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Introduction

Varieties of algebraic structures are interesting for a number of reasons. In universal algebra,
a variety is a class of algebraic structures that all have the same signature and fulfill a certain
set of identities. Probably the best example of their interesting properties is the variety
theorem of Birkhoff that states that the varieties of a given algebraic signature are exactly
the classes of structures with this signature that are closed under subalgebras, homomorphic
images and arbitrary products. Since these varieties are closed under arbitrary products,
they always contain an infinite algebra if they are not trivial. Therefore, there are no
varieties of finite algebraic structures according to this definition. In this thesis, I will give
an alternative definition of varieties1 of finite monoids. We will see that there is a similar
result to the theorem of Birkhoff, the theorem of Reiterman, and that these varieties of finite
monoids are exactly the classes of finite monoids that fulfill given sets of so called profinite
identities. Furthermore, we will discover the close relationship between finite monoids and
rational languages. Therefore, it makes sense to define varieties of rational languages and
look at the connection between the varieties of finite monoids and the varieties of rational
languages. Indeed, we will see that there is a 1:1 correspondence between the varieties of
finite monoids and the varieties of rational languages. This is known as the variety theorem
of Eilenberg.

1This kind of variety is often refered to as a pseudovariety

1



1 Necessary lemmas and definitions

The goal of this chapter is to simply recall some basic definitions and lemmas regarding
monoids and rational languages that should be known to the reader.

1.1 Metric spaces and topology

The results and definitions from this section are taken from the books [2] and [4]. The
reader interested in the proofs, is refered to these books.

Definition 1.1.1. Let X be a set and d : X ×X → R a funcion. (X, d) is a metric space
and d a metric if the following criteria are met:

(i) d(x, y) = 0 ⇔ x = y

(ii) d(x, y) ≥ 0 for all x, y ∈ X

(iii) d(x, y) = d(y, x)

(iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

A metric d is an ultrametric if the following holds:

(v) d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X

Definition 1.1.2. Let (X, d) be a metric space. A set O ⊆ X is open if for every x ∈ O
there is a ρ > 0 such that the open ball U(x, ρ) = {x ∈ X | d(x, y) < ρ} is a subset of O.

Definition 1.1.3. Let (X, d) be a metric space. A set A ⊆ X is closed if its complement
is open. The closure A of A is the smallest closed set that contains A.

Definition 1.1.4. A sequence (xn)n∈N in a metric space (M,d) is convergent if there is an
x ∈ X and for every ρ > 0 there is an N ∈ N such that d(xn, x) < ρ for all n ≥ N . In this
case, the limit x is unique and we write x = limxn.

Lemma 1.1.5. Let (xn)n∈N and (yn)n∈N be two convergent sequences in the metric space
(X, d). It holds that limxn = lim yn iff lim d(xn, yn) = 0.

Definition 1.1.6. A sequence (xn)n∈N is a Cauchy-sequence if for every ρ > 0 there is an
N ∈ N such that d(xn, xm) < ρ for all m,n ≥ N .

Lemma 1.1.7. In a metric space (X, d) every convergent sequence is a Cauchy-sequence.

Definition 1.1.8. A metric space (X, d), in which every Cauchy sequence converges is
called complete.
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1 Necessary lemmas and definitions

Definition 1.1.9. A function f : (X, d1) → (Y, d2) is continuous if for all x ∈ X and ρ > 0
there exists a δ > 0 such that d1(x, y) < δ ⇒ d2(f(x), f(y)) < ρ. A function is uniformly
continuous if for every ρ > 0 there is a δ > 0 such that d1(x, y) < δ ⇒ d2(f(x), f(y)) < ρ.

Lemma 1.1.10. A function is continuous iff one of the following criteria is met:

(i) The inverse image of every open set is open

(ii) The inverse image of every closed set is closed

(iii) For every convergent sequence (xn)n∈N it holds that lim f(xn) = f(limxn)

Definition 1.1.11. Let (X, d) be a metric space. Then ((X̂, d̂), ι) with (X̂, d̂) being a
metric space and ι : X → X̂ being a function, is a completion of (X, d) if the following
criteria are met:

(i) (X̂, d̂) is complete

(ii) ι is isometric (i.e. ∀x, y ∈ X : d̂(ι(x), ι(y)) = d(x, y))

(iii) ι(X) = X̂ with X being the closure of X with regard to d̂

Lemma 1.1.12. For every metric space (X, d) there is a completion (X̂, d̂). Several com-
pletions of (X, d) are pairwise isomorphic.

Definition 1.1.13. Let X be a set and T ⊆ 2X . Then T is a topology on X and (X, T )
is a topological space if the following criteria are met. In this case the sets of T are called
the open sets of (X, T ).

(i) X ∈ T and ∅ ∈ T

(ii) If (Oi)i∈I is a family of sets with Oi ∈ T for all i, then
⋃
i∈I Oi ∈ T

(iii) If O1, O2 ∈ T , then O1 ∩O2 ∈ T

We can use Lemma 1.1.10 to motivate the following definition of continuity in topological
spaces:

Definition 1.1.14. Let (X, T1) and (Y, T2) be topological spaces and f : X → Y a function.
Then f is continuous if for every set O ∈ T2 it holds that f−1(O) ∈ T1

Lemma 1.1.15. et (X, T1) and (Y, T2) be topological spaces and f : X → Y a function.
Then f is continuous iff for every closed set A ⊆ Y it holds that f−1(A) ⊆ X is also closed.

Definition 1.1.16. Let (X, T ) be a topological space. A set A ⊆ X is closed if its
complement is open. The closure A of a set A ⊆ X is the smallest closed set containing A.

Lemma 1.1.17. Every metric space (X, d) is a topological space if we equip X with the
set of open sets in (X, d) as the topology.

Definition 1.1.18. Let (X, T ) be a topological space and D a subset of X. D is dense in
X if D = X.

3



1 Necessary lemmas and definitions

Lemma 1.1.19. If D is dense in X, then for every x ∈ X there is a sequence (an)n∈N ∈ DN

with lim an = x.

Definition 1.1.20. Let (X, T ) be a topological space. A set K ⊆ X is compact if for every
covering (Vi)i∈I there exists a finite subset F ⊆ I such that (Vi)i∈F still covers K.

Definition 1.1.21. Let (X, d) be a metric space. A set K ⊆ X is totally bounded if for
every ρ > 0 there is a finite set of open balls with radius ≤ ρ that covers K.

Lemma 1.1.22. Let (X, d) be a metric space. A set K ⊆ X is compact iff K is totally
bounded and (K, d|K×K) is complete. Let (X̂, d̂) be a completion of (X, d). X̂ is compact
iff X is totally bounded.

Theorem 1.1.23 (Tychonoff). Let ((Xi), Ti)i∈I be a family of topological spaces. Then∏
i∈I Xi is compact iff all of the Xi are compact.

Lemma 1.1.24. Let K ⊆ X be a compact set and C ⊆ K a closed subset. Then C is
closed.

Lemma 1.1.25. Let K ⊆ X be a compact set and φ : X → Y a uniformly continuous
function. Then φ(K) is also compact.

Lemma 1.1.26. Let K ⊆ X be a compact set. Then K is also closed.

Theorem 1.1.27. Let (X, d1) and (Y, d2) be metric spaces and (Y, d2) complete. Further-
more, let D be dense in X and f : D → Y be uniformly continuous function. Then the
following holds:

1. There is a unique continuous extension F : X → Y of f . Furthermore, F is uniformly
continuous.

2. If f is isometric, then F is isometric as well.

3. If (X, d1) is complete, f(D) ⊆ Y is dense in Y , f is injective and f−1 : f(D) → X
is uniformly continuous, then F is bijective.

Corollary 1.1.28. Let X and Y be metric spaces with the completions X̂ and Ŷ and
φ : X → Y a uniformly continuous function. Then there is a unique extension φ̂ : X̂ → Ŷ
that is also uniformly continuous. If φ is surjective and X̂ is compact, then φ̂ is surjective
as well.

1.2 Monoids, automata and languages

Now only the important definitions and results for monoids, automata and languages.
These are taken from [1] and [3].
Generally notationwise, we remark the following: There will be a lot of monoids in this
thesis and strictly speaking there is a difference between the monoid (M, ·, e) and the set
M . However, we will often make no difference between them because it is usually clear,
what is meant. Also, we will often omit the · and simply write ab instead of a · b.
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1 Necessary lemmas and definitions

Definition 1.2.1. A monoid (M, ·, e) with a topology on M that fulfills that · :M ×M →
M is continuous is called a topological monoid.

Definition 1.2.2. A language L ⊆ Σ∗ is rational if it can be obtained using a rational
expression over Σ.

Lemma 1.2.3. A language L ⊆ Σ∗ is rational iff it is recognized by a DFA.

Definition 1.2.4. LetD = ⟨Q,Σ, ·, q0, F ⟩ be a DFA. Then L(D) is the language recognized
by D.

Lemma 1.2.5. Let D = ⟨Q,Σ, ·, q0, F ⟩ be a DFA with · : Q×Σ → Q. We can equivalently
characterise D with ⟨Q,Σ,⊙, q0, F ⟩ with ⊙ being a function from Q × Σ∗ to Q defined by
q ⊙ ε = q, q ⊙ a = q · a for every a ∈ Σ and q ⊙ xy = (q ⊙ x)⊙ y.

Proof. Obviously, every function ⊙ : Q×Σ∗ → Q defines a unique function · : Q×Σ → Q.
Conversely, · : Q× Σ → Q defines a unique ⊙ : Q× Σ∗ → Q. ■

Note, that I used ⊙ above to emphasize the difference between · and ⊙. However, since
they are basically the same and induce each other, I will write · for both from here on.
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2 Semigroups, monoids and languages

This chapter’s goal is to prove some properties of finite monoids and show some connections
between finite monoids and rational languages. This will lay the foundation for the next
chapter and Theorem 3.2.10. The results regarding monoids, congruences and languages
are taken from [1, Chapter 2], while the results regarding semigroups can be found in [3,
Chapter II].

