
Theoretical Computer Science 798 (2019) 109–125
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the cover complexity of finite languages ✩

Stefan Hetzl ∗, Simon Wolfsteiner

TU Wien, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstraße 8–10, 1040 Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 December 2018
Received in revised form 20 March 2019
Accepted 5 April 2019
Available online 23 May 2019

Keywords:
Context-free grammar
Finite language
Descriptional complexity
Cover complexity
Language operation

We consider the notion of cover complexity of finite languages on three different levels
of abstraction. For arbitrary cover complexity measures, we give a characterisation of
the situations in which they collapse to a bounded complexity measure. Moreover, we
show for a restricted class of context-free grammars that its grammatical cover complexity
measure w.r.t. a finite language L is unbounded and that the cover complexity of L can
be computed from the exact complexities of a finite number of covers L′ ⊇ L. We also
investigate upper and lower bounds on the grammatical cover complexity of the language
operations intersection, union, and concatenation on finite languages for several different
types of context-free grammars. One of the lower bound results is based on a new class of
cover-incompressible languages.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The grammatical complexity of a formal language in the classical sense is the complexity of a minimal grammar gen-
erating this language. Depending on the type of grammar and the notion of complexity, one obtains a variety of different
grammatical complexity measures. The study of the grammatical complexity of context-free languages can be traced back
to [1], where, among other things, it was shown that context-free definability with n nonterminals forms a strict hierarchy.
This line of research has been continued in [2–5], where, among others, the number of productions of a grammar has been
considered as complexity measure. In [6], a theory of the grammatical complexity of finite languages in terms of produc-
tion complexity was initiated by giving a relative succinctness classification for various kinds of context-free grammars.
Investigations along these lines have been continued in, e.g., [7–12].

We are interested in the cover complexity of a finite language L, i.e., the minimal number of productions of a grammar
G such that L(G) is finite and L(G) ⊇ L. Note that this condition is similar to (but different from) the one imposed on cover
automata [13,14]: there, an automaton A is sought such that L(A) ⊇ L, but in addition it is required that L(A) \ L consists
only of words longer than any word in L. Our interest in this problem is primarily motivated by applications in proof
theory. As shown in [15], there is an intimate relationship between a certain class of formal proofs (those with �1-cuts)
in first-order predicate logic and a certain class of grammars (totally rigid acyclic tree grammars). In particular, the number
of production rules in the grammar characterises the number of certain inference rules in the proof. This relationship has
been exploited for a number of results in proof theory and automated deduction [16–19]. In particular, [20,21] shows a
non-trivial lower bound on the complexity of cut-introduction. The interest in such a result is partially motivated by the
experience that the length of proofs with cuts is notoriously difficult to control (for propositional logic this is considered

✩ Supported by the Vienna Science Fund (WWTF) project VRG12-004 and the Austrian Science Fund (FWF) project P25160.

* Corresponding author.
E-mail addresses: stefan.hetzl@tuwien.ac.at (S. Hetzl), simon.wolfsteiner@tuwien.ac.at (S. Wolfsteiner).
https://doi.org/10.1016/j.tcs.2019.04.014
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.04.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:stefan.hetzl@tuwien.ac.at
mailto:simon.wolfsteiner@tuwien.ac.at
https://doi.org/10.1016/j.tcs.2019.04.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.04.014&domain=pdf

110 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
the central open problem in proof complexity [22]). The combinatorial centre of this result is the construction of a sequence
of finite word languages which are incompressible in the sense of the cover formulation of grammatical complexity.

In [23], the grammatical cover complexity of finite languages has also been investigated as part of a relative succinctness
classification. There, the authors considered several different complexity measures (among others, exact and cover complex-
ity) for finite languages and related them according to four different relations. Furthermore, in [24], it was shown that the
minimal cover problem for acyclic regular grammars with a fixed bound on the number of nonterminals is NP-complete.
The minimal cover problem is defined as follows: given a finite language L and a non-negative integer k, is there an acyclic
regular grammar G such that G has at most k productions and satisfies L(G) ⊇ L. The computational complexity of this
problem for an arbitrary number of nonterminals is still open.

In this paper, we investigate the notion of cover complexity of finite languages on three different levels. First, in Section 3,
we consider the cover complexity from an abstract point of view for arbitrary complexity measures and we characterise the
situations in which it collapses to a bounded measure. Secondly, in Section 4, we consider the cover complexity of a finite
language as the minimal number of productions a grammar needs to cover the language with a finite language. In partic-
ular, we show that a cover complexity measure is unbounded if it is induced by a certain class of context-free grammars
with a bounded number of nonterminals on the right-hand side of their productions. Moreover, we obtain an analogous
result for strict regular and strict linear grammars. Thirdly, in Section 5, we show—for these restricted kinds of context-free
grammars—that we can reduce the cover complexity of a finite language L to the minimum of the exact complexities over
a finite number of supersets L′ of L. In Section 6, we construct a regular cover-incompressible sequence of finite languages.
Finally, in Section 7, relying on, among other results, the cover-incompressible sequence constructed in Section 6, we investi-
gate the grammatical cover complexity of the language operations intersection, union, and concatenation on finite languages
for context-free, (strict) linear, and (strict) regular grammars.

This paper extends [25] in the following respects: we construct a cover-incompressible sequence of finite languages that
generalises the one constructed in [20,21]. Based on this more general cover-incompressible sequence, we prove a lower
bound on the cover complexity of union w.r.t. a fixed alphabet and, moreover, we include fixes of some flaws as well as full
proofs of many of the results that have been stated without proof in [25].

2. Cover complexity

In this section, we introduce the basic definitions of the notion of cover complexity from both an abstract and gram-
matical point of view. Moreover, in order to fix notation and terminology, we also introduce the basic notions of formal
language theory that are relevant to this paper.

For a set A, we write Pfin(A) for the set of finite subsets of A. Let � be an alphabet, then a function μ : Pfin(�∗) →N
is called �-complexity measure. If the alphabet is irrelevant or clear from the context, we will just speak about a complexity
measure. Let μ be a �-complexity measure, then the cover complexity measure induced by μ is the �-complexity measure
μc defined as

μc(L) = min{μ(L′) | L ⊆ L′ ∈ Pfin(�∗) }.
Note that the minimum is well-defined even though there are infinitely many L′ ∈Pfin(�∗) with L ⊆ L′ , since μ maps to the
natural numbers. We have μc(L) ≤ μ(L), for all L ∈ Pfin(�∗), and, moreover, for every L ∈Pfin(�∗), there is an L′ ⊇ L such
that μc(L) = μ(L′). A �-complexity measure μ is called bounded if there is a k ∈N such that μ(L) ≤ k, for all L ∈Pfin(�∗),
and unbounded otherwise.

A context-free (CF) grammar is a quadruple G = (N, �, P , S), where N and � are disjoint finite sets of nonterminals and
terminals, respectively, S ∈ N is the start symbol, and P is a finite set of productions of the form A → α, where A ∈ N and
α ∈ (N ∪�)∗ . Let A be a nonterminal, then a production with A on its left-hand side is called A-production. We write P A for
the subset of A-productions in P , i.e., P A = { A → α | A → α ∈ P } and, for N ′ ⊆ N , we define P N ′ = ⋃

A∈N ′ P A . A production
of the form S → w , for w ∈ �∗ , is called trivial; all other productions are called non-trivial. Let G = (N, �, P , S), then
we define G t = (N, �, P t, S), where P t is the set of trivial productions of G . If G = G t , then G is called trivial grammar and
non-trivial grammar otherwise. The set of all words of length at most k, for k ≥ 0, over � is denoted by �≤k . We also consider
further restrictions of context-free grammars: a context-free grammar is called linear context-free (LIN) if all productions
in G are of the form A → α, where α ∈ �∗(N ∪ {ε})�∗; a context-free grammar is called right-linear or regular (REG)
if all productions in G are of the form A → α, where α ∈ �∗(N ∪ {ε}). Moreover, a context-free grammar is called strict
linear (SLIN) if all productions are of the form A → aBb or A → c, where B ∈ N and a, b, c ∈ �≤1. Similarly, a context-free
grammar is called strict regular (SREG) if all productions are of the form A → aB or A → b, where B ∈ N and a, b ∈ �≤1. We
will also write SREG, REG, . . . for the set of strict regular, regular, . . . grammars and set � = {SREG, REG, SLIN, LIN, CF}
and �s = {SREG, SLIN}. As usual, the derivation relation of G is denoted by ⇒G and the reflexive and transitive closure of
⇒G is written as ⇒∗

G . If the grammar is clear from the context, we will often omit the subscript G . For a nonterminal
A of G , the language of A w.r.t. G is defined as L A(G) = { w ∈ �∗ | A ⇒∗

G w }. The language of a grammar G is then defined
as L(G) = L S(G). We say that a context-free grammar G covers a language L if L(G) ⊇ L. In our setting, the size of a
context-free grammar G = (N, �, P , S) is defined as |G| = |P |. We say that a word v ∈ �∗ is a subword of a word w ∈ �∗ if

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 111
there are words v1, v2 ∈ �∗ such that w = v1 v v2 and, moreover, we say that a word v ∈ �∗ is a prefix of a word w ∈ �∗ if
there is some word u ∈ �∗ such that w = vu. Let L ∈Pfin(�∗) and X ∈ �, then the X-complexity of L is defined as

Xc(L) = min{ |G| | G ∈ X, L = L(G) }.
Clearly, Xc is a complexity measure and induces the cover complexity measure

Xcc(L) = min{Xc(L′) | L ⊆ L′ ∈ Pfin(�∗) }.
Consequently, we say that G is a minimal X-grammar covering (or generating, respectively) the finite language L if L(G) is
finite, L ⊆ L(G) (or L = L(G), respectively), and |G| = Xcc(L) (or |G| = Xc(L), respectively). Note that, in general, there may
be more than one minimal X-grammar for a given finite language L. The following result shows the existence of regular
cover-incompressible sequences of finite languages and has been proved in [20,21].

Theorem 1. For all n ≥ 1, there is a language Ln with |Ln| = n = REGcc(Ln).

On the other hand, for every finite language L, there is a trivial context-free grammar covering L with a constant number
of productions:

Theorem 2. Let L ∈Pfin(�∗), then CFcc(L) ≤ |�| + 2.

