)¬P (x, y), (∃y)P (α1, y)
∃ : r

` (∃x)(∀y)¬P (x, y), (∀x)(∃y)P (x, y) ∀ : r

¬(∀x)(∃y)P (x, y) ` (∃x)(∀y)¬P (x, y) ¬ : l

No transformation with end-sequent (∀x)Q(x) ` (∃x)Q(x) is Q-simple.

Definition 20. A transformation τA,B is called simple if it is Q-simple and
does not contain structural rules.

Example 4. The transformation τ defined in Example 3 is simple. Moreover the
identical transformation I is simple. I can be defined in the following way:

If A is an atom then I(A) = A ` A. If A contains logical operators, then I(A)
can be defined inductively. We consider the cases A ≡ B → C and A ≡ (∀x)B,
the others are straightforward.

I(B → C) =

I(B)
B ` B

I(C)
C ` C

B,B → C ` C →: l

B → C ` B → C
→: r

I((∀x)B) =

I(B{x← α})
B{x← α} ` B{x← α}

(∀x)B ` B{x← α} ∀ : l

(∀x)B ` (∀x)B ∀ : r

Definition 21. Two formulas A, B are called strongly equivalent (notation
A ∼s B) if there exist simple transformations τA,B and τB,A.

Remark 3. Note that, in contrast to full logical equivalence, it is decidable
whether two formulas are strongly equivalent. This is clear as the number of
inferences in a simple transformation τA,B is bounded by the logical complexity
of A ` B.

Example 5. Note that the existence of a simple transformation from A to B does
not imply the existence of a simple transformation from B to A. Let P (x) and
Q be atom formulas. Then there is a simple transformation from (∀x)P (x) ∧Q
to (∀x)(P (x) ∧Q):

P (α) ` P (α) Q ` Q
P (α), Q ` P (α) ∧Q ∧ : r

(∀x)P (x), Q ` P (α) ∧Q ∀ : l

(∀x)P (x) ∧Q ` P (α) ∧Q ∧ : l

(∀x)P (x) ∧Q ` (∀x)(P (x) ∧Q) ∀ : r

But there is no simple transformation from (∀x)(P (x) ∧Q) to (∀x)P (x) ∧Q.

Definition 22. A binary relation 5 on formulas is called compatible if, for all
formulas A and B, A5B implies C[A]λ5C[B]λ for any formula context C[]λ.

Proposition 2. ∼s is a compatible equivalence relation on formulas.

Proof. reflexivity: Define τA,A as I(A); I(A) is simple for all A.
symmetry: immediate by definition.
transitivity:

Assume A ∼s B and B ∼s C. Then there exist simple transformations τA,B and
τB,C ; we may assume w.l.o.g. that τA,B and τB,C do not share eigenvariables.
By V (X) we denote the set of variables in X.

By definition of ∼s we have V (A) = V (B), V (B) = V (C) and thus V (A) =
V (C). We consider the proof ηAC :

τA,B

A ` B
τB,C

B ` C
A ` C cut

As τA,B and τB,C do not contain weakening and contractions, the same holds
for ηAC as well. Clearly ηAC is not a transformation; but it is enough to show
that any cut-elimination sequence Ψ on ηAC yields a transformation which is
also simple.

Let ηAC →∗
G ξ. Then, by definition of the reduction rules for →G, ξ does

not contain weakenings and/or contractions (indeed no additional weakenings
and contractions are introduced by the cut-reduction rules). So let Ψ be a cut-
elimination sequence on ηAC ; then its result is a transformation τA,C which is
weakening- and contraction-free. It remains to show that τA,C is also Q-simple.

Let us assume that X: {x1, . . . , xn} are the bound variables in A,B,C. As τA,B

is simple, X can be partitioned into two sets

{y1, . . . , ym} {z1, . . . , zk}

s.t. the yi are the strong variables of quantifier introductions on ancestors of
A, and the zj are the weak variables of quantifier introductions on ancestors
of A. Moreover, as τA,B is Q-simple, the yi are the weak variables of quantifier
introductions on ancestors of B, and the zj are the strong variables of quantifier
introductions on ancestors of B. Now let us list the vectors of variables in the
following order:

(1) strong, ancestor of A, (2) weak, ancestor of A,
(3) strong, ancestor of B, (4) weak, ancestor of B.