2.1 Semigroups

Later on, we will need some minor results about finite semigroups, which we will prove
here:

Lemma 2.1.1. Let S be a finite semigroup and s ∈ S. Then s has a idempotent power
x = sr with r ≤ n = |S| (i.e. srsr = sr). This element x is unique for every s ∈ S.

Proof. Consider the set S = {sn | n ∈ N} ⊆ S. Since S is clearly finite, there have to be
two powers l ̸= m such that sl = sm. Without loss of generality l > m. Then sl = smsl−m.
By induction, we get that sm+j(l−m) = sm. If we take any k ≥ m, we have that k = m+ i
and therefore sk+j(l−m) = sm+j(l−m)si = smsi = sk. Now, consider k = j(l −m) such that
k ≥ m. Then

xkxk = x2k = xk+k = xk+j(l−m) = xk

and therefore xk is idempotent. Since S has at most n elements, it follows that there is an
r ≤ n such that sr = sk, which proves the claim.
Now, assume that there are two idempotent elements sr = x, st = y. Then we have that

x = sr = (sr)t = srt = (st)r = st = y.

Thus, the idempotent element is unique for every s. ■

Lemma 2.1.2. Let S be a non-empty finite semigroup. Then S has at least one idempotent
element.

Proof. This follows directly from 2.1.1. ■

Lemma 2.1.3. Let S be a finite semigroup. Then there exists an ω such that sω is idem-
potent for every s ∈ S.

Proof. By Lemma 2.1.1 for every s ∈ S there exists an rs such that srs is idempotent. Then
sω is certainly idempotent if we define ω as the least common multiple of all the rs. ■

Definition 2.1.4. Let S be a semigroup. Then ω from Lemma 2.1.3 is called the exponent
of S.
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2 Semigroups, monoids and languages

Definition 2.1.5. Let S be a semigroup. Then, ∅ ̸= I ⊆ S is an ideal of S if IS ⊆ I and
SI ⊆ I. An ideal I is minimal if for every ideal I ′ it holds that I ⊆ I ′

Lemma 2.1.6. Let S be a semigroup. Then, the following statements hold:

(i) There is an ideal of S.

(ii) The intersection of ideals is also an ideal.

(iii) There exists a unique minimal ideal.

Proof.

(i) S is clearly an ideal of S.

(ii) Let (Ri)i∈I be a family of ideals an R =
⋂
i∈I R. For x ∈ R, it holds that sx, xs ∈ Ri

for every i ∈ I and for every s ∈ S and therefore sx, xs ∈ R. Overall, that means
SR ⊆ R and RS ⊆ R. Therefore, R is an ideal.

(iii) This follows directly from (i) and (ii).

■

Lemma 2.1.7. Let S be a semigroup and s ∈ S. Then the minimal ideal of the subsemi-
group generated by s is a group G with neutral element sω with ω being the exponent of
S.

Proof. Let n = |S|. Obviously, the subsemigroup generated by s is the set T = {sn | n ∈ N}.
Consider the set I = {slsω | l ∈ N} with sω being the idempotent of s. Then since T is
commutative, we have that slsωsk = skslsω = sl+ksω ∈ I for every sk ∈ T . Therefore, I
is an ideal. Furthermore, because of the commutativity, we have sωslsω = slsωsω = slsω.
Thus, sω is a neutral element in I. Moreover, take a multiple of ω, kω such that kω > l.
Then slsωskω−l = skω−lslsω = s(k+1)ω = sω. Thus, we can invert in the ideal I. It remains
to show that I is the minimal ideal of T . Let K be an ideal of S and sl ∈ K. Then choose
a multiple of ω, kω such that kω ≥ l. It follows that skω−lsl = skω = sω. Therefore, sω has
to be in K. Therefore, I ⊆ K, which concludes the proof. ■

2.2 Monoids and congruences

Since monoids are the main topic of this thesis, it is clear, that we have to prove some
properties of them. We will start with congruences and quotient-monoids. After that,
we formulate a relevant lemma about the free monoid Σ∗ and surjective monoid homomo-
prhisms.

Definition 2.2.1. Let M be a monoid. An equivalence relation ≈ on M is called a
congruence if for every a, b, x, y in M such that a ≈ x, b ≈ y, it holds that ab ≈ xy.

Definition 2.2.2. Let ≈1 and ≈2 be equivalence relations on the set M . We say ≈2 is a
refinement of ≈1 if x ≈2 y ⇒ x ≈1 y.

7



2 Semigroups, monoids and languages

Definition 2.2.3. Let ≈ be an equivalence relation on the set M . Then the index of ≈ is
the number of its equivalence classes of ≈.

Lemma 2.2.4. Let (≈i)i∈I be a family of congruences on the monoid M . Define the
relation ≈ on M by x ≈ y ⇔ ∀i ∈ I : x ≈i y. Then ≈ is also a congruence. Furthermore,
≈ is a refinement of every ≈i.

Proof. Obviously, ≈ is reflexive, symmetric and transitive because all of the ≈i are. Fur-
thermore, if we take a, b, x, y ∈ M such that a ≈ x and b ≈ y, then ab ≈i xy for all i ∈ I
and therefore ab ≈ xy. Trivially, x ≈ y implies that x ≈i y for every i ∈ I. ■

Lemma 2.2.5. Let M be a monoid, ≈ a congruence on M and e the neutral element of
M . Then M/≈ is a monoid if equipped with the operation [x][y] = [xy] and the neutral
element [e].

Proof.

• Let a, b, x, y be elements of M such that [a] = [x], [b] = [y]. Since ≈ is a congruence,
we have that ab ≈ xy and therefore that [a][b] = [ab] = [xy] = [x][y]. Thus, the
operation is well defined.

• Let a be in M . Then obviously [a][e] = [ae] = [a] = [ea] = [e][a] and therefore [e] is
the neutral element.

■

Lemma 2.2.6. Let φ :M → N be a homomorphism from the monoid M to the monoid N .
Define the relation ≈φ by x ≈φ y ⇔ φ(x) = φ(y). Then ≈φ is a congruence. Furthermore,
it holds that φ(M) ∼=M/≈φ

.

Proof. Let us prove the lemma in two steps:

• Obviously, ≈φ is reflexive, symmetric and transitive and thus an equivalence relation.
Now let a, b, x, y be elements of M such that a ≈φ x and b ≈φ y. Then φ(ab) =
φ(a)φ(b) = φ(x)φ(y) = φ(xy) and therefore ab ≈φ xy and ≈φ is a congruence.

• In order to show the isomorphy, consider the natural homomorphism ψ : M/≈φ
→

φ(M) : [x] 7→ φ(x). By the definition of ≈φ, we get that ψ is well defined and
injective. Clearly, it is also a homomorphism because φ is one. Furthermore, for any
φ(x) ∈ φ(M), we have that ψ([x]) = φ(x), which shows that ψ is also surjecive, which
concludes the proof.

■

Definition 2.2.7. Let M and N be two monoids. N is a quotient of M if there is a
surjective homomorphism φ :M → N .

Lemma 2.2.8. Let M and N be two monoids. Then the following are equivalent:

(i) N is a quotient of M

8



2 Semigroups, monoids and languages

(ii) There is a congruence ≈ on M such that N ∼=M/≈

Proof.

⇒ Let N be a quotient of M . Then, there is a surjective homomorphism varphi :M →
N . Now consider the congruence ≈φ and the function ψ : M/≈φ

→ N : [x] 7→ φ(x).
By the defintion of ≈φ we have that ψ is well defined. Clearly, ψ([xy]) = φ(xy) =
φ(x)φ(y) = ψ(x)ψ(y) and therefore, ψ is a homomorphism. Moreover, ψ is obviously
surjective and injective. Thus, N ∼=M/≈φ

.

⇐ Let N ∼= M/≈ with the isomorphism ψ : M/≈ → N . Then define the function
φ : M → N : x 7→ ψ([x]). We see that φ(xy) = ψ([xy]) = ψ([x][y]) = ψ([x])ψ([y]) =
φ(x)φ(y) and therefore, φ is a homomorphism. Since ψ is surjective, so is φ and we
get that N is a quotient of M .

■

Definition 2.2.9. Let M and N be two monoids. N is a divisor of M if N is a quotient
of a submonoid of M . We then write N ≼M .

Something that is unrelated to the definitions and lemmas above, but will be highly
relevant later on is the following:

Lemma 2.2.10. Let Σ∗ be the free monoid over Σ, T, S monoids and η : Σ∗ → S and
β : T → S homomorphisms with β being surjective. Then there exists a homomorphism
φ : Σ∗ → T such that η = β ◦ φ.

Proof. For each letter a ∈ Σ consider the set β−1(η(a)) (this set is not empty because of
the surjectivity of β), pick one representative xa ∈ T and define φ as the homomorphic
extension of a 7→ xa. By the fact that both β ◦ φ and η are homomorphisms, we have
that β(φ(ε)) = η(ε). By the definition of φ, it holds for every a ∈ Σ that β(φ(a)) =
β(xa) = β(β−1(η(a)) = η(a). Since every word w with length n+ 1 can be written as the
concatenation of two words a, b with length≤ 1, it follows that β(φ(w)) = β(φ(a))β(φ(b)) =
η(a)η(b) = η(ab). Therefore, η = β ◦ φ. ■

2.3 Languages

Languages are closely related to monoids. In this chapter, we will formulate some of the
most central connections between them. The overall goal is to find ways to characterize
rational languages through monoids.

Definition 2.3.1. Let L ⊆ Σ∗ be a language. Then we define the relation ≈L by

x ≈L y :⇔ ∀v, w ∈ Σ∗ : vxw ∈ L⇔ vyw ∈ L.

It is called the syntactic congruence.