Proof. Let � = {a1, a2, . . . , an}, l = max{ |w| | w ∈ L }, and consider the grammar G consisting of the productions S →
Al, A → a1 | a2 | · · · | an | ε. Then L(G) = �≤l ⊇ L. �
3. Unboundedness of cover complexity measures

Motivated by the above Theorems 1 and 2, in this section, we will characterise the situations in which a cover complexity
measure collapses to a bounded complexity measure. Before we can give this characterisation, we need some auxiliary
results on “almost inverting” functions from N to N . These will be provided in Lemmas 3 and 4. A function f : N → N
is called bounded if there is a k ∈ N such that f (n) ≤ k, for all n ∈N , and unbounded otherwise. Moreover, a function f is
called monotonic if n ≤ m implies f (n) ≤ f (m).

Lemma 3. Let f : N → N be a monotonic and unbounded function and define g : N → N, n �→ min{ i ∈ N | n ≤ f (i) }, then g is
well-defined, monotonic, unbounded, and, for all x, y ∈N , we have g(x) ≤ y iff x ≤ f (y).

Proof. The function g is well-defined because, due to unboundedness of f , there is at least one i ∈N with f (i) ≥ n.
Moreover, g is unbounded for suppose there is a k ∈ N such that g(n) = min{i ∈ N | n ≤ f (i)} ≤ k, for all n ∈ N . Then,

in particular by monotonicity of f ,

g(f (k + 1)) = min{ i ∈N | f (k + 1) ≤ f (i) } = k + 1,

which contradicts g(n) ≤ k, for all n ∈N .
Also, g is monotonic for if n ≤ m, then for any x ∈ N with m ≤ f (x), we also have n ≤ f (x) and thus g(n) ≤ x, in

particular for x = g(m).
Let x, y ∈ N . If x ≤ f (y), then we have g(x) = min{i ∈ N | x ≤ f (i)} ≤ y. On the other hand, if g(x) ≤ y, then we have

both f (g(x)) ≤ f (y) and f (g(x)) = f (min{i ∈N | x ≤ f (i)}) ≥ x. �
Lemma 4. Let g : N → N be a monotonic and unbounded function and define f : N → N, n �→ max{ i ∈ N | g(i) ≤ n }. Then f is
well-defined, monotonic, unbounded, and, for all x, y ∈N , we have g(x) ≤ y iff x ≤ f (y).

Proof. The function f is well-defined because, for each n ∈N , there are only finitely many i ∈N with g(i) ≤ n, for suppose
there would be infinitely many such i, then, by monotonicity, g(j) ≤ n, for all j after a certain j0 ∈ N . This, however,
contradicts the unboundedness of g .

Moreover, f is unbounded for suppose there is a k ∈N such that, for all n ∈N , we have f (n) = max{ i ∈N | g(i) ≤ n } ≤
k, then, in particular by monotonicity of g ,

f (g(k + 1)) = max{ i ∈ N | g(i) ≤ g(k + 1) } = k + 1,

which contradicts f (n) ≤ k, for all n ∈N .
Also, f is monotonic for if n ≤ m, then for any x ∈ N with g(x) ≤ n, we have g(x) ≤ m and thus f (m) ≥ x, in particular

for x = f (n).
Let x, y ∈ N . If g(x) ≤ y, then we have f (y) = max{i ∈ N | g(i) ≤ y} ≥ x. If x ≤ f (y), then we have g(x) ≤ g(f (y)) =

g(max{ i ∈N | g(i) ≤ y }) ≤ y. �

112 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
Examples for “almost inverting” functions on the natural numbers are the exponential function 2n and the function that
applies the ceiling function to the binary logarithm of n:

Example 1. Let f :N →N and g :N →N be functions defined as follows:

f (n) = 2n and g(n) =
{

0 if n = 0,

log n� if n > 0.

Clearly, both f and g are monotonic and unbounded functions that, in addition, satisfy

f (n) = max{ i ∈N | g(i) ≤ n } and g(n) = min{ i ∈N | n ≤ f (i) }.
Thus, by Lemmas 3 and 4, it holds that

g(x) ≤ y iff x ≤ f (y),

for all x, y ∈N .

A complexity measure ρ : Pfin(�∗) → N is called reference complexity measure if ρ is unbounded and L1 ⊆ L2 implies
ρ(L1) ≤ ρ(L2). For reference complexity measures, what we have in mind are, e.g., the number of words |L| in a language
or their cumulated lengths ‖L‖ = ∑

w∈L |w|. Let μ be a complexity measure, then a reference complexity measure ρ is
called reference complexity measure for μ if μ(L) ≤ ρ(L), for all finite languages L. Typical examples for the above definitions
include: μ ∈ { REGc, LINc, CFc } and ρ(L) = |L|, or μ is the minimal size, that is, symbolic complexity of a regular, linear,
or context-free grammar and ρ(L) = ‖L‖. In the following theorem, a characterisation of the unboundedness of a cover
complexity measure μc in terms of the existence of a relation between μ and a reference complexity measure ρ for μ is
provided.

Theorem 5. Let μ be an unbounded �-complexity measure and ρ be a reference complexity measure for μ, then the following condi-
tions are equivalent:

1. μc is unbounded.
2. There is a monotonic and unbounded function f :N →N such that, for all L ∈Pfin(�∗), we have ρ(L) ≤ f (μ(L)).
3. There is a monotonic and unbounded function g :N →N such that, for all L ∈Pfin(�∗), we have g(ρ(L)) ≤ μ(L).

Proof. 2. ⇒ 3. has been shown in Lemma 3, and 3. ⇒ 2. in Lemma 4.
For 3. ⇒ 1., let L ∈ Pfin(�∗), then, by definition of μc, there is some L′ ∈ Pfin(�∗) such that L ⊆ L′ and μc(L) = μ(L′).

Therefore,

μc(L) = μ(L′) ≥ g(ρ(L′)) ≥ g(ρ(L)),

where the first inequality follows from the assumption of condition 3., and the second one follows by definition of ρ and
from the fact that g is a monotonic function. This shows the unboundedness of μc based on the unboundedness of g and
ρ .

For showing 1. ⇒ 3., we argue by contraposition. Assume that every function g : N → N such that g(ρ(L)) ≤ μ(L) for
all L ∈ Pfin(�∗) is bounded or not monotonic. Consider h : N → N, n �→ min{ μ(L) | ρ(L) ≥ n, L ∈ Pfin(�∗) } and note that,
due to the unboundedness of ρ , h is well-defined. Moreover, we have h(ρ(L)) ≤ μ(L). Now, we prove that h is monotonic
and therefore, by assumption, also bounded. For monotonicity, let n ≤ m. Then we have

{ L ∈ Pfin(�∗) | ρ(L) ≥ m ≥ n } ⊆ { L ∈ Pfin(�∗) | ρ(L) ≥ n }
and therefore,

h(n) = min{μ(L) | ρ(L) ≥ n, L ∈ Pfin(�∗) } ≤ min{μ(L) | ρ(L) ≥ m, L ∈ Pfin(�∗) } = h(m).

Thus, h is bounded, i.e., there is a k ∈ N and (Ln)n∈N such that n �→ ρ(Ln) is unbounded, but μ(Ln) ≤ k, for all n ∈ N .
Since, by definition of μc,

μc(Ln) ≤ μ(Ln) ≤ k,

it follows that μc is bounded too. �
The subsequent theorem states that the cover complexity of a finite language L can be obtained from the minimum over

the exact complexities of finite supersets of L whose reference complexity is bounded by a certain constant.

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 113
Theorem 6. Let μ be a complexity measure and ρ be a reference complexity measure for μ. Then, for every finite language L, there is
some b ∈N such that

μc(L) = min{μ(L′) | L ⊆ L′ ∈ Pfin(�∗) and ρ(L′) ≤ b }.

Proof. If μc is bounded by k, let b = k. If μc is unbounded, then, by Theorem 5, there is a monotonic and unbounded
function g : N → N such that g(ρ(K)) ≤ μ(K), for all finite languages K , and, by Lemma 4, there is a monotonic and
unbounded function f :N →N such that g(x) > y iff x > f (y), for all x, y ∈N . Let b = f (ρ(L)) and L′′ ⊇ L with ρ(L′′) >
f (ρ(L)), then g(ρ(L′′)) > ρ(L), and, since we have μ(L′′) ≥ g(ρ(L′′)), we obtain μ(L′′) > ρ(L). Moreover, since ρ(L) ≥
μ(L) ≥ μc(L), it follows that μ(L′′) > μc(L). �

The above theorem expresses μc in terms of μ and ρ . Depending on ρ , the set of covers L′ of L that is used to
determine μc(L) may or may not be a finite set. We will analyse the reduction of μc(L) to the value of μ(·) on a finite set
more thoroughly in Section 5.

4. Unboundedness of grammatical cover complexity measures

After dealing with complexity measures in an abstract sense in the previous section, we will now come back to applica-
tions in the realm of context-free grammars. In particular, we will now apply Theorem 5 to the number of productions in
various types of context-free grammars. Hence, we will fix ρ(L) = |L| as reference complexity measure.

The subsequent lemma was already shown in [6] and implies that Xcc, for X ∈ {SREG, REG, SLIN, LIN}, is an unbounded
complexity measure.

Lemma 7 ([6], Lemma 2.3). Let G be a linear grammar with n productions generating a finite language, then |L(G)| ≤ 2n−1 .

Corollary 8. The measures SREGcc, REGcc, SLINcc, and LINcc are unbounded.

Proof. Define the function f : N → N, n �→ 2n . Clearly, f is both monotonic and unbounded. By Lemma 7, for all finite
languages L ∈Pfin(�∗), we have

ρ(L) = |L| ≤ 2LINc(L)−1 ≤ 2LINc(L) = f (LINc(L))

and hence, by Theorem 5, LINcc is unbounded. The unboundedness of the measures SREGcc, REGcc, and SLINcc follows
from the facts that

LINcc(L) ≤ SLINcc(L) ≤ SREGcc(L) and LINcc(L) ≤ REGcc(L),

for all finite languages L ∈Pfin(�∗). �
The following definition of class of CFGs in terms of closure under identifying nonterminals, omission of productions,

and containment of all trivial grammars is motivated by the subsequent proofs of Lemmas 10 and 13.