This way we obtain a tuple

XAB : < (y1, . . . , ym), (z1, . . . , zk), (z1, . . . , zk), (y1, . . . , ym) > .

Now consider the tuple XAB under substitution of the bound variables by the
quantifier substitutions. Then we obtain the quantifier-introduction vector for
τA,B :

YAB : < (α1, . . . , αm), (β1, . . . , βk), (β1, . . . , βk), (α1, . . . , αm) > .

For τB,C we obtain (replacing A by B, B by C in the tuple notation)

XBC : < (y1, . . . , ym), (z1, . . . , zk), (z1, . . . , zk), (y1, . . . , ym) > .

and the quantifier introduction vector

YBC : < (β′1, . . . , β
′
m), (γ1, . . . , γk), (γ1, . . . , γk), (β′1, . . . , β

′
m) > .

Note that ηAC is regular and so the β′i are different from the βj .
Now let Ψ be a cut-elimination sequence on ηAC . According to the cut-

reduction rules for quantifiers, strong variables are replaced by weak terms. As
the proofs in Ψ do not contain weakenings and contractions, Ψ contains exactly
m + k (= n) quantifier-elimination steps. Therefore these steps can be charac-
terized by the single substitution

{β′1 ← α1, . . . , β
′
m ← αm, β1 ← γ1, . . . , βk ← γk}.

Hence the quantifier introduction vector for the result τA,C of Ψ is

YAC : < (α1, . . . , αm), (γ1, . . . , γk), (γ1, . . . , γk), (α1, . . . , αm) > .

But this quantifier introduction vector is that of a Q-simple transformation.
Therefore τA,C is simple.

It remains to show that ∼s is compatible.
We proceed by induction on the logical complexity of the context. The case

of the empty context is trivial.
(IH) Let C[A]λ ∼s C[B]λ whenever A ∼s B, for any C of complexity ≤ n

and any position λ in C.
Now let C be of complexity n+ 1. Then C is of one of the following forms

(a) C ≡ C1 ∧ C2, (b) C ≡ C1 ∨ C2, (c) C ≡ C1 → C2,

(d) C ≡ ¬C ′, (e) C ≡ (∀x)C ′, (f) C ≡ (∃x)C ′.

We only show the cases c,d,e, the others are analogous.

(c) We consider the formulas (C1 → C2)[A]µ and (C1 → C2)[B]µ. There are two
possibilities:
(c1) µ is an occurrence in C1, and
(c2) µ is an occurrence in C2.

(c1) There exists a position λ in C1 (corresponding to µ in C) s.t.

C[A]µ = C1[A]λ → C2, C[B]µ = C1[B]λ → C2.

We define a transformation τ transforming C1[A]λ → C2 into C1[B]λ →
C2 (the other direction can be obtained by exchanging A and B).

τ ′

C1[B]λ ` C1[A]λ
I(C2)
C2 ` C2

C1[B]λ, C1[A]λ → C2 ` C2
→: l

C1[A]λ → C2 ` C1[B]λ → C2

→: r

By (IH) a simple τ ′ exists, and I(C2) is simple; obviously τ itself is
simple.

(c2) symmetric to (c1).
(d) We have to show (¬C ′)[A]µ ∼s (¬C ′)[B]µ. Again there exists a position λ in

C ′ with ¬C ′[A]λ = (¬C ′)[A]µ (the same for B). The desired transformation
τ is

τ ′

C ′[B]λ ` C ′[A]λ
¬C ′[A]λ, C ′[B]λ `

¬ : l

¬C ′[A]λ ` ¬C ′[B]λ
¬ : r

By (IH) such a simple transformation τ ′ exists. Clearly τ is also simple. The
transformation from ¬C ′[B]λ into ¬C ′[A]λ can be obtained by exchanging
A and B.