Lemma 2.3.2. The relation ≈L is in fact a concruence.

9



2 Semigroups, monoids and languages

Proof. Clearly, ≈L is reflexive, symmetric and transitive and therefore an equivalence re-
lation. Furthermore, let a, b, x, y be words in Σ∗ such that a ≈L x and b ≈L y. Now take
two arbitrary words v, w ∈ Σ∗. We have that

vabw ∈ L⇔ vxbw ∈ L⇔ vxyw ∈ L

and therefore ab ≈L xy. ■

Definition 2.3.3. Let L ⊆ Σ∗ be a language and ≈L the syntactic congruence. The
monoid (Σ∗

/≈L
, [ε], ·) is called the syntactic monoid of L and is denoted with M(L). The

homomorphism η : Σ∗ →M(L) : w 7→ [x] is called the syntactic homomorphism.

Definition 2.3.4. Let L ⊆ Σ∗ be a language and x ∈ Σ∗. We define the left-quotient
x−1L = {v ∈ Σ∗ | xv ∈ L} and the right-quotient Lx−1 = {v ∈ Σ∗ | vx ∈ L}. Since
the concatenation is associative, we can also define x−1Ly−1 accordingly as x−1(Ly−1) =
(x−1L)y−1.

Definition 2.3.5. Let L ⊆ Σ∗ be a language, M a monoid and φ : Σ∗ → M a homomor-
phism. We say φ recognizes L if there is a subset P of M such that L = φ−1(P ). If such a
φ exists for a given monoid M , we say that M recognizes L.

Lemma 2.3.6. Let L ⊆ Σ∗ be a language, M a monoid and φ : Σ∗ →M a homomorphism.
Then the following are equivalent:

(i) L is recognized by φ

(ii) L = φ−1(φ(L))

Proof.

⇒ If L is recognized by φ, then there is a subset P ⊆M such that L = φ−1(P ). Clearly,
φ(L) ⊆ P and therefore φ−1(φ(L)) ⊆ φ−1(P ) = L. On the other hand, we have that
L ⊆ φ−1(φ(L)). In total, we have that L = φ−1(φ(L)).

⇐ If L = φ−1(φ(L)), then we have a subset P = φ(L) of M such that L = φ−1(P ) and
therefore, φ recognizes L.

■

Lemma 2.3.7. Let L ⊆ Σ∗ be a language. Then the syntactic monoid M(L) recognizes L
with the syntactic homomorphism η.

Proof. Consider P = {[x] | x ∈ L} ⊆ M(L). Obviousyly, L ⊆ η−1(P ). Now, let x be in L
and y ∈ Σ∗ such that y ∈ [x]. That means that y ≈L y ⇔ (∀a, b ∈ Σ∗ : axb ∈ L⇔ ayb ∈ L).
Now, set a = b = ε. Then x ∈ L ⇔ y ∈ L and since x ∈ L, we have that y ∈ L. Thus,
η−1([x]) ⊆ L for all x ∈ L. Moreover, it holds that η−1(P ) =

⋃
x∈L η

−1([x]) and therefore
η−1(P ) ⊆ L. Overall, we have that L = η−1(P ). ■

Theorem 2.3.8. Let L ⊆ Σ∗ be a language and M a monoid. Then M recognizes L iff
M(L) ≼M .
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2 Semigroups, monoids and languages

Proof.

⇒ Let M be a monoid that recognizes L with the homomorphism φ. Obviously, φ(Σ∗)
is a submonoid of M and also recognizes L with the homomorphism φ′ : Σ∗ → φ(Σ∗)
and the subset P of φ(Σ∗) such that φ−1(P ) = L. Morevoer, by Lemma 2.2.6
φ(Σ∗) ∼= Σ∗

/≈φ
with the isomorphism ψ : φ(Σ∗) → Σ∗

/≈φ
. We now want to show that

≈φ is a refinement of the syntacic congruence ≈L. For that purpose take two words
x, y ∈ Σ∗ such that x ≈φ y and two more words u, v ∈ Σ∗. We now have that

uxv ∈ L⇔ P ∋ φ(uxv) = φ(u)φ(x)φ(v) = φ(u)φ(y)φ(v) = φ(uyv) ⇔ uyv ∈ L.

Therefore, x ≈L y and ≈φ is a refinement of ≈L. Now, define π : Σ∗
/≈φ

→ Σ∗
/≈L

:

[x]≈φ 7→ [x]≈L . Since ≈φ is a refinement of ≈L, we have that π is well defined.
Furthermore, it clearly is a homomorphism and surjective. Therefore, the function
π ◦ ψ : φ(Σ∗) →M(L) is a surjective homomorphism and thus M(L) ≼M .

⇐ Now, let us assume thatM(L) ≼M , which means that there is a surjective homomor-
phism φ from a submonoid ofM toM(L). Without loss of generality, we assume that
the submonoid isM itself. By Lemma 2.3.7 we have that there is a subset P ofM(L)
such that η−1(P ) = L. Since φ is surjective, we have by Lemma 2.2.10, that there is
a homomorphism ψ : Σ→M with η = φ ◦ ψ. Therefore, L = η−1(P ) = ψ−1(φ−1(P ).
Thus, M recognizes L with the homomorphism ψ.

■

Definition 2.3.9. Let D = ⟨Q,Σ, ·, q0, F ⟩ be a DFA. Every word w ∈ Σ∗ induces a
function τD,w : Q → Q : q 7→ q · w, where q · w is defined inductively by q · ε = q and
q · (w1w2) = (q ·w1) ·w2. The transitions for the letters are given by the transition function
of the DFA. We define the transition monoid M(D) of D by

M(D) = {τD,w ∈ QQ | w ∈ Σ∗}

with the neutral element τD,ε : q 7→ q and the reversed composition τD,xτD,y : q 7→ qxy

Lemma 2.3.10. M(D) is in fact a monoid. Furthermore, M(D) is finite and the function
τD : Σ∗ →M(D) : x 7→ τD,x is a surjective monoid homomorphism.

Proof. We have a neutral element and a binary operation which is clearly associative.
M(D) is clearly closed under this operation because τD,xτD,y = τD,xy. Therefore, M(D) is
a monoid. As a subset of the finite set QQ, it is trivially finite. Obviously, the function τD
is a homomorphism and surjective. ■

Definition 2.3.11. Let D = ⟨Q,Σ, ·, q0, F ⟩ be a DFA and τD as in Lemma 2.3.10. Then
the congruence ≈D=≈τD is the congruence of D.

Lemma 2.3.12. Let D = ⟨Q,Σ, ·, q0, F ⟩ be a DFA. Then, it holds that M(D) ∼= Σ∗
/≈D

.

Proof. This follows directly from Lemma 2.2.6. ■
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2 Semigroups, monoids and languages

Lemma 2.3.13. Let D = ⟨Q,Σ, ·, q0, F ⟩ be a DFA that recognizes L ⊆ Σ∗. Then, M(D)
recognizes L with the homomorphism τD.

Proof. Define P = {τ ∈M(D) | q0τ ∈ F}. Now, we have that

w ∈ L⇔ q0 · τD,w ∈ F ⇔ τD(w) ∈ P ⇔ w ∈ τ−1
D (P ).

Thus, L = τ−1
D (P ). ■

Lemma 2.3.14. Let L ⊆ Σ∗ be a language. Then L is rational iff it is recognized by a
finite monoid.

Proof.

⇒ If L is rational, then L is recognized by a DFA D and its monoid finite transition
monoid M(D) by Lemma 2.3.13.

⇐ Assume that L is recognized by a finite monoidM with the homomorphism φ and the
set P . Then define the DFA D = ⟨M,Σ, ·, e, P ⟩ with m ·a = mφ(a) for m ∈M,a ∈ Σ.
Now, we have that for all words w of the length ≤ 1, it holds that m · w = mφ(m).
Since every word w of lenght n + 1 can be written as the product of two words x, y
of length ≤ n, we have that

m · w = m · xy = mφ(x)φ(y) = mφ(xy) = mφ(w)

and by induction, we get that for every word w and every element m ∈ M it holds
that m · w = mφ(w). Therefore, we have

w ∈ L(D) ⇔ e · w ∈ P ⇔ eφ(w) ∈ P ⇔ φ(w) ∈ P ⇔ w ∈ φ−1(P ) = L.

Thus, L is recognized by a DFA and hence rational.

■

Corollary 2.3.15. Let L ⊆ Σ∗ be a language. Then L is rational iff M(L) is finite.

12



3 The variety theorem of Eilenberg

In this chapter, we will show the connection between varieties of finite monoids and the
varieties of rational languages building upon the foundations from the last chapter. The
main result is Theorem 3.2.10. This chapter relatively closely follows [1, Section 2.4].

3.1 Varieties of finite monoids and rational languages

First, we need to define, what varieties of finite monoids and rational languages are.

Definition 3.1.1. Let V be a class of finite monoids. V is a variety1 if the following criteria
are met:

(i) If M ∈ V and N is a submonoid of M , then N ∈ V

(ii) If M ∈ V and N is a quotient of M , then N ∈ V

(iii) If (Mi)
n
i=1 ∈ Vn, then

∏n
i=1Mi ∈ V

By Definition 2.2.9 N is a divisor of M if it is a quotient of a submonoid of M . Since
every monoid is a submonoid and a quotient of itself, we can replace (i) and (ii) with the
criterion

(iv) If M ∈ V and N ≼M , then N ∈ V

Furthermore, we can allso replace (iii) with these two criteria:

(v) The trivial monoid {1} is in V

(vi) If M,n ∈ V, then M ×N ∈ V

While it is quite clear that we need (vi) to get (iii), it is a bit more subtle, why we need
(v). It is necessary because (iii) also covers the empty product defined as {1}, which is
essentially the neutral element of the product of monoids and allows to work with finite
products without having to worry about the empty product.