Definition 1. A set X of context-free grammars is called class of context-free grammars if

1. (N, �, P , S) ∈ X and p ∈ P implies (N, �, P \ {p}, S) ∈ X,
2. X is closed under identifying two nonterminals, and
3. for each finite language L, X contains the trivial grammar generating L.

We now show that any context-free grammar can be transformed into a grammar, where every nonterminal derives at
least one non-empty word without increasing the number of productions. Grammars of this kind are said to be in pruned
normal form.

Definition 2. A context-free grammar G = (N, �, P , S) is in pruned normal form (PNF) if, for all nonterminals A ∈ N \ {S}, we
have that L A(G) � {ε}, and there are α1, α2 ∈ (N ∪ �)∗ and a word w ∈ L(G) such that S ⇒∗

G α1 Aα2 ⇒∗
G w .

Note that if L A(G) = ∅, then there is no A-production that derives a string that solely consists of terminal symbols, i.e.,
no A-production contributes to the derivation of a word in L(G). By definition, a grammar in pruned normal form does not
contain such useless nonterminals.

Lemma 9. Let G be a context-free grammar. Then there is a context-free grammar G ′ in PNF with |G ′| ≤ |G| and L(G ′) = L(G).

114 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
Proof. Let G = (N, �, P , S) be a context-free grammar. If G is already in PNF, let G ′ = G; so assume that G is not in PNF.
In the case that L(G) = ∅, let G ′ = ({S}, �, ∅, S), and if L(G) = {ε}, let G ′ = ({S}, �, { S → ε }, S). In both of these cases, G ′
is a context-free grammar in PNF with |G ′| ≤ |G| and L(G ′) = L(G).

Thus, assume L(G) � {ε} and that there is some A ∈ N \ {S} such that A does not occur in any derivation of a word in
L(G). We construct a grammar G ′ from G by removing the nonterminal A and all A-productions (i.e., productions in which
A occurs on the left-hand side) as well as all productions in which A occurs on the right-hand side. We repeat this step
until we have constructed a grammar G ′′ = (N ′′, �, P ′′, S) such that for all A ∈ N ′′ \ {S}, there are α1, α2 ∈ (N ′′ ∪ �)∗ and a
word w ∈ L(G ′′) with

S ⇒∗
G ′′ α1 Aα2 ⇒∗

G ′′ w.

Then it follows that L A(G) �= ∅, for all A ∈ N ′′ . It is also easy to see that L(G ′′) = L(G) and |G ′′| ≤ |G|. In the case that there
is some nonterminal A ∈ N ′′ \ {S} with L A(G ′′) = {ε}, we construct a context-free grammar G ′′′ by omitting the nonterminal
A and all A-productions, and replacing all occurrences of A on the right-hand sides of productions in G ′′ by ε. Then,
clearly, L(G ′′′) = L(G ′′) = L(G) and |G ′′′| ≤ |G ′′| ≤ |G|. We repeat this step until we have constructed a grammar G∗ which
contains no nonterminal A �= S with L A(G∗) = {ε}. This transformation of G into G∗ clearly terminates as in each step the
number of nonterminals decreases. �

In order to illustrate the construction steps carried out in the proof of Lemma 9, we give the following example of
transforming a context-free grammar into pruned normal form.

Example 2. Let G = (N, �, P , S) be a context-free grammar with the following set of productions P :

S → aA1 | b A1 | B | aBC,

A1 → aA2 | b A2 | B,

A2 → a | b | B,

B → ε,

C → D.

Clearly, L(G) = {a, b}≤3 � {ε}, and observe that LB(G) = {ε} and LC (G) = LD(G) = ∅. We follow the proof of Lemma 9 in
order to construct a context-free grammar in PNF that is equivalent to G . Thus, we omit all B- and C-productions as well
as the production S → aBC and replace each occurrence of B by ε in the remaining productions. This yields a grammar
G ′ = ({S, A1, A2}, �, P ′, S) with the following set of productions P ′:

S → aA1 | b A1 | ε,

A1 → aA2 | b A2 | ε,

A2 → a | b | ε.

We clearly have that L(G ′) = L(G) = {a, b}≤3 and |G ′| ≤ |G|.

A context-free grammar G = (N, �, P , S) is called cyclic1 if there is some nonterminal A ∈ N such that A ⇒+
G α1 Aα2,

for α1, α2 ∈ (N ∪ �)∗; otherwise G is called acyclic. We now show that if a grammar G belongs to a class of context-free
grammars, then that class also contains an equivalent acyclic grammar with at most |G| productions.

Lemma 10. Let X be a class of CFGs or X ∈ �s . If G ∈ X and L(G) is finite, then there is an acyclic G ′ ∈ X with |G ′| ≤ |G| and
L(G ′) = L(G).

Proof. If G is acyclic, then define G ′ = G . Therefore, assume that G is cyclic, i.e., there is some A1 ∈ N and β1, β2 ∈ (N ∪�)∗
such that A1 ⇒+

G β1 A1β2. By Lemma 9, we can assume, without loss of generality, that G is in PNF, i.e., for all B ∈ N \ {S},
we have LB(G) � {ε}, and B is reachable from S and used to derive a word w in L(G): there are α1, α2 ∈ (N ∪ �)∗ such
that S ⇒∗

G α1 Bα2 ⇒∗
G w . If β1β2 �= ε, then, since A1 is reachable from S and we have A1 ⇒+

G β1 A1β2, we can derive
infinitely many words, i.e., L(G) is infinite. Contradiction. If β1β2 = ε, then there is a derivation of the form

A1 ⇒G A2 ⇒G . . . ⇒G An ⇒G A1,

1 Note that the definition of a cyclic grammar slightly differs from that of a self-embedding one: a grammar G = (N, �, P , S) is called self-embedding if
there is some nonterminal A ∈ N such that A ⇒∗

G α1 Aα2, for α1, α2 ∈ �+; otherwise G is called non self-embedding.

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 115
for A1, A2, . . . , An ∈ N and n ≥ 1. Note that the case that A1 ⇒∗
G γ ⇒∗

G A1, for γ ∈ N≥2, is impossible for otherwise, due
to G being in PNF, we could derive infinitely many words. We define a new grammar G∗ from G with |G∗| ≤ |G| by
identifying the nonterminal A1, A2, . . . , An with a nonterminal A /∈ N . That is, we replace all Ai in G , for 1 ≤ i ≤ n, by A.
Thus, every G-derivation can be transformed into a G∗-derivation, and, vice versa, every G∗-derivation can be transformed
into a G-derivation by adding suitable productions of the form Ai → A j . Consequently, we have L(G∗) = L(G). Note that G∗
still contains a production of the form A → A. Let G ′ be the grammar obtained from removing the production A → A from
G∗ . Then G ′ ∈ X, |G ′| < |G∗| ≤ |G|, and L(G ′) = L(G). �

The following result shows that Lemma 7 can be generalised from linear to context-free grammars which contain only a
bounded number of nonterminals on the right-hand side of each of their productions:

Lemma 11. Let G be a grammar with n productions generating a finite language such that every production of G contains at most k
nonterminals on its right-hand side. Then |L(G)| ≤ n(k+1)n

.

Proof. We proceed by induction on the number of nonterminals p in G and show that |L(G)| ≤ n(k+1)p
. In light of

Lemma 10, we can assume that G is acyclic.
For the base case, assume that p = 1, i.e., the grammar G contains a single nonterminal S . Since G is acyclic, S cannot

occur on the right-hand side of any production. Thus, k = 0 and L(G) contains exactly n = n(0+1)1
words.

For the induction step, assume that G consists of n productions and contains the nonterminals A1, A2, . . . , Ap+1 such
that every production with left-hand side Ai only contains nonterminals A j with i > j. We can assume the latter, since, by
acyclicity of G , we can fix a linear order on the nonterminals in the above sense. The nonterminal A1 is clearly minimal,
i.e., cannot contain any nonterminals on the right-hand side of its productions. Thus, the productions with left-hand side A1

are of the form A1 → w1 | w2 | . . . | wm with wi ∈ �∗ , for 1 ≤ i ≤ m ≤ n. Moreover, let B → α be an arbitrary production of
G with B �= A1. We define the grammar G ′ from G by replacing B → α by the productions B → α1 | α2 | . . . | αm′ such that
the αi , for 1 ≤ i ≤ m′ , are all possible combinations of replacing the occurrences of the nonterminal A1 in α by the words
w1, w2, . . . , wm . Clearly, m′ ≤ mk ≤ nk . Moreover, we remove the nonterminal A1 together with all A1-productions. Since
this step is repeated for all non-minimal nonterminals, the grammar G ′ contains at most n · nk = nk+1 productions and p
nonterminals. Furthermore, we have L(G ′) = L(G). By induction hypothesis, we get that

|L(G ′)| = |L(G)| ≤ (nk+1)(k+1)p = n(k+1)p+1
.

Since in such a grammar G , there are at most n nonterminals, we immediately get |L(G)| ≤ n(k+1)n
. �

Corollary 12. Let X be a class of CFGs with a bounded number of nonterminals occurring on the right-hand side of each production.
Then Xcc is unbounded.

Proof. Let G ∈ X contain n production rules and let k be the bound on the number of nonterminals occurring on the right-
hand side of each production. Define f :N →N, n �→ n(k+1)n

. Clearly, f is both monotonic and unbounded. By Lemma 11,
for all finite languages L ∈ Pfin(�∗), we have

ρ(L) = |L| ≤ Xc(L)(k+1)Xc(L) = f (Xc(L)).

Hence, by Theorem 5, Xcc is unbounded. �
A context-free grammar G = (N, �, P , S) is said to be in Chomsky normal form if all productions are of the form A → BC ,

A → a, or S → ε, where A, B, C ∈ N and a ∈ �.

Example 3. An immediate consequence of Corollary 12 is that for the class CNF of grammars in Chomsky normal form,
CNFcc is an unbounded complexity measure. Moreover, by Lemma 11, the number of words generated by a grammar G in
CNF with n productions is bounded above by n3n

, i.e., |L(G)| ≤ n3n
.