(e) We have to prove ((∀x)C ′)[A]µ ∼s ((∀x)C ′)[B]µ. Again there must be a
position λ s.t. ((∀x)C ′)[A]µ = (∀x)C ′[A]λ (the same for B). We define τ as

τ ′

C ′[A]λ{x← α} ` C ′[B]λ{x← α}
(∀x)C ′[A]λ ` C ′[B]λ{x← α} ∀ : l

(∀x)C ′[A]λ ` (∀x)C ′[B]λ
∀ : r

A simple transformation τ ′ exists by (IH).
Let A′ = A{x← α}, B′ = B{x← α}. Then

C ′{x← α}[A′]λ = C ′[A]λ{x← α}, C ′{x← α}[B′]λ = C ′[B]λ{x← α}.

Clearly the complexity of C ′{x← α} is that of C ′ itself. It remains to show
that A′ ∼s B′: consider a simple transformation τA,B . Either x is a free
variable in A and B or it does not occur in both of them. As α is a variable
not occurring in A and B, the transformation τA,B{x ← α} is also simple.
Therefore the transformation τ above is simple as well q.e.d.

Example 6. ¬(∀x)(∃y)P (x, y) ∼s (∃x)(∀y)¬P (x, y):
we have shown in Example 3 that there exists a simple transformation of

¬(∀x)(∃y)P (x, y) to (∃x)(∀y)¬P (x, y). It is easy to construct a simple transfor-
mation of (∃x)(∀y)¬P (x, y) to ¬(∀x)(∃y)P (x, y).

We give an example of logically equivalent formulas which are not strongly
equivalent:

(∀x)P (x)→ Q(a) 6∼s (∃x)(P (x)→ Q(a)).

Indeed, all transformations of (∀x)P (x) → Q(a) to (∃x)(P (x) → Q(a)) require
the use of contractions and thus are not simple. In fact, the quantifier (∀x) in

S: (∀x)P (x)→ Q(a) ` (∃x)(P (x)→ Q(a)).

is strong in S and thus (going from the end-sequent to the axioms) must be
eliminated prior to (∃x) (which is weak in S). We see that, in general, the
quantifier shifting principles go beyond strong equivalence.

Definition 23. A formula A is in negation normal form (NNF) if it does not
contain → and ¬ occurs only immediately above atoms (i.e. for any subformula
¬C of A, C is an atom).

Lemma 9. A formula is in negation normal from iff it is a normal form under
the rewrite rules R (applied to arbitrary occurrences of subformulas):

(1) ¬¬A⇒ A, (2) ¬(A ∧B)⇒ ¬A ∨ ¬B, (3) ¬(A ∨B)⇒ ¬A ∧ ¬B,
(4) A→ B ⇒ ¬A ∨B, (5) ¬(∀x)A⇒ (∃x)¬A, (6) ¬(∃x)A⇒ (∀x)¬A.

Moreover all formulas A can be transformed to a NNF B via R (we say that B
is the NNF of A).

Proof. In [1], proposition 4.6.

Proposition 3. A formula A is strongly equivalent to its negation normal form.

Proof. It is enough to show that, for the rewrite rules defined in Lemma 9, the
left and right sides are strongly equivalent. Then the result follows from Lemma 9
and the fact that ∼s is compatible and transitive (Proposition 2).

We give the simple transformations corresponding to the rules in R:

(1) ¬¬A ∼s A:
I(A)
A ` A
` A,¬A ¬ : r

¬¬A ` A ¬ : l

I(A)
A ` A
¬A,A ` ¬ : l

A ` ¬¬A ¬ : r

(2) ¬(A ∧B) ∼s ¬A ∨ ¬B:

I(A)
A ` A

I(B)
B ` B

A,B ` A ∧B ∧ : r

A,B,¬(A ∧B) ` ¬ : l

A,¬(A ∧B) ` ¬B
¬ : r

¬(A ∧B) ` ¬A,¬B
¬ : r

¬(A ∧B) ` ¬A ∨ ¬B ∨ : r

I(A)
A ` A
A,¬A ` ¬ : l

I(B)
B ` B
B,¬B ` ¬ : l

A,B,¬A ∨ ¬B ` ∨ : l

A ∧B,¬A ∨ ¬B ` ∧ : l

¬A ∨ ¬B ` ¬(A ∧B)
¬ : r

(3) ¬(A ∨B) ∼s ¬A ∧ ¬B: symmetric to (2).
(4) A→ B ∼s ¬A ∨B:

I(A)
A ` A

I(B)
B ` B

A,A→ B ` B →: l

A→ B ` ¬A,B ¬ : r

A→ B ` ¬A ∨B ∨ : r

I(A)
A ` A
A,¬A ` ¬ : l I(B)

B ` B
A,¬A ∨B ` B ∨ : l

¬A ∨B ` A→ B
→: r

(5) ¬(∀x)A ∼s (∃x)¬A:

I(A{x← α})
A{x← α} ` A{x← α}
` ¬A{x← α}, A{x← α}

¬ : r

` (∃x)¬A,A{x← α} ∃ : r

` (∃x)¬A, (∀x)A ∀ : r

¬(∀x)A ` (∃x)¬A ¬ : l

I(A{x← α})
A{x← α} ` A{x← α}
A{x← α},¬A{x← α} ` ¬ : l

(∀x)A,¬A{x← α} ` ∀ : l

(∀x)A, (∃x)¬A ` ∃ : l

(∃x)¬A ` ¬(∀x)A
¬ : r

(6) ¬(∃x)A ∼s (∀x)¬A: symmetric to (5).

q.e.d.

The following lemma is the technical key to the main result. It shows that
simple transformations applied to ancestors of cuts do not change the proof
profile modulo variable renaming. In particular, this holds for the transformation
to negation normal form.

Lemma 10. Let ϕ′ be a subproof of an LKps-proof ϕ s.t. ϕ′ is an LK-proof of
a sequent Γ ` ∆,A at node ν, and A is an ancestor of a pseudo-cut. Let τA,B be
a simple transformation. Then, for any proof ψ in (ϕ′)τA,B, P(ϕ[ψ]ν) = P(ϕ)π,
where π is a permutation of eigenvariables.

Remark 4. Note that, in general, ϕ[ψ]ν is a pseudo-proof, even if ϕ is a proof,
as the substitution of ψ for ϕ′ may violate cut- and contraction rules. But note
that ϕ′ must be an LK-proof!

Proof. We proceed by cut-elimination on the proof T (ϕ′, τA,B):

ϕ′

Γ ` ∆,A
τA,B

A ` B
Γ ` ∆,B cut

The profile at the node ν is of the form

P(ϕ).ν = C ′ ∪D, where D = {A1 `l1 A1, . . . , Am `ln Am}

for a set of atoms Ai and labels li. Note that all binary inferences in τA,B work
on ancestors of a cut, so D is the union of all axiom sequents in τA,B .

Moreover we obtain
P(ϕ) = C ∪D

For a clause set C, because – on successors of B (which goes into a pseudo-cut)
– only unions are performed in the construction of the proof profile.

We apply cut-elimination based on →Gt in two phases (as defined in Defi-
nition 17): in the first step we eliminate all marked cuts without applying the
elimination rule for axioms. In a second step we eliminate the atomic cuts be-
tween axioms.

In every phase of cut-elimination by →Gt we distinguish a ϕ′-part (i.e. the
part labelled by F , the original label set of ϕ) and a τA,B-part. Indeed, every
cut appearing in a proof χ obtained by cut-elimination is of the form ξ:

ρ
Π ` Λ,C

σ
C,Π ′ ` Λ′

Π,Π ′ ` Λ,Λ′ cut

where ρ is an (possibly instantiated) subproof of ϕ′, and σ one of τA,B . For
simplicity we assume that the ϕ′-part is to the left and the τA,B-part to the
right (in fact the sides my change by elimination on negated formulas).

We prove that for all χ with (ϕ′)τA,B →∗
Gt
χ ,we have

(?) P(ϕ[χ]ν) = Cπ ∪D∗,

where π is a permutation of eigenvariables and D∗ is a set of instances of clauses
(modulo label renaming) in D.