Lemma 3.1.2. Let V and W be two varieties of finite monoids, then V ∩ W is also a
variety.

Proof. Consider the three cases:

1Note, that this definition varies from the one in Birkhoff’s theorem

13



3 The variety theorem of Eilenberg

(i) Let M ∈ V ∩W and N is a submonoid of M . Since M is in both V and W, N is in
both as well and therefore in the intersection.

(ii) Let M ∈ V ∩M and N is a quotient of M . For the same reason as above, N is in
both V and W and therefore in the intersection.

(iii) Let (Mi)i∈I be a finite familiy of elements of V ∩W. Then the product of the Mi is
in both V and W and therefore in the intersection.

■

Let us now look at varieties of rational languages.

Definition 3.1.3. A class of rational languages is a function L that maps each alphabet
Σ to a set of rational languages LΣ

Note that our intuitive idea of a class of rational languages in the regular sense is very
similar to this definition.

Definition 3.1.4. Let L be a class of rational languages. L is variety of rational languages
if the following criteria are met for all alphabets Σ and Γ:

(i) LΣ is closed under union, finite intersection and complement

(ii) For every L ∈ LΣ and every x ∈ Σ it holds that x−1L ∈ LΣ and Lx−1 ∈ LΣ

(iii) For every L ∈ LΣ and every homomorphism φ : Γ∗ → Σ∗ it holds that φ−1(L) ∈ LΓ

Because we only deal with varieties/classes of rational languages and finite monoids, we
simply speak of varieties/classes of languages and varieties/classes of monoids instead.

3.2 The theorem of Eilenberg

Now, we want to look at the connection of varieties of monoids and varieties of languages.

Definition 3.2.1. Let V be a variety of monoids and Σ an alphabet. We define

Φ(V)(Σ) = Φ(V)Σ = {L ⊆ Σ∗ |M(L) ∈ V}

We see that this definition maps a variety of finite monoids to a class of regular languages
by Lemma 2.3.15. Our goal for the rest of the chapter now is to show that Φ is a bijection
between the varieties of monoids and the varieties of languages. We start with the following:

Lemma 3.2.2. Let V be a variety of monoids. It holds that

Φ(V)Σ = {L ⊆ Σ∗ | There is a monoid M ∈ V that recognizes L}

Proof. For this proof, let us defineB := {L ⊆ Σ∗ | There is a monoid M ∈ V that recognizes L}.

⊆ If L ∈ Φ(V)Σ, then M(L) ∈ V. By Lemma 2.3.7 L is recognized by M(L) and
therefore L ∈ B.

14



3 The variety theorem of Eilenberg

⊇ If L ∈ B, then there is a monoid M ∈ V that recognizes L. By Lemma 2.3.8, we have
that M(L) ≼M and therefore M(L) ∈ V.

■

This leads to the following result:

Lemma 3.2.3. Let V be a variety of monoids. Then Φ(V) is a variety of languages.

Proof. (i) We fix an alphabet Σ and consider two languages L1, L2 ∈ Φ(V)Σ. Let η1 :
Σ∗ → M(L1) and η2 : Σ∗ → M(L2) be the syntactic homomorphisms of L1 and
L2 respectively. By Lemma 2.3.7 and Lemma 2.3.6 we have that L1 = η−1

1 (η1(L1))
and L2 = η−1

2 (η2(L2)). If we define the monoid M = M(L1) ×M(L2), we see that
M is a finite product of elements of V and therefore in V. Now, define η : Σ∗ →
M : x 7→ (η1(x), η2(x)). Clearly η is a homomorphism. Furthermore, we notice that
x ∈ L1 ⇔ x ∈ η−1(η1(L1) × M(L2)) and x ∈ L2 ⇔ x ∈ η−1(M(L1) × η2(L2)).
Therefore, it holds that

L1 ∩ L2 = η−1(η1(L1)× η2(L2)),

L1 ∪ L2 = η−1(η1(L1)×M(L2) ∪M(L1)× η2(L2)).

Since L1 = η−1
1 (η1(L1)), we have that Σ∗ \ L1 = η−1

1 (M(L1) \ η1(L1)). In summary,
we have that L1 ∩ L2, L1 ∪ L2 and Lc1 are all recognized by a monoid of V.

(ii) Now let L ⊆ Σ∗ be a language in ∈ Φ(V)Σ, η the corresponding syntactic homomor-
phism and x ∈ Σ a letter. We define P := {m ∈ M(L) | η(x)m ∈ η(L)}. From this
definition it follows that:

η−1(P ) = {w ∈ Σ∗ | η(w) ∈ P}
= {w ∈ Σ∗ | η(x)η(w) ∈ η(L)}
= {w ∈ Σ∗ | η(xw) ∈ η(L)}
= {w ∈ Σ∗ | xw ∈ L}
= x−1L

If we define P ′ = {m ∈ M(L) | mη(x) ∈ η(L)}, we get analogously that η−1(P ′) =
Lx−1. Therefore, Lx−1 and x−1L are in Φ(V)Σ.

(iii) Now let Γ be another alphabet, φ : Γ∗ → Σ∗ a homomorphism and L a language in
Φ(V)Σ. Again, η denotes the syntactic homomorphism of L. If we define ψ = η ◦ φ :
Γ∗ → M(L), we have that ψ−1(η(L)) = φ−1(η−1(η(L))) = φ−1(L). Thus, φ−1(L) is
recognized by ψ and therefore by M(L).

■

The next step is to prove the injectivity of Φ. However, for this, we need some lemmas:

Lemma 3.2.4. Let M be a monoid and ≈1 and ≈2 two congruences on M such that ≈1

is a refinement of ≈2 (i.e. x ≈1 y ⇒ x ≈2 y). Then M/≈2
is a quotient of M/≈1

.
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3 The variety theorem of Eilenberg

Proof. If we recall Definition 2.2.7, we simply have to find a surjective homomorphism from
M/≈1

to M/≈2
. For this, simply consider φ :M/≈1

→M/≈2
: [x]1 7→ [x]2. By the fact that

≈1 is a refinement of ≈2, we get that φ is well defined. Furthermore, by the definition of
the binary operation onM/≈1

andM/≈2
, we have that φ is clearly a homomorphism. Now,

consider any [x]2 ∈M/≈2
. Clearly, φ([x]1) = [x]2 and therefore, φ is surjective. ■

Lemma 3.2.5. Let M be a monooid and (≈i)i∈I a family of congruences on M . We define
a new congruence ≈ by x ≈ y ⇔ ∀i ∈ I : x ≈i y. Then, M/≈ is isomorphic to a submonoid
of

∏
i∈IM/≈i

.

Proof. For all i ∈ I, define πi : M → M/≈i
: x 7→ [x]i. Then, define π : M →

∏
i∈IM/≈i

:
x 7→ (πi(x))i∈I = ([x]i)i∈I . Clearly, all the πi are homomorphisms and therefore also π is a
homomorphism. Therefore, we can consider the congruence ≈π. By construction of π, we
have that

x ≈π y ⇔ π(x) = π(y) ⇔ ∀i ∈ I : πi(x) = πi(y) ⇔ ∀i ∈ I : x ≈i y ⇔ x ≈ y.

Therefore, we get that M/≈ = M/≈π
∼= π(M), which is a submonoid of

∏
i∈IM/≈i

. The
isomorphy between M/≈π

and π(M) follows from Lemma 2.2.6. ■

Lemma 3.2.6. Let V be a variety of monoids and M ∈ V. Then there is an alphabet Σ
and languages L1, . . . Ln ∈ Φ(V)Σ such that M ≼

∏n
i=1M(Li).

Proof. Consider the alphabet Σ =M and the homomorphism φ : Σ∗ →M that extends the
identity function Σ → M : a 7→ a. Since M is finite, we can enumerate the elements of M
such that M = {mi | i = 1, . . . , n}. Now, consider the language Li = φ−1(mi). Obviously,
every Li is recognized by M and therefore every Li lies in Φ(V)Σ. We define the relation
≈ on Σ∗ by x ≈ y ⇔ ∀i ∈ {1, . . . , n} : x ≈Li y. Then, by Lemma 2.2.4, we have that ≈ is
a congruence. Now, let us also consider the congruence ≈φ. Take arbitrary x, y ∈ Σ∗ such
that x ≈ y. Since, φ is surely surjective, there is an i such that mi = φ(x). By choice of x
and y, we have that x ≈Lφ(x) y, which means that εxε ∈ Lφ(x) iff εyε ∈ Lφ(x). However,
x ∈ Lφ(x) = φ−1(φ(x)) and therefore y ∈ φ−1(φ(x)). In summary, that means that x ≈ y
implies that φ(x) = φ(y) and therefore that ≈ is a refinement of ≈φ.
By Lemma 2.2.6, we have that M = φ(Σ∗) ∼= Σ∗

/≈φ
and since ≈ is a refinement of ≈φ, it

follows that Σ∗
/≈φ

is a quotient of Σ∗
/≈ by Lemma 3.2.4. Furthermore, we have by Lemma

3.2.5 that Σ∗
/≈ is isomorphic to a submonoid of

∏n
i=1Σ

∗
/≈i

=
∏n
i=1M(Li). Therefore, by

connecting the respective surjective homomorphisms and isomorphisms, we get a surjective
homomorphism from a submonoid of

∏n
i=1M(Li) to M and thus M ≼

∏n
i=1M(Li). ■

Lemma 3.2.7. Let V and W be varieties of monoids. Then V ⊆ W iff for every alphabet
Σ, it holds that Φ(V)Σ ⊆ Φ(W)Σ. In particular it holds that V = W iff for every alphabet
Σ, we have that Φ(V)Σ = Φ(W)Σ or in other words iff Φ(V) = Φ(W). Therefore, Φ is
injective.

Proof.