5. Computing cover complexity from exact complexity

We now turn to characterising the cover complexity of a finite language L based on the exact complexity of a finite set
of finite languages related to L. To this end, we first show the following simple lemmas.

Lemma 13. Let X be a class of CFGs, L be a finite language,
 := max{ |w| | w ∈ L }, and G be a minimal X-grammar with L(G) ⊇ L.
Then for all productions of the form A → u0 B1u1 B2 · · · Bnun of G with u0, u1, . . . , un ∈ �∗ , we have |u0u1 · · · un| ≤
.

116 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
Proof. Let G = (N, �, P , S) and suppose that there is a production p : A → u0 B1u1 B2 · · · Bnun ∈ P with |u0 · · · un| >
. Then
there is no G-derivation of a word in L that uses p, and so the X-grammar G ′ = (N, �, P \ {p}, S) satisfies both L(G ′) ⊇ L
and |G ′| < |G|. Contradiction to the minimality of G . �

Any linear grammar that covers a language whose longest word has length
 can generate only words of length at most
the number of words in L times
.

Lemma 14. Let L be a finite language,
 := max{ |w| | w ∈ L }, and G be a minimal LIN-grammar with L(G) ⊇ L. Then max{ |w| |
w ∈ L(G) } ≤ |L| ·
.

Proof. In light of Lemma 10, we can assume that G is acyclic. Let w ∈ L(G) be arbitrary. Then there is a derivation δ of w
in G of the form

S ⇒G α1 ⇒G α2 ⇒G . . . ⇒G αn = w,

where αi ∈ (N ∪ �)∗ , for 1 ≤ i ≤ n. Due to the fact that G is acyclic, each production of G can occur at most once in
a G-derivation. Thus, by Lemma 13, it follows that each derivation step in δ can add at most
 letters to the previous
intermediate string, i.e., |w| ≤ n ∗
. Since n ≤ |G| ≤ |L|, we get |w| ≤ |L| ∗
. �

Since, in general, it does not hold that |G| ≤ |L| if G is a minimal X-grammar covering L, for X ∈ �s , we get a different
bound on the length of a longest word in strict regular and strict linear grammars.

Lemma 15. Let X ∈ �s and L ⊆ �≤
 . Then Xc(L) ≤ 1 + ∑

i=1 i · |�|i .

Proof. Consider the trivial grammar G generating L = { w1, w2, . . . , wn }, i.e., each production of G is of the form S → wi =
ai,1ai,2 . . .ai,k with ai, j ∈ � ∪{ε}, for 1 ≤ i ≤ n and 1 ≤ j ≤ k ≤
. We break up each trivial production S → wi = ai,1ai,2 . . .ai,k

with ai, j ∈ � ∪ {ε}, for 1 ≤ i ≤ n and 1 ≤ j ≤ k ≤
, into the following strict regular productions:

S → ai,1 Ai,2

Ai,2 → ai,2 Ai,3

...

Ai,k−1 → ai,k−1 Ai,k

Ai,k → ai,k,

where, for each i ∈ {1, 2, . . . , n}, the Ai,1, Ai,2, . . . , Ai,k are fresh nonterminals. Consequently, if we assume that
 =
max{ |w| | w ∈ L }, we get that we need at most k · |�|k , for each k ∈ {1, 2, . . . ,
}, strict regular productions, since there
are |�|k many words of length k. This amounts to

SREGc(L) ≤ 1 +

∑

i=1

i · |�|i,

for every finite language L ⊆ �≤
 . The result for strict linear grammars follows immediately, since SLINc(L) ≤ SREGc(L), for
all finite languages L. �
Lemma 16. Let
 ≥ 0, L ⊆ �≤
 be a finite language, and G be a minimal X-grammar, for X ∈ �s , with L(G) ⊇ L. Then max{ |w| | w ∈
L(G) } ≤
 +
3 · |�|
 .

Proof. The proof is essentially the same as the proof of Lemma 14, but instead of n ≤ |G| ≤ |L|, we have n ≤ |G| ≤ 1 +∑

i=1 i · |�|i ≤ 1 +
2 · |�|
 by Lemma 15, since one can show by induction on
 that

∑

i=1 i · |�|i ≤
2 · |�|
 . �

In the case of a context-free grammar G that covers a finite language L where the number of nonterminals occurring on
the right-hand side of each production in G is bounded by some k ≥ 2, we get that any such grammar can produce only
words of length at most
 times k|L| .

Lemma 17. Let X be a class of CFGs such that every production in an X-grammar contains at most k ≥ 2 nonterminals on its right-hand
side, let L be a finite language,
 := max{ |w| | w ∈ L }, and G be a minimal X-grammar with L(G) ⊇ L. Then max{ |w| | w ∈ L(G) } ≤

 · k|L| .

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 117
Proof. In light of Lemma 10, we can assume that G is acyclic and therefore fix a linear order on the nonterminals
A1, A2, . . . , Ap in the following sense: every production with left-hand side Ai only contains nonterminals A j with j < i.
We show, by induction on q, that every derivation that starts with an A j with j ≤ q ≤ p has at most

∑q−1
i=0 ki steps. If

q = 1, then a derivation has at most one step. On the other hand, if q > 1, then the first step replaces A j with at most k
occurrences of nonterminals which are some Ah with h ≤ q − 1. By induction hypothesis, each of them has a deriva-
tion of length at most

∑q−2
i=0 ki and there are at most k of them, so the total number of steps in the derivation is at

most 1 + k
∑q−2

i=0 ki = ∑q−1
i=0 ki . Moreover, for k ≥ 2, we have

∑q−1
i=0 ki ≤ kq , since k − 1 ≥ 1 implies kq ≤ kq · (k − 1). As a

consequence, kq

k−1 ≤ kq and thus
∑q−1

i=0 ki = kq−1
k−1 ≤ kq . The result is then obtained from q ≤ p ≤ |G| ≤ |L|. Similarly as in the

proof of Lemma 14, from acyclicity of G and Lemma 13, it follows that any word w ∈ L(G) has length at most
 · k|L| . �
What the following theorem tells us is that, for a certain class of context-free grammars, we can obtain the cover

complexity of a given finite language L in terms of the minimum over the exact complexities of a finite number of finite
covers L′ of L.

Theorem 18. Let X be a class of CFGs such that every production in an X-grammar contains at most k nonterminals on its right-hand
side. Then, for every finite language L, there is a finite set SL of finite languages such that

Xcc(L) = min{Xc(L′) | L′ ∈ SL }.

Proof. Let G be an arbitrary minimal X-grammar with n productions covering a finite language L, i.e., Xcc(L) = n, and
let
 = max{ |w| | w ∈ L }. Clearly, n ≤ |L|. We distinguish two cases. In the case that k = 1, G is a linear grammar and
so according to Lemmas 7 and 14, every X-grammar covering L is an X-grammar generating a finite language L′ ⊇ L that
satisfies both

Xc(L′) ≤ |L′| ≤ 2|L|−1 and max{ |w| | w ∈ L′ } ≤
 · |L|.
Since, by definition, Xcc(L) = min{ Xc(L′) | L ⊆ L′ ∈Pfin(�∗) }, setting

SL,1 = { L′ ∈ Pfin(�∗) | L ⊆ L′, |L′| ≤ 2|L|−1,max{|w| | w ∈ L′} ≤
 · |L| }
yields the conclusion that Xcc(L) = min{ Xc(L′) | L′ ∈ SL,1 }. Similarly, in the case that k ≥ 2, the conclusion Xcc(L) =
min{ Xc(L′) | L′ ∈ SL,k } follows from Lemmas 11 and 17 by setting

SL,k = { L′ ∈ Pfin(�∗) | L ⊆ L′, |L′| ≤ |L|(k+1)|L|
,max{|w| | w ∈ L′} ≤
 · k|L| }.

Clearly, each of the sets SL,k , for k ≥ 1, satisfies the conditions of Theorem 18. �
Both the set of strict regular and the set of strict linear grammars are not classes of context-free grammars in the sense

of Definition 1, as both of these sets do not contain all trivial grammars. Therefore, we have to adapt the proof strategy in
order to arrive at a result for strict regular and strict linear grammars that is analogous to Theorem 18.

Theorem 19. Let X ∈ �s . Then, for every finite language L, there is a finite set SL of finite languages such that

Xcc(L) = min{Xc(L′) | L′ ∈ SL }.

Proof. Let G be an arbitrary minimal X-grammar with n productions covering a finite language L, i.e., Xcc(L) = n, and let

 = max{ |w| | w ∈ L }. By Lemma 15 and the fact that SLINcc(L) ≤ SREGcc(L), for all finite languages L, we have

n ≤ 1 +

∑

i=1

i · |�|i ≤ 1 +
2 + |�|
.

According to Lemmas 7 and 16, every X-grammar covering L is an X-grammar generating a finite language L′ ⊇ L that
satisfies both |L′| ≤ 2Xc(L′)−1 = 2Xcc(L)−1 ≤ 2
2+|�|
 and max{ |w| | w ∈ L′ } ≤
 +
3 + |�|
 . Therefore, by setting

SL = { L′ ∈ Pfin(�∗) | L ⊆ L′, |L′| ≤ 2
2+|�|
 ,max{ |w| | w ∈ L′} ≤
 +
3 · |�|
 },
the conclusion follows. Clearly, the set SL satisfies the condition of Theorem 19. �

So, for a class of CFGs as in Theorem 18 as well as for strict regular and strict linear grammars, determining the cover
complexity of L boils down to computing the exact complexity on the finite set SL .

118 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
6. A cover-incompressible sequence of languages

In this section, we are going to construct a regular cover-incompressible sequence of finite languages. This sequence is
similar to, yet more general than, the one defined in [20,21]. The need for a more general sequence is motivated by the
fact that it allows us to show that the bound on the regular cover complexity of union is tight w.r.t. a fixed alphabet (see
Section 7.2). This new sequence consists of so-called segmented languages, i.e., languages in which all words are repetitions
of a separator symbol followed by a so-called building block. More formally, this is defined as follows:

Definition 3. Let � be an alphabet not containing the letter s. Then we write �s for � ∪ {s}. A word w ∈ �∗
s such that

w = (sv)k , for some k ≥ 1 and some v ∈ �+ , is called segmented word. The word v and the letter s are called the building
block and the separator symbol, respectively, of w . Occurrences of v in w are called segments. A segmented word (sv)k with
|v| =
 is called a (k,
)- segmented word. A language consisting of (k,
)-segmented words only is called a (k,
)-segmented
language.