We know by Lemmas 4 and 5 that →Gr and →Gp do not change the profile,
so we may assume that the cut in ξ is introduced (1) by weakening, or (2) by
contraction, or (3) by quantifier introductions on both sides. Let us furthermore
assume inductively that (?) holds for χ.

(1) ξ is of the form
ρ′

Π ` Λ
Π ` Λ,C w : r σ

C,Π ′ ` Λ′

Π,Π ′ ` Λ,Λ′ cut

Indeed, weakening can only appear in the ϕ′-part, not in the τA,B-part (as
τA,B is simple). According to the rules of →Gt , ξ reduces to ξ′ for ξ′ =

ρ′

Π ` Λ
Π,Π ′ ` Λ,Λ′ w

∗

From now on (for the remaining part of the proof) let us assume that the
root node of ξ is µ and χ′ = χ[ξ′]µ. Then, asΠ ′ and Λ′ contain only ancestors
of a cut, we may apply Corollary 2 and obtain

P(ϕ[χ′]µ) = Cπ ∪D′,

where D′ is a subset of D∗.
(2) contraction: as in (1) contractions can only occur in the ϕ′-part, not in the

τA,B-part. So ξ is of the form

ρ′

Π ` Λ,C,C
Π ` Λ,C c : r σ

C,Π ′ ` Λ′

Π,Π ′ ` Λ,Λ′ cut

Then ξ →Gt ξ
′ for ξ′ =

ρ′

Π ` Λ,C,C
σ

C,Π ′ ` Λ′

Π,Π ′ ` Λ,Λ′, C cut σ′

C,Π ′ ` Λ′

Π,Π ′,Π ′ ` Λ,Λ′, Λ′ cut

Π,Π ′ ` Λ,Λ′ c∗

where σ′ is σ after renaming of eigenvariables and labels. Again, let χ′ =
χ[ξ′]µ. Then, by Lemma 8,

P(ϕ[χ′]ν) = Cπ ∪D∗ ∪D′,

where D′ is a set of instances of clauses in D∗.
(3) Elimination of a quantifier:

(3a) ξ =
ρ′

Π ` Λ,A{x← t}
Π ` Λ, (∃x)A ∃ : r

σ′

A{x← α},Π ′ ` Λ′

(∃x)A,Π ′ ` Λ′ ∃ : l

Π,Π ′ ` Λ,Λ′ cut

Then ξ →Gt ξ
′ for ξ′ =

ρ′

Π ` Λ,A{x← t}
σ′{α← t}

A{x← t},Π ′ ` Λ′

Π,Π ′ ` Λ,Λ′ cut

Then, by Lemma 6,

P(ϕ[χ′]ν) = Cπ ∪D∗{α← t}.

Note that α does not occur in Cπ! Again, the ϕ′-part remains unchanged,
and the τA,B-part is instantiated.

(3b) ξ =
ρ′

Π ` Λ,A{x← α}
Π ` Λ, (∀x)A ∀ : r

σ′

A{x← β},Π ′ ` Λ′

(∀x)A,Π ′ ` Λ′ ∀ : l

Π,Π ′ ` Λ,Λ′ cut

As σ′ is a τA,B-part, the quantifier substitution for ∀ : l is of the form
{x← β} where β is an eigenvariable in the proof ϕ[ξ]ν . Note that no sub-
stitution of an eigenvariable in the τA,B-part (see case (3a)) can change
the weak quantifier substitutions in this part, because τA,B is simple.
Now ξ →Gt ξ

′ for ξ′ =

ρ′{α← β}
Π ` Λ,A{x← β}

σ′

A{x← β},Π ′ ` Λ′

Π,Π ′ ` Λ,Λ′ cut

Again, by Lemma 6, we obtain

P(ϕ[χ′]ν) = Cπ{α← β} ∪D∗.

We know that β is a variable. But β cannot occur in Cπ (i.e. in the
ϕ′-part of the proof) as β is an eigenvariable in τA,B-part and the proof
χ is regular. So we obtain

Cπ{α← β} = Cπ{α← β, β ← α}

where π{α← β, β ← α} is a permutation of eigenvariables.