⇒ By the definition of Φ(V)Σ, it is clear that V ⊆ W implies that Φ(V)Σ = Φ(W)Σ for
every alphabet Σ.
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3 The variety theorem of Eilenberg

⇐ Now assume that Φ(V)Σ = Φ(W)Σ for every alphabet Σ and take a monoid M ∈ V.
By 3.2.6 we have that there are languages L1, . . . , Ln ∈ Φ(V)Σ ⊆ Φ(W)Σ such that
M ≼

∏n
i=1M(Li). By the definition of Φ(W)Σ, we have that all theM(Li) are in W.

Therefore, their product is also in W and thus M ∈ W because it divides a monoid
of W.

■

The last step is to show the surjectivity of Φ. Again, we need a lemma:

Lemma 3.2.8. Let L be a variety of languages, Σ an alphabet, L a language in LΣ and η
the syntactic homomorphism of L. Then, for every m ∈M(L), it holds that η−1(m) ∈ LΣ.

Proof. For every word w ∈ Σ∗, we define:

C(w) = {(u, v) ∈ Σ∗ × Σ∗ | uwv ∈ L} = {(u, v) ∈ Σ∗ × Σ∗ | w ∈ u−1Lv−1}.

For two words x, y, we now have that

x ≈L y ⇔ (∀u, v ∈ Σ∗ : uxv ∈ L⇔ uyv ∈ L) ⇔ C(x) = C(y).

We now claim that

[x]≈L = (
⋂

(u,v)∈C(x)

u−1Lv−1) \ (
⋃

(u,v)/∈C(x)

u−1Lv−1) = A \B.

To prove this claim, let us consider two cases:

⊆ Let w be in [x]≈L . Then w ∈ u−1Lv−1 for all (u, v) ∈ C(x) since C(x) = C(w).

⊇ For this direction consider a w in the right side of the equation above. Since w is in
u−1Lv−1 for all the (u, v) ∈ C(x) but in none of the u−1Lv−1 for (u, v) ∈ C(x)c, we
have that C(x) = C(w) and therefore [w]≈L = [x]≈L .

We now note the following: L is rational and therefore ≈L has finite index. Now assume
that there are infinitely many sets of the form u−1Lv−1, take a countable subset of non-
empty sets of this kind and enumerate them with (An)n∈N. We now want to show with
induction that this results in a contradiction:

• Consider the sets A1, A2. Without loss of generality, we have that there is an x ∈
A2 \A1. Since A1 is not empty, we get that there are at least two equivalence classes
of ≈L

• Now assume, that there are finitely many sets (Ai)
k
i=1 such that they induce n different

equivalence classes of ≈L. Let us denote them with ([xi])
n
i=1

• Now we now that there are only 2n subsets of {[xi] | i = 1, . . . , n} and since we have
infinitely many sets left, we can assume Ak+1 not to be a union of some or all of the
[xi] with i ≤ n. Now, we can distinguish two cases: If there is an x ∈ Ak+1 such that
x /∈ Ai for i ≤ k, then x is clearly not in any of the equivalence classes of ≈L, we
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3 The variety theorem of Eilenberg

already have. If that is not the case, then Ak+1 is a subset of the union of all the Ai
and since Ak+1 is not the union of a subset of the [xi], we have that there is some
[xi] that is partially contained in Ak+1. That means that there are x, y ∈ [xi] such
that x ∈ Ak+1 and y /∈ Ak+1. In summary, we get that there have to be at least n+1
equivalence classes of ≈L.

Therefore an infinite set of u−1Lv−1 would induce an infinite index of ≈L and that cannot
be the case. Thus, there are only finitely many u−1Lv−1. Since L ∈ LΣ, we have that all
the v−1Lu−1 are in LΣ. Furthermore, A is the finite intersection of elements of LΣ and B
is the finite union of elements of LΣ. Therefore [x]≈L = A \B = A∩Bc is also in L. Now,
we now that η is surjective and for every m ∈M(L), we find an x ∈ L such that m = η(x)
and therefore η−1(m) = η−1(η(x)) = [x]≈L ∈ LΣ. ■

Now, we can finally prove the surjectivity:

Lemma 3.2.9. For every variety L of languages, there is a variety of monoids V such that
Φ(V) = L

Proof. Let L be a variety of languages and define V as the variety of monoids generated
by {M(L) | L ∈ LΣ,Σ is an alphabet}. We now want to show that Φ(V) = L, which
is equivalent to showing that Φ(V)Σ = LΣ for all alphabets Σ. For that purpose, fix an
alphabet Σ.

⊆ If L is in LΣ, then M(L) is in V and therefore L is in Φ(V)Σ per definition.

⊇ Let L ∈ Φ(V)Σ. Then M(L) is in V and by Lemma 3.2.6, we have that there is an
alphabet Γ, an n ≥ 1 and languages L1, . . . Ln such that M(L) ≼

∏n
i=1M(Li) = M .

By Theorem 2.3.8 we have that M recognizes L and therefore, there is a homo-
morphism φ : Σ∗ → M and a P ⊆ M such that φ−1(P ) = L. Now, define
πi : M → M(Li) : (mk)

n
k=1 7→ mi and φi = πi ◦ φ. Moreover, let ηi be the syn-

tactic hommomorphism of Li. Since ηi is surjective, we have by Lemma 2.2.10 that
there is a homomorphism ψi such that φi = ηi ◦ ψi. This works for every i. That
means, the following diagram commutates:

Σ∗ Γ∗

M D

ψi

ϕ
ϕi ηi

πi

We still want to show that L ∈ LΣ. First, we see that L =
⋃
m∈P φ

−1(m). Since P is
finite as a subset of M and LΣ is closed under finite union, it is enough to show that
φ−1(m) ∈ LΣ for every m ∈ P . We now consider an arbitrary m = (mi)

n
i=1 ∈ M .

Then clearly,

w ∈ φ−1(m) ⇔ w ∈ φ−1((mi)
n
i=1) ⇔ ∀i = 1, . . . n : w ∈ φ−1

i (mi) ⇔ w ∈
n⋂
i=1

φ−1
i (mi).
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3 The variety theorem of Eilenberg

Therefore, φ−1(m) =
⋂n
i=1 φ

−1
i (mi). Again, LΣ is closed under finite intersection

and we have, that it is enough to show that φ−1
i (mi) is in LΣ for all i = 1, . . . , n and

mi ∈M(Li). Since φi = ηi ◦ψi, we have that φ−1
i (mi) = ψ−1

i (η−1
i (mi)). However, ψi

is a homomorphism from Σ∗ to Γ∗ and LΣ is closed under inverse homomorphisms.
Therfore, it suffices to show that η−1

i (mi) ∈ LΣ for all mi ∈ M(Li). That follows
from 3.2.8, which concludes the proof.

■

These results together, now lead to the following theorem:

Theorem 3.2.10 (Eilenberg). Φ is a bijection between the varieties of finite monoids and
the varieties of rational languages.

Proof. Φ is well defined by Lemma 3.2.3, injective by Lemma 3.2.7 and surjective by Lemma
3.2.9 ■
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4 The profinite world

The goal of this chapter is to define the set of profinite words over an alphabet Σ and to
prove some properties of it. This will be foundation for the next chapter and Theorem
5.3.5. In order to do this, we define a metric on the set of words and look at the completion
of said set with regard to this metric. This chapter closely follows [3, Chapter X]. For the
rest of the chapter, let Σ be a finite alphabet.

4.1 The profinite metric

In this section, we introduce a metric on Σ∗ and prove some properties that will come in
handy later on.

Definition 4.1.1. Let u, v be two words in Σ∗ and (M, ·, e) a finite monoid. A homomor-
phism φ : Σ∗ → M separates u and v if φ(u) ̸= φ(v). Furthermore, (M, ·, e) separates u
and v if there exists a homomorphism φ : (Σ∗, ·, ε) → (M, ·, e) that separates u and v.

Example 4.1.2. Let u, v be two words in {a, b}∗ such that |u|a ̸≡ |v|a mod 2 with |x|y
being the number of occurences of y in x. Then φ : {a, b}∗ → Z2 with φ(x) = |x| mod 2 is
a homomorphism if we equip Z2 with + as an operation. Furthermore, φ separates u and
v.

This can be generalised:

Lemma 4.1.3. Let u, v be distinct words in Σ∗. Then u and v can be separated by a finite
monoid.

Proof. We recall Lemma 2.3.14 that states that a language is rational iff it is recognised
by a finite monoid. {u} is surely rational. Therefore, there exists a monoid (M, ·, e), a
homomorhism φ : Σ∗ → M and subset P of M , such that φ−1(P ) = {u}. Since v /∈ {u},
φ(v) /∈ P . Thus, φ(u) ̸= φ(v). ■

We can now define our metric:

Definition 4.1.4. Let u, v be two words from Σ∗. We define r(u, v) = min{|M | |M separates u and v}
and d(u, v) := 2−r with the convention that min ∅ = +∞ and 2−∞ = 0.

The name d already tells us, that it might be a metric. We can even say the following:

Lemma 4.1.5. The function d is an ultra-metric (and in particular a metric). That means:

(i) d(u, v) = 0 ⇔ u = v

(ii) d(u, v) = d(v, u)
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4 The profinite world

(iii) d(u,w) ≤ max{d(u, v), d(w, v)} for all w ∈ Σ∗

Furthermore, it holds that

(iv) d(uw, vw) ≤ d(u, v) and d(wu,wv) ≤ d(u, v) for all w ∈ Σ∗

Proof. We look at the properties individually:

(i) Follows directly from the definition of d since 2−r > 0 for all natural numbers r.

(ii) Follows directly from the definition.

(iii) Without loss of generality, we assume that u, v, w are all distinct since otherwise, it
would become trivial. We now assume that M seperates u and w with the homo-
morphism φ. Then φ also separates either u and v or v and w because otherwise
φ(u) = φ(v) = φ(w). That means that min{r(u, v), r(v, w)} ≤ r(u,w). Therefore,
d(u,w) ≤ max{d(u, v), d(v, w)}.