A finite language L is called X cover-incompressible, for X ∈ {REG, LIN, CF}, if any X-grammar covering L contains
at least as many productions as there are words in L. The notion of cover (in-)compressibility can also be extended to
sequences of finite languages.

Definition 4. Let L be a finite language. Then L is called X cover-compressible, for X ∈ {REG, LIN, CF}, if Xcc(L) < |L| and X
cover-incompressible otherwise.

A sequence (Ln)n≥1 of finite languages is called X cover-incompressible, for X ∈ {REG, LIN, CF}, if there is an M ∈ N
such that for all n ≥ M , the language Ln is X cover-incompressible. A sequence (Ln)n≥1 of finite languages is called X
cover-compressible if for every M ∈N , there is an n ≥ M such that Ln is X cover-compressible.

Note that it is trivial to construct a cover-incompressible sequence of languages of constant size, e.g., Ln = {a}, for
a letter a. It is also trivial to construct a sequence of cover-incompressible languages in an infinite alphabet, e.g., Ln =
{a1, a2, . . . , an}, for letters a1, a2, Consequently, in this section, we will construct a regular cover-incompressible sequence
of languages of unbounded size over a finite alphabet:

Let � be an arbitrary alphabet not containing the letter s. For all n ≥ 1, let an ∈ N , let
, k : N → N , and let An ⊆ �∗
such that

(n) ≤
log(an)� ,

k(n) ≥
⌈

9 · an

(n) + 1

⌉
, and

An ⊆ �
(n) with |An| = an.

Then, for each n ≥ 1, we write [
(n), k(n), An] for the language

{ (sw)k(n) | w ∈ An }.
Note that, for every n ≥ 1, we have |[
(n), k(n), An]| = |An| = an and all words in [
(n), k(n), An] have the same length

k(n) · (
(n) + 1), i.e., [
(n), k(n), An] is a (k(n),
(n))-segmented language for all n ≥ 1. The number of segments has been
chosen such that k(n) · (
(n) + 1) is 9 · an padded up to the next multiple of
(n) + 1.

The above cover-incompressible sequence was obtained from the one constructed in [20,21] by relaxing the constraints
on
(n) and k(n) from “=” to “≤” and “≥”, respectively, and allowing arbitrary words of length
(n) as building blocks
for the segmented languages in the sequence. In the subsequent example, we demonstrate how we have to choose the
parameters in order to obtain the cover-incompressible sequence constructed in [20,21] from the above more general se-
quence.

Example 4. For n ≥ 1 and k ∈ {0, 1, . . . , 2n − 1}, we write bn(k) ∈ {0, 1}n for the n-bit binary representation of k. Let, for all
n ≥ 1,

an = n,

(n) =
log(an)� , and

k(n) =
⌈

9 · an

(n) + 1

⌉
,

An = {b
(n)(i) | 0 ≤ i ≤ n − 1 }.

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 119
Xcc(L1 ∩ L2) Xcc(L1 ∪ L2) Xcc(L1 L2)

LIN min{ c1, c2 } c1 + c2 min{d1 + c2, c1 + d2 }
SLIN min{ c1, c2 } c1 + c2 min{d1 + c2, c1 + d2 }
REG min{ c1, c2 } c1 + c2 c1 + c2

SREG min{ c1, c2 } c1 + c2 c1 + c2

Fig. 1. Summary of results. For i ∈ {1,2}, let ci = Xcc(Li) and di = (S)REGcc(Li).

Note that we have both |An| = an = n and An ⊆ {0, 1}
(n) . As a consequence,

[
(n),k(n), An] = { (sw)k(n) | w ∈ An } = { (sb
(n)(i))k(n) | 0 ≤ i ≤ n − 1 },
which is equal to the language Ln constructed in [21, Definition 14].

We note that a slight modification of the proof of [21, Theorem 1] leads to the following cover-incompressibility result.

Theorem 20. Any sequence ([
(n), k(n), An])n≥1 is REG cover-incompressible.

Proof Sketch. The proof is essentially the same as the one of [21, Theorem 1] for the less general regular cover-incom-

pressible sequence. We just have to substitute the two inequalities k(n) =
⌈

9n

log(n)�+1

⌉
≥ 9n

log(n)+2 and n ≥ |L′
n| by

k(n) ≥
⌈

9 · an

(n) + 1

⌉
≥

⌈
9 · an

log(an)� + 1

⌉
=

⌈
9 · |An|

log(|An|)� + 1

⌉
≥ 9 · |An|

log(|An|) + 2

and |An| ≥ |L′
n|, respectively. The remaining parts of the proof are exactly as in the proof of [21, Theorem 1]. �

7. Bounds on language operations

In this section, we will prove upper and lower bounds on the cover complexity of the operations intersection, union,
and concatenation of finite languages. While we have not yet been able to obtain matching lower bounds on union and
concatenation w.r.t. fixed alphabets for all grammar types under consideration, we have been able to do so w.r.t. growing
alphabets. The results of this section are summarised in Fig. 1, where bold font means that we have matching upper and
lower bounds w.r.t. a fixed alphabet and non-bold means that the bounds are matching w.r.t. a growing alphabet. For the
remainder of this section, let � = � \ {CF}.

7.1. Intersection

The bound on the cover complexity of intersecting two finite languages L1 and L2 corresponds to the minimum of the
cover complexities of L1 and L2, and this bound is tight as shown in Theorem 22.

Theorem 21. Let X ∈ � and L1 and L2 be finite languages. Then

Xcc(L1 ∩ L2) ≤ min{Xcc(L1),Xcc(L2) }.
Proof. Let Gi be a minimal X-grammar with L(Gi) ⊇ Li , for i ∈ {1, 2}; then L(Gi) ⊇ L1 ∩ L2. Simply choose G = Gi with
|Gi | = min{ |G1|, |G2| }. �

In order to show that the bound of Theorem 21 is tight, we can use the fact that Xcc, for X ∈ �, is an unbounded
complexity measure (see Corollary 8).

Theorem 22. Let X ∈ �. Then there exists a finite alphabet � such that for all n1, n2 ≥ 1, there are finite languages L1 and L2 with
Xcc(L1) ≥ n1 and Xcc(L2) ≥ n2 such that

Xcc(L1 ∩ L2) ≥ min{Xcc(L1),Xcc(L2) }.

Proof. Let � be an arbitrary finite alphabet and let n1, n2 ≥ 1 such that, without loss of generality, n2 ≥ n1. From Corollary 8,
it follows that there are languages L1, L2 ∈Pfin(�∗) with Xcc(L1) ≥ n1 and Xcc(L2) ≥ n2. Define L′

2 = L1 ∪ L2. Then Xcc(L′
2) ≥

Xcc(L1) ≥ n1, for otherwise there would be a grammar covering L′
2 ⊇ L1 with less than Xcc(L1) productions. A similar

argument shows that Xcc(L′
2) ≥ Xcc(L2) ≥ n2. Thus, we clearly have

Xcc(L1 ∩ L′
2) = Xcc(L1) = min{Xcc(L1),Xcc(L′

2) }.
This proves the stated claim. �

120 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
7.2. Union

The bound on the cover complexity of the union of two finite languages L1 and L2 corresponds to the sum of the
cover complexities of L1 and L2, and, for strict regular, regular, and strict linear grammars, this bound is tight w.r.t. a fixed
alphabet as shown in Theorems 26 and 27.

Theorem 23. Let X ∈ � and L1 and L2 be finite languages. Then

Xcc(L1 ∪ L2) ≤ Xcc(L1) + Xcc(L2).

Proof. Let X ∈ � and, for i ∈ {1, 2}, Gi = (Ni, �i, Pi, Si) be a minimal X-grammar with L(Gi) ⊇ Li and |Gi | = Xcc(Li) such
that N1 ∩ N2 = ∅. By minimality of Gi and since, by Lemma 10, we can also assume that it is acyclic, Si does not occur on
the right-hand side of a production in Pi . Let S /∈ N1 ∪ N2; we define G = (N1 ∪ N2 ∪ S, �1 ∪ �2, P , S), where

P = { S → α | S1 → α ∈ P1 or S2 → α ∈ P2 } ∪ { A → α ∈ P1 | A �= S1 } ∪ { A → α ∈ P2 | A �= S2 }.
Clearly, we have L(G) = L(G1) ∪ L(G2) ⊇ L1 ∪ L2 and |G| = |G1| + |G2|, that is, Xcc(L1 ∪ L2) ≤ Xcc(L1) + Xcc(L2). Moreover,
G1, G2 ∈ X implies G ∈ X . �

If we consider growing alphabets, then we can show that the above upper bound on the cover complexity of union is
tight for all considered grammar types.

Theorem 24. Let X ∈ �. Then, for all n1, n2 ≥ 1, there exists a finite alphabet � and finite languages L1 and L2 with Xcc(L1) = n1

and Xcc(L2) = n2 such that

Xcc(L1 ∪ L2) ≥ Xcc(L1) + Xcc(L2).

Proof. Let n1, n2 ≥ 1. Then define � = {a1, a2, . . . , an1 , b1, b2, . . . , bn2}, L1 = {a1, a2, . . . , an1}, and L2 = {b1, b2, . . . , bn2}. Thus,
L1 ∪ L2 = �. Moreover, we clearly have, Xcc(L1) = n1, Xcc(L2) = n2, and the language L1 ∪ L2 can only be covered by a trivial
grammar. Therefore,

Xcc(L1 ∪ L2) = n1 + n2 = Xcc(L1) + Xcc(L2).

This proves the stated claim. �
Now, we prove—w.r.t. a fixed alphabet—a lower bound on the strict linear cover complexity of union that matches the

upper bound. To do so, we use the fact that in the case of strict regular and strict linear grammars, there is a connection
between the number of productions and the length of a longest word in the generated finite language.

Lemma 25. Let L be a finite language and
 = max{ |w| | w ∈ L }. Then

SREGcc(L) ≥
 and SLINcc(L) ≥
⌊

2
+ 1

⌋
.