We have seen that in all cases (1), (2), (3) the property (?) is preserved. Thus
it holds after the first phase of cut-elimination, before the axioms are eliminated.
It remains to investigate the elimination of the axioms. Let χ∗ be the normal
form of T (ϕ′, τA,B) under the first phase of cut-elimination. Then

P(ϕ[χ∗]ν) = Cπ ∪D∗.

where π is a permutation and

D∗ = {B1 `j1 B1, . . . , Br `jr Br}.

Now the only cuts left in χ∗ are of the form ξ =

B{i} ` B{i} B{j} ` B{j}

B{i} ` B{j} cut

Where i is a label in the ϕ′-part and j is a label in the τA,B-part. According to
the definition of →Gt (Definition 17), ξ is replaced by ξ′ =

B{i} ` B{i}.

Let µ be the node of this cut and χ′ = χ∗[ξ′]. Then

P(ϕ[χ′]ν) = Cπ ∪D∗ − {B `j B}.

This procedure is repeated till all the clauses in the set D∗ are used up. Let us
call the resulting proof ψ, which does not contain any marked cuts. Then

P(ϕ[ψ]ν) = Cπ.

q.e.d.

Corollary 3. Let ϕ′ be a subproof of an LKps-proof ϕ s.t. ϕ′ is a proof of a
sequent B,Γ ` ∆ at node ν, and B is an ancestor of a pseudo-cut. Let τA,B be
a simple transformation. Then, for any proof ψ in τA,B(ϕ′), P(ϕ[ψ]ν) = P(ϕ)π,
where π is a permutation of eigenvariables.

Proof. completely symmetric to the proof of Lemma 10.

Lemma 11. Let ϕ be an LK-proof and σ be a subproof of ϕ (at node ν) of the
form

σ1

Γ ` ∆,A
σ2

A,Π ` Λ
Γ,Π ` ∆,Λ cut

and let A be strongly equivalent to B. Then there exists an LK-proof ψ of the
form

ψ1

Γ ` ∆,B
ψ2

B,Π ` Λ
Γ,Π ` ∆,Λ cut

and a permutation of eigenvariables π s.t. ϕ[ψ]ν is an LK-proof and P(ϕ[ψ]ν) =
P(ϕ)π.

Proof. Apply Lemma 10 to the subproof σ1 with the transformation τA,B . The
result is a pseudo-proof ϕ1:ϕ[ρ]ν with P(ϕ1) = P(ϕ)π1 for a permutation π1 and
for ρ =

ψ1

Γ ` ∆,B
σ2

A,Π ` Λ
Γ,Π ` ∆,Λ

pscut

Then apply Corollary 3 to σ2 (within ϕ1) and obtain a pseudo-proof ϕ2, for
ϕ2 = ϕ1[ψ]ν , with P(ϕ2) = P(ϕ1)π2 for a permutation π2 and for ψ =

ψ1

Γ ` ∆,B
ψ2

B,Π ` Λ
Γ,Π ` ∆,Λ cut

Then
P(ϕ2) = P(ϕ[ψ]ν) = P(ϕ)π1π2.

Clearly π1π2 is a variable permutation. Moreover ϕ2 is not only a pseudo-proof
but also a proof (note that ψ is a proof and has the same end-sequent as σ)
q.e.d.

The following theorem shows that we can transform the cuts in an LK-
proof into arbitrary strongly equivalent form without changing the proof pro-
file (indeed, variants that differ only by variable permutations can be consid-
ered as equal). All these forms can thus be considered as equivalent w.r.t. cut-
elimination.

Theorem 1. Let ϕ be an LK-proof with cut formulas A1, . . . , An and B1 ∼s

A1, . . . , Bn ∼s An. Then there exists a proof ψ with cut formulas B1, . . . , Bn and
P(ψ) = P(ϕ)π for a variable permutation π.

Proof. We iterate the construction defined in Lemma 11, by transforming the
cuts with A1, . . . , An successively into cuts with B1, . . . , Bn. This way we obtain
a proof ψ and permutations π1, . . . , πn with

P(ψ) = P(ϕ)π1 . . . πn.