(iv) If M separates uw and vw with the homomorphism φ, then ceratinly φ(u) ̸= φ(v).
Again, this translates to r(u, v) ≤ r(uw, vw) and therefore d(u, v) ≥ d(uw, vw).
Analogously, we get that d(u, v) ≥ d(wu,wv).

■

That means that (Σ∗, d) is a metric space. Before we carry on with the completion of
(Σ∗, d), we prove some properties.

Lemma 4.1.6. The topology defined by d on Σ∗ is discrete. That means that every subset
of Σ∗ is clopen (i.e. open and closed).

Proof. Let u be a word in Σ∗, M the syntactic monoid of {u}, n its size and φ : Σ∗ → M
the homomorphism that recognizes M . Now take any word v in Σ∗ with d(u, v) < 2−n. It
follows that r(u, v) > n, and that M does not separate u and v. Therefore, φ(u) = φ(v),
which means that v ∈ φ−1(φ({u})) = {u} (the equality holds because u is clearly rational,
cf. Lemma 2.3.6). Thus, u = v. That means, U(u, 2−n) = {u} and that {u} is open for
every word u ∈ Σ∗. Now let A be any subset of Σ∗. We see that A =

⋃
x∈A

{x} is open. Also,

Ac =
⋃

x∈Ac

{x} is open as well, which means that A is closed and therefore clopen. ■

Before we look at the connection of rational languages and open balls, we need to consider
the following relation:

Definition 4.1.7. For any n ∈ N, we define ∼n by

x ∼n y :⇔ for all homomorphisms φ from Σ∗ to a monoid of size ≤ n it holds that

φ(x) = φ(y).

This relation has some useful properties:
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4 The profinite world

Lemma 4.1.8. ∼n is a congruence relation with finite index. Moreover, the equivalence
classes of ∼n are open balls with radius 2−n. In particular, it holds that π−1

n ([x]∼n) =
U(x, 2−1) with πn being the canonical homomorphism from Σ∗ to Σ∗

/∼n
.

Proof. It is obvious that ∼n is reflexive and symmetric. Almost as clearly it is transitive.
Therefore, ∼n is an equivalence relation. Now, we take a, b, x, z ∈ Σ∗ such that a ∼n x and
b ∼n y and an arbitrary homomorphism φ : Σ∗ →M with (M, ·, e) being a finite monoid of
size ≤ n. It follows from the definition that φ(ab) = φ(a)φ(b) = φ(x)φ(y) = φ(xy). Since
φ and (M, ·, e) were arbitrary, we get that ab ∼n xy. Therefore, ∼n is also a congruence.
We also note the following: Σ is finite. That means, there are at most n|Σ| homomorphisms
for any given monoid (M, ·, e) with |M | ≤ n. Also we see that there are only finitely many
possibilities to define a binary relation on a finite set, which means that there are also
finitely many monoids with cardinality ≤ n (up to isomorphy). That means, there are
also finitely many homomorphisms from Σ∗ to a monoid with cardinality ≤ n if we only
consider the monoids that are not isomorphic. Let M be the set of these homomorphisms
and m its cardinality. Then, there are only nm possible values for the tuple (φ(x))φ∈M for
any x ∈ Σ∗ and therefore also at most nm equivalence classes. That means, ∼n has finite
index.
Also quite obviously

U(x, 2−n) = {y ∈ Σ∗ | r(x, y) > n} = {y ∈ Σ∗ | x ∼n y} = π−1
n ([x]∼n),

which concludes the proof. ■

Now, let us look the connection of rational languages and open balls of (Σ∗, d):

Lemma 4.1.9. It holds that:

(i) Every open ball U(x, ρ) of (Σ∗, d) is a rational language.

(ii) Every rational language over Σ is a finite union of open balls.

Proof.

(i) We first note that for all u, v ∈ Σ∗ it holds that d(u, v) ≤ 1
4 . Therefore, U(x, ρ) = Σ∗

if ρ > 1
4 which is trivially rational. That means, we can assume ρ not to be bigger

than 1
4 . Thus, there exists a unique natural number n such that 2−(n+1) < ρ ≤ 2−n.

Now we consider ∼n.
Let y be a word in U(x, 2−n). Since d(x, y) = 2−l and d(x, y) < 2−n it holds that
d(x, y) ≤ 2−(n+1) < ρ. Therefore, U(x, 2−n) ⊆ U(x, ρ). The inclusion U(x, ρ) ⊆
U(x, 2−n) is trivial. It follows that U(x, ρ) = U(x, 2−n).
Since ∼n is a congruence, we can consider the quotient monoid (Σ∗

/∼n
, ·, [ε]) and the

canonical homomorphism πn : Σ∗ → Σ∗
/∼n

. With our observation and Lemma 4.1.8,
it now holds that

U(x, ρ) = U(x, 2−n) = π−1
n (πn({x})).

That means that U(x, ρ) is recognized by (Σ∗
/∼n

, ·, [ε]) and is therefore a rational
language.
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4 The profinite world

(ii) Now let L be a rational language and (M, ·, e) be its syntactic monoid with the
cardinality n and the homomorphism φ. Let x, y be two words in Σ∗ and x ∼n y.
Then φ(x) = φ(y) because they have the same image under any homomorphism to
a monoid with cardinality ≤ n. That means that the function ψ : Σ∗

/∼n
→ M with

ψ([x]) = φ(x) is well defined and obviously a homomorphism because φ is. We see
that φ = ψ ◦ πn. Let P = φ(L). By Lemma 2.3.7 and Lemma 2.3.6 and because set
union and inverse image can be switched it follows that

L = φ−1(P ) = (ψ ◦ πn)−1(P ) = π−1
n (ψ−1(P )) =

⋃
m∈ψ−1(P )

π−1
n (m).

Now if πn(u) = [u], then π−1
n ([u]) = π−1

n (πn(u)) = U(u, 2−n) as reasoned above. Since
Σ∗
/∼n

is finite, so is ψ−1(P ) ⊆ Σ∗
/∼n

. Therefore L is a finite union of open balls.

■

A property, we will need later on for the completion is the following:

Lemma 4.1.10. The concatenation (u, v) 7→ uv from Σ∗×Σ∗ to Σ∗ is uniformly continuous
(with Σ∗ × Σ∗ being equipped with the maximum-metric).

Proof. By Lemma 4.1.5 it holds for a, b, x, y ∈ Σ∗ that

d(ab, xy) ≤ max{d(ab, ay), d(ay, xy)} ≤ max{d(b, y), d(a, x)} = d((a, b), (x, y)).

Therefore, it generally holds that d((a, b), (x, y)) < ρ⇒ d(ab, xy) < ρ for any ρ > 0. ■

It follows, that (Σ∗, d) is a topological monoid.
Another feature of (Σ∗, d) is the following:

Lemma 4.1.11. (Σ∗, d) is totally bounded.

Proof. Lemma 4.1.8 states that the equivalence classes of ∼n are open balls with radius
2−n and that there are only finitely many, which proves the lemma. ■

We can now use this lemma, to prove an important theorem:

Theorem 4.1.12. A function φ : Σ∗ → Γ∗ is uniformly continuous (both Σ∗ and Γ∗ are
equipped with d) iff for every rational language L of Γ∗, the language φ−1(L) is also rational.

Proof.

⇒ We assume that φ : Σ∗ → Γ∗ is uniformly continuous and L ⊆ Γ∗ is rational. By
Lemma 4.1.9 L is a finite union of open balls. Therefore, it is enough to look at the
case where L is a single open ball because otherwise we could switch inverse image
and set union. Let L = U(x, ρ). Since φ is uniformly continuous there is a δ > 0
such that d(x, y) < δ ⇒ d(φ(x), φ(y)) < ρ. We can assume that δ is of the form 2−n

with n ∈ N. Let us now take a u ∈ φ−1(L) and a v such that v ∈ U(u, 2−n). We
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4 The profinite world

have that d(x, φ(u)) < ρ because u ∈ φ−1(L) and also that d(φ(u), φ(v)) < ρ because
d(u, v) ≤ 2−n. By d being an ultrametric it follows that

d(x, φ(v)) ≤ max{d(x, φ(u)), d(φ(u), φ(v))} < ρ

and therefore φ(v) ∈ L. That means that for any u ∈ φ−1(L) it holds that U(u, 2−n) ⊆
φ−1(L). Obviously, it also holds that

φ−1(L) ⊆
⋃

u∈φ−1(L)

U(u, 2−n)

and therefore
φ−1(L) =

⋃
u∈φ−1(L)

U(u, 2−n).

By Lemma 4.1.8 it follows that

φ−1(L) =
⋃

u∈φ−1(L)

U(u, 2−n) =
⋃

u∈φ−1(L)

π−1
n (πn(u)) = π−1

n (πn(φ
−1(L))).

That means, that ϕ−1(L) is recognized by a finite monoid and therefore rational.

⇐ Now, we assume that for every rational language L of Γ∗ it holds that φ−1(L) is also
rational.
Let Ln be the finite set of the equivalence classes of ∼n in Γ∗ for every n ∈ N.
Clearly, if for any L ⊆ Γ∗ it holds that L ∈ Ln it follows that L is recognized by a
finite monoid, therefore rational and thus also φ−1(L). Let now k(L) be the size of
the syntactic monoid of φ−1(L) for any L ∈ Ln and k = max{k(L) | L ∈ Ln}. We
now take arbitrary u, v ∈ Σ∗ such that d(u, v) < 2−k. Since Ln is a partition of Γ∗, we
have that {φ−1(L) | L ∈ Ln} is a partition of Σ∗. Therefore, there is an L ∈ Ln such
that u ∈ φ−1(L). Since d(u, v) < 2−k there exists no monoid with cardinality ≤ k
that separates u and v. If v /∈ φ−1(L), then εuε ∈ φ−1(L) and εvε /∈ φ−1(L), which
means that u and v are in different equivalence classes with regard to the syntactic
congruence, which again would mean that the syntactic monoid with cardinality ≤ k
separates u and v, which is a contradiction. Therefore, v ∈ φ−1(L). It follows that
both φ(u) and φ(v) are in L and therefore φ(u) ∼n φ(v). Since the equivalence classes
of ∼n are open balls with radius 2−n, it follows that d(x, y) < 2−k ⇒ d(φ(x), φ(y)) <
2−n. Therefore, φ is uniformly continuous.