Proof. Since the strict regular case can be shown using similar arguments, we only give a proof of the strict linear case. We
will first show that in any minimal strict linear grammar G = (N, �, P , S) the following statement holds:

for all A ∈ N and all w ∈ �∗ : if A ⇒k
G w, then k ≥

⌊ |w|
2

+ 1

⌋
.

To prove the above statement, we will proceed by induction on the length of a derivation of w .

• Base case: Assume k = 1. If A ⇒G w , then, by definition of strict linear grammars, we must have that w ∈ � ∪ {ε}, i.e.,
|w| ≤ 1. Thus, we clearly have k = 1 ≥ ⌊ 1

2 + 1
⌋ =

⌊ |w|
2 + 1

⌋
.

• Induction step: Suppose k ≥ 2 and A ⇒k
G w . We have to distinguish four cases according to the form of the derivation

of w:
1. Let A ⇒G aBb ⇒k−1

G w = aw1b, for a, b ∈ �, B ∈ N , and w1 ∈ �∗ . Obviously, B ⇒k−1
G w1. Thus, by induction hypoth-

esis, it follows that k − 1 ≥
⌊ |w1|

2 + 1
⌋

. This means

k ≥
⌊ |w1|

2
+ 1

⌋
+ 1 =

⌊ |w1|
2

+ 1 + 1

⌋
=

⌊ |w1|
2

+ 2

2
+ 1

⌋
=

⌊ |w1| + 2

2
+ 1

⌋
=

⌊ |w|
2

+ 1

⌋
.

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 121
2. Next, consider A ⇒G aB ⇒k−1
G w = aw1, for a ∈ �, B ∈ N , and w1 ∈ �∗ . The claim follows from similar arguments as

in the first case.
3. Moreover, A ⇒G Bb ⇒k−1

G w = w1b, for b ∈ �, B ∈ N , and w1 ∈ �∗ . The claim follows from similar arguments as in
the first case.

4. Finally, A ⇒G B ⇒k−1
G w , for B ∈ N and w ∈ �∗ . Obviously, we have B ⇒k−1

G w . By induction hypothesis, we get
k − 1 ≥

⌊ |w|
2 + 1

⌋
, which clearly implies that k ≥

⌊ |w|
2 + 1

⌋
.

Now, let L be a finite language over � with
 = max{ |w| | w ∈ L } and G = (N, �, P , S) be a minimal strict linear grammar
with L(G) ⊇ L. Then there is a derivation δ : S ⇒k

G w with w ∈ �
 and k ≥ 1. By the above statement, we get that k ≥⌊ |w|
2 + 1

⌋
= ⌊

2 + 1

⌋
. By Lemma 10, we can assume, without loss of generality, that G is acyclic. Thus, since in an acyclic

strict linear grammar all right-hand sides of productions contain at most one nonterminal, no production can occur twice
in the derivation δ. As a consequence, the derivation δ uses k distinct productions in order to derive w . Hence,

SLINcc(L) = |G| ≥ k ≥
⌊

2
+ 1

⌋
,

by minimality of G . �
Theorem 26. There exists a finite alphabet � such that for all n1, n2 ≥ 1, there are finite languages L1 and L2 with SLINcc(L1) = n1

and SLINcc(L2) = n2 such that

SLINcc(L1 ∪ L2) ≥ SLINcc(L1) + SLINcc(L2).

Proof. Let � = {a, b} and, for n1, n2 ≥ 1, we define the finite language L = {a2n1−1, b2n2−1}. Moreover, let L1 = {a2n1−1}
and L2 = {b2n2−1}. Clearly, we have L = L1 ∪ L2 and from Lemma 25, we get that SLINcc(L1) ≥

⌊
2n1−1

2 + 1
⌋

= n1 and

SLINcc(L2) ≥
⌊

2n2−1
2 + 1

⌋
= n2. It is easy to see that also SLINcc(L1) ≤ n1 and SLINcc(L2) ≤ n2. Since the languages L1 and

L2 do not share a common letter, there can be no production that is used to derive words from both L1 and L2. Thus, we
must have that

SLINcc(L) = SLINcc(L1 ∪ L2) ≥ SLINcc(L1) + SLINcc(L2).

This proves the stated claim. �
Finally, using segmented languages as defined in Section 6 and applying Theorem 20, we can show a lower bound on

the (strict) regular cover complexity of union w.r.t. a fixed alphabet that matches the upper bound. At this point one may
ask why the regular cover-incompressible sequence constructed in [21] is not suitable for the proof of the following lower
bound. The simple answer is that the union of two sequences of this kind does not necessarily result in a sequence of this
kind again. The more general cover-incompressible sequence of Section 6 allows, however, to define a cover-incompressible
sequence of this kind that corresponds to the union of two such cover-incompressible sequences.

Theorem 27. Let X ∈ {SREG, REG}. Then there exists an alphabet � such that for all n1, n2 ≥ 1, there are finite languages L1 and L2

with Xcc(L1) ≥ n1 and Xcc(L2) ≥ n2 such that

Xcc(L1 ∪ L2) ≥ Xcc(L1) + Xcc(L2).

Proof. Let �1 = {a, b}, �2 = {c, d}, and � = �1 ∪�2. Moreover, let an,1 = an,2 = 2
log(n)� and an = an,1 + an,2. We define two
sequences of finite languages (L1,n)n≥1 and (L2,n)n≥1 with L1,n = [
(n), k(n), �
(n)

1] and L2,n = [
(n), k(n), �
(n)
2], for n ≥ 1,

based on:

(n) :=
log(n)� = ⌈
log(an,1)

⌉ = ⌈
log(an,2)

⌉
and

k(n) :=
⌈

9 · an

(n) + 1

⌉
≥

⌈
9 · an,1

(n) + 1

⌉
=

⌈
9 · an,2

(n) + 1

⌉
.

Recall that, for i ∈ {1, 2},

Li,n = [
(n),k(n),�

(n)
i] = { (sw)k(n) | w ∈ �

(n)
i }.

Thus, clearly, Li,n is a (k(n),
(n))-segmented language, for i ∈ {1, 2}. Now, let us consider the sequence of finite lan-
guages (Ln)n≥1 with

122 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
Ln = [
(n),k(n),�

(n)
1 ∪ �

(n)
2].

Clearly,
(n) ≤
log(an)� and, moreover,

Ln = [
(n),k(n),�

(n)
1 ∪ �

(n)
2] = { (sw)k(n) | w ∈ �

(n)
1 ∪ �

(n)
2 }.

Thus, clearly, Ln is a (k(n),
(n))-segmented language. By Theorem 20, the sequences (L1,n)n≥1, (L2,n)n≥1, and (Ln)n≥1 are
REG cover-incompressible. Furthermore, we have that L1,n ∩ L2,n = ∅ and Ln = L1,n ∪ L2,n , for all n ≥ 1.

By definition of REG cover-incompressibility, there is an M such that for all n ≥ M , we have REGcc(L1,n) = |L1,n| ≥ n,
REGcc(L2,n) = |L2,n| ≥ n, and REGcc(Ln) = |Ln| = |L1,n| + |L2,n| ≥ n + n. Let m ≥ M be such that m ≥ n1, n2. Then
REGcc(L1,m) ≥ m ≥ n1 and REGcc(L2,m) ≥ m ≥ n2. Consequently,

REGcc(Lm) = REGcc(L1,m ∪ L2,m) = |Lm| = |L1,m| + |L2,m| = REGcc(L1,m) + REGcc(L2,m).

For the SREG-case, let � = {a, b} and, for n1, n2 ≥ 1, we define the finite languages L1 = {an1 } and L2 = {bn2 }. Moreover,
let L = L1 ∪ L2. Then, from Lemma 25, we get that SREGcc(L1) ≥ n1 and SREGcc(L2) ≥ n2. Since the words in L1 and L2

do not share a common letter, there can be no production that is used to derive words from both L1 and L2. Thus, we must
have that

SREGcc(L) = SREGcc(L1 ∪ L2) ≥ SREGcc(L1) + SREGcc(L2).

This proves the stated claim. �
7.3. Concatenation

In contrast to the case of union, there is no uniform upper bound on the cover complexity of concatenating two finite
languages for all grammar types under consideration. The reason for this is that the method used to combine two given
regular grammars into a new regular grammar that covers the concatenation of their covered languages does not necessarily
give us a linear grammar if we are given two linear grammars.

Theorem 28. Let X ∈ {SREG, REG} and L1 and L2 be finite languages. Then

1. Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2),
2. LINcc(L1L2) ≤ min{ REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) },
3. SLINcc(L1L2) ≤ min{ SREGcc(L1) + SLINcc(L2), SLINcc(L1) + SREGcc(L2) }.

Proof. Let Gi = (Ni, �i, Pi, Si) be a minimal X-grammar with L(Gi) ⊇ Li and |Gi | = Xcc(Li), for i ∈ {1, 2}. Assume, w.l.o.g.,
N1 ∩ N2 = ∅.

In order to show 1., let X ∈ {SREG, REG} and define the grammar G(S)REG = (N1 ∪ N2, �1 ∪ �2, P (S)REG, S1), where

P (S)REG = { A → w S2 | A → w ∈ P1, w ∈ �∗ } ∪ { A → α | A → α ∈ P1,α /∈ �∗ } ∪ P2.

Note that in the strict regular case, the above construction of GSREG preserves strict regularity because in a strict regular
grammar the right-hand sides of productions without nonterminals are of length at most 1 and thus appending a single
nonterminal to the right-hand side of such a production results again in a strict regular production. As a consequence, the
above construction also works for strict regular grammars. Thus, L(G(S)REG) = L(G1)L(G2) ⊇ L1L2 and |G(S)REG| = |G1| +
|G2| = Xcc(L1) + Xcc(L2), which shows that

Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2),

for all L1, L2 ∈Pfin(�∗).
In order to show 2. and 3., let G(S)REG,i = (N(S)REG,i, �i, P (S)REG,i, S(S)REG,i) and G(S)LIN,i = (N(S)LIN,i, �i, P (S)LIN,i, S(S)LIN,i)

be minimal (S)REG- and (S)LIN-grammars covering Li , respectively, for i ∈ {1, 2}, that is, L(G(S)REG,1) ⊇ L1, L(G(S)LIN,1) ⊇
L1, L(G(S)REG,2) ⊇ L2, and L(G(S)LIN,2) ⊇ L2 as well as |G(S)REG,i | = (S)REGcc(Li) and |G(S)LIN,i | = (S)LINcc(Li).