But π1 . . . πn is also a permutation q.e.d.

Corollary 4. Let ϕ be a proof with cut formulas A1, . . . , An. Then there exists
a proof ψ with cut formulas B1, . . . , Bn, where the Bi are the negation normal
forms of the Ai and P(ψ) = P(ϕ)π for a permutation π.

Proof. By Proposition 3 and Theorem 1.

Corollary 4 does not hold for prenex normal from in place of NNF. This is
based on the fact, that quantifier shifting does not preserve strong equivalence in
general (see Example 6); so Theorem 1 is not applicable in case of prenex normal
forms. Moreover, a proof transformation to prenex form, under preservation of
cut-homomorphism, is impossible in principle (see [2]).

In Section 3.4 we have shown that profiles define equivalence classes of proofs
at least as large as proof nets. Theorem 1 proves that the equivalence classes
defined by profiles are in fact larger, due to the strong abstraction from the
syntax of cuts.

6 Summary

We have shown that proofs with strongly equivalent cut-formulas (obtained via
simple transformations) have the same profile (under variable renaming) and
thus can be considered as equal w.r.t. cut-elimination. We did not prove that
the profile remains the same when the whole proof (i.e. also the formulas in the
end-sequent) undergoes simple transformations. We conjecture that even this
stronger result holds (e.g. it is easy to show that it holds for transformations
to negation normal form), but it is much harder to prove: indeed, if we apply a
transformation to a formula which goes to the end-sequent, the original formula
changes its status (as it now goes to the cut with the transformation), and the
whole profile changes in a more complicated way.

We defined profiles as sets of labelled clauses, i.e. two clauses that differ only
in their labels are treated as two different clauses. If profiles are defined as sets of
clauses (dropping the labels after generation of the profile), the class of equivalent
proofs becomes even larger while still having the same set of normal forms of the
CERES method. Then, however, cut-elimination on propositional proofs would
not increase the profile (it can only shrink by weakening), and thus would not
express the duplication of subproofs.

Furthermore, it is possible to apply redundancy-elimination techniques from
automated theorem proving like tautology-deletion and subsumption to the pro-
file which results in a smaller and thus more readable version of it. While these
transformations formally change the set of normal forms, the logical meaning
of them is preserved. On the other hand we clearly can regard profiles as equal
if they are equivalent w.r.t. variable renaming. Moreover we believe that the
analysis can be carried over to LK-proofs in second-order logic.

References

1. M. Baaz, U. Egly, A. Leitsch Normal Form Transformations Handbook of Auto-
mated Reasoning, pp. 273–333, 2001.

2. M. Baaz, A. Leitsch: Cut normal forms and proof complexity, Annals of Pure and
Applied Logic, 97, pp. 127-177, 1999.

3. M. Baaz, A. Leitsch: Cut-elimination and Redundancy-elimination by Resolution
Journal of Symbolic Computation, 29(2), pp. 149-176, 2000.

4. M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination, Journal of
Symbolic Computation, 41, pp. 381–410, 2006.

5. V. Danos, J.-B. Joinet, H. Schellinx: A New Deconstructive Logic: Linear Logic
Journal of Symbolic Logic, 62(3), pp. 755–807, 1997.

6. V. Danos, J.-B. Joinet, H. Schellinx: Computational isomorphisms in classical logic
Theoretical Computer Science, 294(3), pp. 353–378, 2003.

7. G. Gentzen: Untersuchungen über das logische Schließen, Mathematische
Zeitschrift 39, pp. 405–431, 1934–1935.

8. S.C. Kleene: Permutability of Inferences in Gentzen’s Calculi LK and LJ, Memoirs
of the American Mathematical Society, 10, pp. 1–26, 1952.

9. R. McKinley: Categorical Model for First-Order Classical Proofs PhD thesis,
University of Bath, 2006

10. E. Robinson: Proof Nets for Classical Logic, Journal of Logic and Computation,
13(5), pp. 777–797, 2003