■

4.2 The free profinite monoid

Now, we will consider the completion of (Σ∗, d) and look at the properties.

Definition 4.2.1. (Σ̂∗, d̂) denotes the completion of (Σ∗, d). It is called the free profinite
monoid.

24



4 The profinite world

Note, that the existence of such a completion is secured by Lemma 1.1.12. Furthermore,
it is unique up to isomorphy. For the sake of readability (and writability) we will identify

x ∈ Σ∗ with ι(x) ∈ Σ̂∗ with ι being the isometric embedding of Σ∗ in Σ̂∗. We now come to
a very central lemma:

Lemma 4.2.2. (Σ̂∗, d̂) is a topological monoid and compact.

Proof. Lemma 1.1.22 states that every completion of a totally bounded topological space
is compact, which is the case here.
For it to be a topological monoid, we simply need a binary operation on Σ̂∗ that is associa-
tive and continuous and a neutral element. Since Σ∗ ×Σ∗ is dense in Σ̂∗ × Σ̂∗ and because
the concatenation is uniformly continuous (cf. Lemma 4.1.10), we get that the concatena-

tion of Σ∗ can be extended to a uniformly continuous function on Σ̂∗ × Σ̂∗ by Corollary
1.1.28. Since the original concatenation is surjective and Σ̂× Σ̂ is compact as the product
of compact spaces (cf. Theorem 1.1.23), we have that the extension is also surjective. In
order to clarify, when we use the original concatenation and when the extension in the next
argument, we denote the concatenation with f and the extension with f̂ in prefix-form
(e.g. f(x, y) = xy). To prove that f̂ is also associative, we now take x, y, z ∈ Σ̂∗. Since
Σ∗ is dense, we can find sequences (xn)n∈N, (yn)n∈N, (zn)n∈N in Σ∗ with limn∈N an = a for
a ∈ {x, y, z}. Since f̂ is continuous and f is associative, we can do the following:

(xy)z = f̂(f̂(x, y), z)

= f̂(f̂(limxn, lim yn), lim zn)

= lim f̂(f̂(xn, yn), zn)

= lim f(f(xn, yn), zn)

= limxn(ynzn)

= lim f(xn, f(yn, zn))

= lim f̂(xn, f̂(yn, zn))

= f̂(limxn, f̂(lim yn, lim zn))

= x(yz)

Therefore, the extended concatenation is associative. Analogously, we get that ε stays the
neutral element, which concludes the proof. ■

Another consequence of the density of Σ∗ is the following:

Lemma 4.2.3. Let φ be a homomorphism from Σ∗ to the discrete finite monoid M . Then
φ is uniformly continuous and can be extended in a unique way to a uniformly continuous
homomorphism φ̂ from Σ̂∗ to M .

Proof. Consider u, v ∈ Σ∗ such that d(u, v) < 2−|M |. Then r(u, v) > |M | andM and there-
fore φ does not separate u and v. Therefore φ(u) = φ(v) and φ is uniformly continuous.

Since Σ∗ is dense, φ has a unique uniformly continuous extension φ̂ from Σ̂∗ to M . We
need to show that φ̂ is a homomorphism. Let D = {(x, y) ∈ Σ̂∗ × Σ̂∗ | φ̂(xy) = φ̂(x)φ̂(y)}.
Clearly, Σ∗ × Σ∗ ⊆ D. We also know that Σ∗ × Σ∗ is dense in Σ̂∗ × Σ̂∗ and therefore, we
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4 The profinite world

only need to show that D is closed, to get that D = Σ̂∗×Σ̂∗. Let f be the unique uniformly
continuous extension of the concatenation on Σ̂∗ × Σ̂∗ and g the monoid operation on M .
Since M is discrete, also M ×M is discrete and therefore g is continuous (as every other
function from M ×M to M). We see that

φ̂(xy) = (φ̂ ◦ f)(x, y), φ̂(x)φ̂(y) = (g ◦ (φ̂× φ̂))(x, y).

Note that all the functions are compositions of continuous functions and therefore con-
tinuous themselves. Furthermore, we note that φ̂(xy) = φ̂(x)φ̂(y) = m ⇔ (x, y) ∈
(φ̂ ◦ f)−1({m}) ∩ (g ◦ (φ̂× φ̂))−1({m}). Therefore, it holds that

D =
⋃
m∈M

(φ̂ ◦ f)−1({m}) ∩ (f ◦ φ̂× φ̂)−1({m}).

Since M is equipped with the discrete topology {m} is closed for all m ∈ M and because
the functions are continuous, we have a finite union of closed subsets on the right side.
Therefore, D is closed and we get, that D = Σ̂∗ × Σ̂∗. Thus, φ̂ is a homomorphism. ■

Note that the discrete topology can always be induced by the discrete metric d with
d(x, x) = 0 and d(x, y) = 1 if x ̸= y. Therefore, it makes sense to talk about uniform
continuity in the theorem above.

4.3 ω-terms

Until now, it is unclear, whether Σ̂∗ is actually bigger than Σ∗ or if Σ∗ itself is complete.
We now want to give an example of a word that is in Σ̂∗, but not in Σ∗. For this purpose,
we formulate the following lemma:

Lemma 4.3.1. The sequence (xn)n∈N := (xn!)n∈N is a Cauchy sequence in Σ̂∗ with regard

to the metric d̂ for any x ∈ Σ̂∗. The limit xω := limn∈N xn lies in Σ̂∗ \ Σ∗ for any x ∈ Σ∗.
xω is idempotent.

Proof. To show that (xn)n∈N is a Cauchy sequence, we take an arbitrary ρ > 0. Now we
take k ∈ N such that 2−k < ρ. It suffices to show, that there exists an N ∈ N such that
d(xi, xj) ≤ 2−k for all i, j ≥ N . We claim that N = k. Let us take p, q ≥ k. Since, x
is not necessarily in Σ∗, we have to approach the metric with a sequence. Let (an)n∈N
be a sequence in Σ∗ such that lim an = x. Since the extension of the concatenation is
continuous, we get that xp! = lim ap!n . Furthermore, the metric d̂ is also continuous, which
means that d̂(xp, xq) = lim d(ap!n , a

q!
n ). Now we take n ∈ N, an arbitrary monoid M of size

≤ k with a homomorphism φ : Σ∗ → M and set φ(an) = s. By Lemma 2.1.1 s has an
idempotent power sr = x with r ≤ k. By choice of p and q, r divides p! and q!, which
means that p! = rl, q! = rm. Therefore,

φ(ap!n ) = sp! = (sr)l = xl = xm = (sr)m = sq! = φ(aq!n ).

Thus, ap!n and aq!n cannot be separated by a monoid of size ≤ k, which translates to
d(ap!n , a

q!
n ) < 2−k for any n ∈ N. With the limit, we get that d(xp, xq) = lim d(ap!n , a

q!
n ) ≤ 2−k,
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4 The profinite world

which proves the claim.
With (xn)n∈N being a Cauchy sequence, it makes sense to define xω as its limit in Σ̂∗. It
follows from the definition of the sequence that xω is not in Σ∗ for any x ∈ Σ∗.
Two show the idempotence, we recall that f(x, y) = xy is continuous on Σ̂∗ × Σ̂∗ and
consider the following term:

xωxω = f(limxn, limxn) = lim f(xn, xn) = limxn!xn! = limx2·n! =: lim yn.

Again, we take ρ > 0 and n such that 2−n ≤ ρ. If we take any p ≥ n, we see for the
same reason as above that there is no finite monoid of size ≤ n that separates yn and xn.
Therefore, lim d(xn, yn) = 0, which means that (yn)n∈N is a Cauchy sequence and that
(xn)n∈N and (yn)n∈N have the same limit. Therefore, xω = xωxω. ■

We can now look at how to interpret xω.
LetM be a finite monoid with exponent ω as described in Definition 2.1.4, a homomorphism
φ from Σ∗ to M , φ̂ its extension on Σ̂∗, x ∈ Σ∗ and s = φ(x). Then, it holds sn! = sω

for all n ≥ ω with sω being the unique idempotent element in the set {sl | l ∈ N≥1} (cf.
Lemma 2.1.1). Therefore, we get that

φ̂(xω) = φ̂(limxn!) = lim φ̂(xn!) = limφ(xn!) = lim sn! = sω = φ(x)ω.

Since xω is idempotent, we have that (xω)n! = xω for any n ∈ N and therefore (xω)ω = xω.
Two related concepts are the following profinite words:

xω−1 = limxn!−1 and xω+1 = limxn!+1

We can prove the existence of these limits in the same way we prove the existence of xω.
If we recall that the concatenation on Σ̂∗ is continuous, we immediately see that

xxω = xωx = xω+1 and xxω−1 = xω−1x = xω.

Furthermore, if we defineM,ω, φ and φ̂ as above, it holds that φ̂(xω+1) = φ(x)ω+1 because

φ̂(xω+1) = limφ(xn!+1) = lim sn!s = sωs = sω+1 = φ(x)ω+1.