It remains to show that there are (strict) linear grammars G1 and G2 such that L(G1) ⊇ L1L2 and L(G2) ⊇ L1L2 as
well as |G1| ≤ (S)REGcc(L1) + (S)LINcc(L2) and |G2| ≤ (S)LINcc(L1) + (S)REGcc(L2). To this end, assume, without loss of
generality, that N(S)REG,i ∩ N(S)LIN, j = ∅, for i �= j. Furthermore, we assume that G(S)REG,1 is a right-linear and G(S)REG,2 is
a left-linear grammar. This assumption is needed for the following definition of the grammars G1 and G2, but it constitutes
no restriction since every right-linear grammar can be transformed into a left-linear one (and vice versa) without increasing
the number of productions. Next, we define two (strict) linear grammars

G1 = (N(S)REG,1 ∪ N(S)LIN,2,�1 ∪ �2, P1, S(S)REG,1) and

G2 = (N(S)LIN,1 ∪ N(S)REG,2,�1 ∪ �2, P2, S(S)REG,2),

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 123
where

P1 = { A → w S(S)LIN,2 | A → w ∈ P (S)REG,1, w ∈ �∗ } ∪ { A → α ∈ P (S)REG,1 | α /∈ �∗ } ∪ P (S)LIN,2

and

P2 = { A → S(S)LIN,1 w | A → w ∈ P (S)REG,2, w ∈ �∗ } ∪ { A → α ∈ P (S)REG,2 | α /∈ �∗ } ∪ P (S)LIN,1.

Clearly, |G1| ≤ |G(S)REG,1| + |G(S)LIN,2| and |G2| ≤ |G(S)LIN,1| + |G(S)REG,2|. Let wi ∈ Li , for i ∈ {1, 2}, then S(S)REG,i ⇒∗ wi and
S(S)LIN,i ⇒∗ wi . Thus, by definition of G1 and G2, we get

S(S)REG,1 ⇒∗
G1

w1 S(S)LIN,2 ⇒∗
G1

w1 w2

and

S(S)REG,2 ⇒∗
G2

S(S)LIN,1 w2 ⇒∗
G2

w1 w2,

that is, w1 w2 ∈ L(Gi), for i ∈ {1, 2}. Therefore, L(Gi) ⊇ L1L2, for i ∈ {1, 2}. Thus, it follows that |G1| ≤ (S)REGcc(L1) +
(S)LINcc(L2) and |G2| ≤ (S)LINcc(L1) +(S)REGcc(L2). Finally, since we have both (S)LINcc(L1L2) ≤ |G1| and (S)LINcc(L1L2) ≤
|G2|, we choose the grammar with the fewest number of productions out of G1 and G2. This shows that both

LINcc(L1L2) ≤ min{REGcc(L1) + LINcc(L2),LINcc(L1) + REGcc(L2) } and

SLINcc(L1L2) ≤ min{SREGcc(L1) + SLINcc(L2),SLINcc(L1) + SREGcc(L2) }
hold. �

The following lemma states some basic properties of minimal context-free grammars generating finite languages which
are needed in the proof of Lemma 30.

Lemma 29 ([6], Lemma 2.1). Let G = (N, �, P , S) be a minimal context-free grammar generating a finite language L. Then, for every
A ∈ N \ {S},

1. there are α1, α2 ∈ (N ∪ �)∗ with α1 �= α2 such that A → α1 and A → α2 are in P , and
2. the set L A(G) = { w ∈ �∗ | A ⇒∗

G w } contains at least two words.

Now, we show that a grammar covering the concatenation of two disjoint alphabets (each containing at least two letters)
needs at least as many productions as there are elements in their (disjoint) union. This lemma will play an important role
in the proof of Theorem 31.

Lemma 30. Let � = �1 � �2 be a finite alphabet with |�1|, |�2| ≥ 2. Then for all context-free grammars G with L(G) ⊇ �1�2 , we
have |G| ≥ |�1| + |�2|.

Proof. In light of Lemma 10, we can assume, without loss of generality, that all grammars in this proof are acyclic. We
proceed by induction on |�|.

• Base case: Let |�| = 4, i.e., |�1| = |�2| = 2, and assume, w.l.o.g., that � = {a1, a2} � {b1, b2}. Then �1�2 =
{a1b1, a1b2, a2b1, a2b2}. Towards contradiction, assume that there is some context-free grammar G = (N, �, P , S) with
L(G) ⊇ �1�2 and |G| ≤ 3. Clearly, G cannot be a trivial grammar, for otherwise G could not cover �1�2. Thus, we can
assume that G contains at least two distinct nonterminals S and A. By Lemma 29, it follows that there are produc-
tions A → v1 and A → v2 in P with v1 �= v2, which means |G| ≥ 3. Hence, P must be of the form

{ S → α, A → v1, A → v2 },
where α ∈ (N ∪ �)∗ and v1, v2 ∈ �∗ , as G is acyclic. We distinguish cases:
If α = A, then |L(G)| = 2, i.e., G cannot cover �1�2.
If α = An , for n ≥ 2, then we further distinguish the following cases:
1. If v1 = av ′

1 and v2 = a′v ′
2, for a, a′ ∈ �1 and v ′

1, v
′
2 ∈ �∗ . In this case, we cannot derive words of length 2 ending

with some b ∈ �2 (even if both v ′
1 and v ′

2 do so).
2. If v1 = bv ′

1 and v2 = b′v ′
2, for b, b′ ∈ �2 and v ′

1, v
′
2 ∈ �∗ . In this case, we can only derive words starting with b or

b′ , but these kinds of words do not occur in �1�2.
3. If v1 = av ′

1 and v2 = bv ′
2, for a ∈ �1, b ∈ �2, and v ′

1, v
′
2 ∈ �∗ . In this case, we can only derive words starting with a

fixed a ∈ �1 or b ∈ �2. As a consequence, we cannot derive words in �1�2 that start with a′ ∈ �1, where a �= a′ .

124 S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125
4. If v1 = bv ′
1 and v2 = av ′

2, for a ∈ �1, b ∈ �2, and v ′
1, v

′
2 ∈ �∗ . Analogous to the previous case.

5. If v1 = ε and v2 = cv ′
2, for c ∈ � and v ′

2 ∈ �∗ . In this case, we can only derive words starting with a fixed c ∈ �. As
a consequence, we cannot derive words in �1�2 that start with a ∈ �1, where a �= c.

6. If v1 = cv ′
1 and v2 = ε, for c ∈ � and v ′

1 ∈ �∗ . Analogous to the previous case.
If α has w ′ ∈ �+ as subword, then G cannot derive all words occurring in �1�2, because there is no w ′ ∈ �+ which is
a subword of all w ∈ �1�2. Hence, we have |G| ≥ 4.

• Induction step: Assume, without loss of generality, that � = �1 ��2 with �2 = �′
2 �{bn+1}, where |�1| = m and |�2| =

n + 1. Towards contradiction, assume that there is some CF-grammar G = (N, �, P , S) with L(G) ⊇ �1�2 and |G| <
m + n + 1.
Define L′ = �1�

′
2 and let �(L′) = �1 � �′

2 denote the alphabet induced by the words in L′ . Clearly, |�(L′)| = m + n and
we can apply the induction hypothesis to obtain that for any CF-grammar G ′ with L(G ′) ⊇ L′ , we have |G ′| ≥ m + n.
Let G ′′ = (N, � \ {bn+1}, P ′′, S) be a CF-grammar obtained from G by defining

P ′′ = P \ { A → α1bn+1α2 ∈ P | α1,α2 ∈ (N ∪ �)∗ }.
Then it follows that L(G ′′) ⊇ L′ , since bn+1 /∈ �(L′).
Note that any grammar covering �1�2 must contain at least one production whose right-hand side contains the letter
bn+1. Thus, |G ′′| < m +n, which contradicts the induction hypothesis. The case that � = �1 ��2 with �1 = �′

1 �{an+1},
where |�1| = m + 1 and �2 = n can be shown using an analogous argument. �

If we consider growing alphabets, then we are able to show that the bounds of Theorem 28 are tight.

Theorem 31. Let X ∈ {SREG, REG}. Then, for all n1, n2 ≥ 2, there is a finite alphabet � and finite languages L1 and L2 with Xcc(L1) =
n1 and Xcc(L2) = n2 such that

1. Xcc(L1L2) ≥ Xcc(L1) + Xcc(L2),
2. LINcc(L1L2) ≥ min{ REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) },
3. SLINcc(L1L2) ≥ min{ SREGcc(L1) + SLINcc(L2), SLINcc(L1) + SREGcc(L2) }.

Proof. Let X ∈ {SREG, REG}, n1, n2 ≥ 2, and define the finite alphabet � = {a1, a2, . . . , an1 , b1, b2, . . . , bn2} as well as the
languages L1 = {a1, a2, . . . , an1} and L2 = {b1, b2, . . . , bn2}. Then, clearly, we have Xcc(L1) = n1 and Xcc(L2) = n2. Thus, since
every X-grammar is context-free, we have, by Lemma 30, that

Xcc(�) = Xcc(L1L2) ≥ n1 + n2 = Xcc(L1) + Xcc(L2)

as well as

SLINcc(L1L2) ≥ n1 + n2 = min{SREGcc(L1) + SLINcc(L2),SLINcc(L1) + SREGcc(L2) }
and

LINcc(L1L2) ≥ n1 + n2 = min{REGcc(L1) + LINcc(L2),LINcc(L1) + REGcc(L2) }.
This proves the stated claim. �

However, if we consider fixed alphabets, then, at this point, we are only able to show that the bound of Theorem 28 is
tight for strict regular grammars.

Theorem 32. There exists a finite alphabet � such that for all n1, n2 ≥ 1, there exist finite languages L1 and L2 with SREGcc(L1) = n1

and SREGcc(L2) = n2 such that

SREGcc(L1L2) ≥ SREGcc(L1) + SREGcc(L2).

Proof. Let � = {a} and, for n1, n2 ≥ 1, we define the finite language L = {an1+n2 }. Moreover, let L1 = {an1} and L2 = {an2}.
Clearly, L = L1L2 and, from Lemma 25, we get that SREGcc(L1) ≥ n1 and SREGcc(L2) ≥ n2. It is easy to see that
also SREGcc(L1) ≤ n1 and SREGcc(L2) ≤ n2. Again, by Lemma 25, it follows that

SREGcc(L) = SREGcc(L1L2) ≥ n1 + n2 = SREGcc(L1) + SREGcc(L2).

This proves the stated claim. �

S. Hetzl, S. Wolfsteiner / Theoretical Computer Science 798 (2019) 109–125 125
8. Conclusion

In this paper, we have investigated cover complexity measures for finite languages on three different levels of abstraction
and shown that every complexity measure on finite languages naturally induces a corresponding cover complexity measure.
We have characterised the situations in which arbitrary complexity measures thus obtained are unbounded. Based on these
rather abstract results, we have shown that every class of context-free grammars that allows only a bounded number
of nonterminals on the right-hand side of each production induces an unbounded production cover complexity measure.
This, in turn, entails that the production cover complexity of a finite language L can be obtained as the minimum of the
exact production complexities of a finite number of supersets L′ of L. Moreover, we have investigated upper and lower
bounds on the production cover complexity of the language operations intersection, union, and concatenation on finite
languages for several different types of context-free grammars (see Fig. 1). In order to prove the tightness of the bounds
on the regular cover complexity of union w.r.t. fixed alphabets, we have generalised the cover-incompressible sequence of
languages constructed in [20,21] in a suitable fashion.

There is still a number of open problems w.r.t. the grammatical cover complexity of finite languages. At this point, we do
not know whether the bounds on the regular and linear cover complexity of concatenation as well as the one on the linear
cover complexity of union are tight w.r.t. a fixed alphabet. Moreover, the NP-completeness of the minimal cover problem
for acyclic regular grammars without a fixed bound on the number of nonterminals is still open. In [24], the authors proved
that it is in NP and conjectured that it is also NP-hard.

In summary, we believe that the study of the complexity of finite languages is a fruitful research area with strong ties
to both proof theory and more classical questions of descriptional complexity.

Declaration of Competing Interest

There is no Competing Interest.

References

[1] J. Gruska, On a classification of context-free languages, Kybernetika 3 (1) (1967) 22–29.
[2] A. Cerný, Complexity and minimality of context-free grammars and languages, in: J. Gruska (Ed.), Mathematical Foundations of Computer Science

(MFCS) 1977, in: Lecture Notes in Computer Science, vol. 53, Springer, 1977, pp. 263–271.
[3] J. Gruska, Some classifications of context-free languages, Inf. Control 14 (2) (1969) 152–179.
[4] J. Gruska, Complexity and unambiguity of context-free grammars and languages, Inf. Control 18 (5) (1971) 502–519.
[5] J. Gruska, On the size of context-free grammars, Kybernetika 8 (3) (1972) 213–218.
[6] W. Bucher, H.A. Maurer, K. Culik II, D. Wotschke, Concise description of finite languages, Theor. Comput. Sci. 14 (1981) 227–246.
[7] B. Alspach, P. Eades, G. Rose, A lower-bound for the number of productions required for a certain class of languages, Discrete Appl. Math. 6 (2) (1983)

109–115.
[8] W. Bucher, A note on a problem in the theory of grammatical complexity, Theor. Comput. Sci. 14 (1981) 337–344.
[9] W. Bucher, H.A. Maurer, K. Culik II, Context-free complexity of finite languages, Theor. Comput. Sci. 28 (1984) 277–285.

[10] J. Dassow, Descriptional complexity and operations—two non-classical cases, in: G. Pighizzini, C. Câmpeanu (Eds.), Descriptional Complexity of Formal
Systems (DCFS), in: Lecture Notes in Computer Science, vol. 10316, Springer, Milano, Italy, 2017, pp. 33–44.

[11] J. Dassow, R. Harbich, Production complexity of some operations on context-free languages, in: M. Kutrib, N. Moreira, R. Reis (Eds.), Workshop on
Descriptional Complexity of Formal Systems (DCFS), in: Lecture Notes in Computer Science, vol. 7386, Springer, Braga, Portugal, 2012, pp. 141–154.

[12] Z. Tuza, On the context-free production complexity of finite languages, Discrete Appl. Math. 18 (3) (1987) 293–304.
[13] C. Câmpeanu, N. Santean, S. Yu, Minimal cover-automata for finite languages, in: J. Champarnaud, D. Maurel, D. Ziadi (Eds.), International Workshop on

Implementing Automata (WIA’98), in: Lecture Notes in Computer Science, vol. 1660, Springer, 1998, pp. 43–56.
[14] C. Câmpeanu, N. Santean, S. Yu, Minimal cover-automata for finite languages, Theor. Comput. Sci. 267 (1–2) (2001) 3–16.
[15] S. Hetzl, Applying tree languages in proof theory, in: A.-H. Dediu, C. Martín-Vide (Eds.), Language and Automata Theory and Applications, LATA, 2012,

in: Lecture Notes in Computer Science, vol. 7183, Springer, 2012, pp. 301–312.
[16] S. Hetzl, A. Leitsch, G. Reis, J. Tapolczai, D. Weller, Introducing quantified cuts in logic with equality, in: S. Demri, D. Kapur, C. Weidenbach (Eds.),

Automated Reasoning - 7th International Joint Conference, IJCAR, in: Lecture Notes in Computer Science, vol. 8562, Springer, 2014, pp. 240–254.
[17] S. Hetzl, A. Leitsch, G. Reis, D. Weller, Algorithmic introduction of quantified cuts, Theor. Comput. Sci. 549 (2014) 1–16.
[18] S. Hetzl, A. Leitsch, D. Weller, Towards algorithmic cut-introduction, in: Logic for Programming, Artificial Intelligence and Reasoning (LPAR-18), in:

Lecture Notes in Computer Science, vol. 7180, Springer, 2012, pp. 228–242.
[19] G. Ebner, S. Hetzl, A. Leitsch, G. Reis, D. Weller, On the generation of quantified lemmas, J. Automat. Reason. 63 (1) (June 2019) 95–126, https://

doi .org /10 .1007 /s10817 -018 -9462 -8.
[20] S. Eberhard, S. Hetzl, Compressibility of finite languages by grammars, in: J. Shallit, A. Okhotin (Eds.), Descriptional Complexity of Formal Systems,

DCFS, 2015, in: Lecture Notes in Computer Science, vol. 9118, Springer, 2015, pp. 93–104.
[21] S. Eberhard, S. Hetzl, On the compressibility of finite languages and formal proofs, Inf. Comput. 259 (2018) 191–213.
[22] P. Pudlák, Twelve problems in proof complexity, in: E.A. Hirsch, A.A. Razborov, A.L. Semenov, A. Slissenko (Eds.), Third International Computer Science

Symposium in Russia (CSR), in: Lecture Notes in Computer Science, vol. 5010, Springer, 2008, pp. 13–27.
[23] M. Holzer, S. Wolfsteiner, On the grammatical complexity of finite languages, in: S. Konstantinidis, G. Pighizzini (Eds.), Descriptional Complexity of

Formal Systems (DCFS), in: Lecture Notes in Computer Science, vol. 10952, Springer, Cham, 2018, pp. 151–162.
[24] S. Eberhard, G. Ebner, S. Hetzl, Complexity of decision problems on totally rigid acyclic tree grammars, in: M. Hoshi, S. Seki (Eds.), Developments in

Language Theory (DLT), in: Lecture Notes in Computer Science, vol. 11088, Springer, Cham, 2018, pp. 291–303.
[25] S. Hetzl, S. Wolfsteiner, Cover complexity of finite languages, in: S. Konstantinidis, G. Pighizzini (Eds.), Descriptional Complexity of Formal Systems

(DCFS), in: Lecture Notes in Computer Science, vol. 10952, Springer, Cham, 2018, pp. 139–150.

http://refhub.elsevier.com/S0304-3975(19)30302-0/bib477275736B613637436C617373696669636174696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4365726E793737436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4365726E793737436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib477275736B613639536F6D65s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib477275736B613731436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib477275736B61373253697A65s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4275636865723831436F6E63697365s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib416C737061636838334C6F776572s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib416C737061636838334C6F776572s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib42756368657238314E6F7465s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4275636865723834436F6E74657874s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib446173736F7731374465736372697074696F6E616Cs1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib446173736F7731374465736372697074696F6E616Cs1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib446173736F77313250726F64756374696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib446173736F77313250726F64756374696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib54757A613837436F6E74657874s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib43616D7065616E7539384D696E696D616Cs1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib43616D7065616E7539384D696E696D616Cs1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib43616D7065616E7530314D696E696D616Cs1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C31324170706C79696E67s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C31324170706C79696E67s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C3134496E74726F647563696E67s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C3134496E74726F647563696E67s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C3134416C676F726974686D6963s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C3132546F7761726473s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C3132546F7761726473s1
https://doi.org/10.1007/s10817-018-9462-8
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib45626572686172643135436F6D70726573736962696C697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib45626572686172643135436F6D70726573736962696C697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib45626572686172643138436F6D70726573736962696C697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib5075646C616B30385477656C7665s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib5075646C616B30385477656C7665s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib486F6C7A657231384F6E5468654772616D6D61746963616Cs1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib486F6C7A657231384F6E5468654772616D6D61746963616Cs1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib45626572686172643138436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib45626572686172643138436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C3138436F766572436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30302-0/bib4865747A6C3138436F766572436F6D706C6578697479s1
https://doi.org/10.1007/s10817-018-9462-8

	On the cover complexity of ﬁnite languages
	1 Introduction
	2 Cover complexity
	3 Unboundedness of cover complexity measures
	4 Unboundedness of grammatical cover complexity measures
	5 Computing cover complexity from exact complexity
	6 A cover-incompressible sequence of languages
	7 Bounds on language operations
	7.1 Intersection
	7.2 Union
	7.3 Concatenation

	8 Conclusion
	References