However, we cannot use this approch to interpret xω−1 since s−1 is generally not defined
in a monoid or semigroup. We can solve this, if we recall Lemma 2.1.7 and that the
minimal ideal G of the subsemigroup generated by s is a group with the neutral element
sω. Certainly, sω+1 = ssω is in G. Also, since 2ω − 1 ≥ 1, we have that s2ω−1 is also in G
and clearly the unique inverse of sω+1. We also have that sn!−1 is the inverse of sω+1 and
clearly in G as a product of s for all n ≥ 2. Therefore, sn!−1 = s2ω−1 for all n ≥ 2, which
means that lim sn!−1 = s2ω−1. Finally, we get that

φ̂(xω−1) = limφ(xn!−1) = lim sn!−1 = s2ω−1 = φ(x)2ω−1.

Now, we can make an important definition:

Definition 4.3.2. The ω-terms are the smallest submonoid of Σ̂∗ that contains Σ∗ and is
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4 The profinite world

closed under x 7→ xω, x 7→ xω−1, x 7→ xω+1.

One can show that the ω-terms are countable, while the whole free profinite monoid is
uncountable.
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5 Varieties of finite monoids and profinite
identites

In this chapter, we will prove the main theorem of this thesis. Theorem 5.3.5 characterises
the connection between profinite words and the varieties of finite monoids. With Theorem
3.2.10, we can also infer the connection between profinite words and varieties of rational
languages. This chapter closely follows [3, Chapter XI].

5.1 Free pro-V monoids

The goal of this section is to introduce the free pro-V monoid, which is a similar notion
to the free profinite monoid. For this purpose, let V be a variety of monoids as defined in
3.1.1 and Σ∗ an alphabet for the rest of this section.

Definition 5.1.1. Let u, v be words in Σ∗. We define

rV = min{|M | |M ∈ V and M separates u and v} and dV(u, v) = 2−rV (u,v),

with the convention that min ∅ = +∞ and 2−∞ = 0.

From the definition, it is clear that dV should have some properties similar to the ones
of d:

Lemma 5.1.2. For every u, v, w ∈ Σ∗ it holds that:

(i) dV(u, v) = dV(v, u)

(ii) dV(uw, vw) ≤ dV(u, v) and dV(wu,wv) ≤ dV(u, v)

(iii) dV(u,w) ≤ max{dV(u, v), dV(v, w)}

Proof.

(i) This property is trivial

(ii) IfM ∈ V separates uw and vw, it clearly separates u and v. Therefore, dV (uw, vw) ≤
dV (u, v). Analogously, we get that dV(wu,wv) ≤ d(u, v).

(iii) If M ∈ V separates u and w it certainly separates either u and v or v and w. Thus,
min{rV(u, v), rV(v, w)} ≤ rV(u,w) and max{dV(u, v), dV(v, w)} ≥ dV(u,w).

■

We see that dV(u, v) = 0 does not necessarily imply that u = v.
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Example 5.1.3. Consider the class C of all commutative finite monoids. That is the class
of all the monoids M that fulfill that for all a, b in M it holds that ab = ba. It is trivial
that this class is also a variety. Now consider the alphabet {a, b}. By choice of the variety
have that ab and ba cannot be separated by any monoid of C and therefore dC(ab, ba) = 0.

However, we can look at the following relation:

Definition 5.1.4. Let ∼V be the relation on Σ∗ defined by

x ∼V y ⇔ dV(x, y) = 0

Lemma 5.1.5. The relation ∼V is a congruence.

Proof. Clearly, ∼V is reflexive and symmetric. By Lemma 5.1.2 (iii) we also get the
transitivity. Therefore, ∼V is an equivalence relation. Take a, b, x, y ∈ Σ∗ such that a ∼V x
and b ∼V c. Now let us take any monoid M in V and a homomorphism φ : Σ∗ → M .
By the choice of a, b, x and y, it holds that φ(a) = φ(x) and φ(b) = φ(y). Therefore,
φ(ab) = φ(xy). Since M and φ were arbitrary, we get that dV(ab, xy) = 0 and ab ∼V xy.
Thus, ∼V is a congruence. ■

We can now look at the monoid Σ∗
/∼V

. We can define dV in a natural way on Σ∗
/∼V

by

setting dV([x], [y]) = dV(x, y). Let us take a, b, x, y in Σ∗ such that a ∼V x and b ∼V y.
Then

dV([a], [b]) = dV(a, b) ≤ max{dV(a, x), dV(x, b)} = dV(x, b) ≤ max{dV(x, y), dV(y, b)}
= dV(x, y) = dV([x], [y]).

Analogously, we get that dV([x], [y]) ≤ dV([a], [b]). Therefore, dV([a], [b]) = dV([x], [y]) and
our function is well defined. Because of the natural definition it makes sense to call it the
same as the original function. Although Σ∗ is something different than Σ∗

/∼V
, I will identify

the equivalence classes of Σ∗
/∼V

with words from Σ∗, to make the text more readable.

Lemma 5.1.6.

(i) dv is an ultra-metric on Σ∗
/∼V

(ii) The concatenation is a uniformly contiuous function from Σ∗
/∼V

× Σ∗
/∼V

to Σ∗
/∼V

if
Σ∗
/∼V

is equipped with dV and Σ∗
/∼V

×Σ∗
/∼V

is equipped with the associated maximum-
metric.

Proof. (i) We have that dV(u, v) = 0 ⇔ u ∼V v. The other required properties are
inherited from dV on Σ∗ × Σ∗.

(ii) Let a, b, x, y be in Σ∗
/∼V

. Then, it follows directly from Lemma 5.1.2 that

dV(ab, xy) ≤ max{dV(ab, ay), dV(ay, xy)} ≤ max{dV(b, y), dV(a, x)} = dV((a, x), (b, y))

■
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We can now again look at the completion of Σ∗
/∼V

.

Definition 5.1.7. The monoid (F̂V(Σ), d̂V) denotes the completion of (Σ∗
/∼V

, dV) and is
called the free pro-V monoid.

Lemma 5.1.8. F̂V(Σ) is in fact a topological monoid.

Proof. The proof is exactly the same as the one from Lemma 4.2.2. ■

In the following, let πV be the natural homomorphism from Σ∗ to Σ∗
/∼V

. We will now

show some central properties of F̂V(Σ).

Lemma 5.1.9. Let φ be a homomorphism from Σ/∼V to a discrete monoid M ∈ V. Then
φ is uniformly continuous and can be extended in a unique way to a uniformly continuous
homomorphism from F̂V(Σ) to M .

Proof. The proof is exactly the same as the proof of Lemma 4.2.3. ■

Lemma 5.1.10. For each finite alphabet Σ, the following properties hold:

(i) The monoid F̂V(Σ) is compact.

(ii) There is a unique surjective uniformly continuous homomorphism from (Σ̂∗, d̂) to
(F̂V(Σ), d̂V) that extends πV

Proof.

(i) By Lemma 1.1.22 and since F̂V(Σ) is complete, we only need to show that Σ∗
/∼V

is
totally bounded. Consider the congruence ∼n on Σ∗ defined by

x ∼n y ⇔ x and y are not separated by any monoid in V of size ≤ n.

First, we establish that ∼n is well defined. To realize that, take x, y, a, b ∈ Σ∗ such
that a ∼V x and b ∼V y. That means that φ(a) = φ(x) and φ(b) = φ(y) for any
homomorphism φ onto any monoid of V. That means, that a monoid M separates a
and x iff it separates b and y. Therefore, the relation is well defined.
Furthermore, we see that ∼n is an equivalence relation as it is clearly reflexive, sym-
metri and transitive. Now, let x, y, a, b ∈ Σ∗

/∼V
such that a ∼n x and b ∼n y, M ∈ V

with size ≤ n and φ a homomorphism from Σ∗
/∼V

to M . By choice of a, b, x, y, it

holds that φ(a) = φ(x) and φ(b) = φ(y) and therefore φ(ab) = φ(xy). Since M and
φ were arbitrary, we see that ab ∼n xy. Therefore, ∼n is even a congruence.
We now claim that the index of ∼n is finite for the same reasons as in the proof of
Lemma 4.1.8. First of all, we only have finitely many monoids of size ≤ n (up to
isomorphy). Secondly, we only have finitely many homomorphisms from Σ∗

/∼V
to a

monoid of size ≤ n because Σ is finite. That means that the setM of homomorphisms
from Σ∗

/∼V
to monoids of size ≤ n is finite if we only consider monoids that are not

isomorphic. Therefore, for each x ∈ Σ∗
/∼V

there are only finitely many possible values

for (φ(x))φ∈M and thus only finitely many equivalence classes of ∼n, which proves
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the claim.
Now consider x, y ∈ Σ∗

/∼V
. Per definition x ∼n y iff x and y cannot be separated by

a monoid of size ≤ n in V. That is exactly the case if rV(x, y) > n or equivalently
dV(x, y) < 2−n. It follows that the equivalence classes of ∼n are open balls of radius
2−n and cover Σ∗

/∼V
completely. Therefore, Σ∗

/∼V
is totally bounded and F̂ (Σ) is

compact.

(ii) It follows from the definition of dV that dV(x, y) ≤ d(x, y). Therefore, πV is uni-

formly continuous and since Σ̂∗ is compact, Corollary 1.1.28 states that πV can be
extended to a unique, uniformly continuous and surjective function from Σ̂∗ to F̂V(Σ).

By approaching elements of Σ̂∗ with sequences, we also get that this extension is a
homomorphism.

■

Lemma 5.1.11. For each function φ from Σ to a monoid M ∈ V (equipped with the
discrete topology), there is a unique uniformly continuous homomorphism ψ : F̂V(Σ) →M
such that for all x ∈ Σ it holds that φ(x) = ψ(πV(x)).

Proof. Let φ be function from Σ to M ∈ V. This function can clearly be extended to a
unique homomorphism φ′ from Σ∗ to M . By Lemma 4.2.3 φ′ is uniformly continuous and
there is a unique uniformly continuous extension φ′′ from Σ̂∗ to M . Since V is a variety,
φ′′(Σ̂∗) ≼ M is also in V. Therefore, we can assume without loss of generality that φ′′ is
surjective. We know, that Σ∗ is dense and φ′′(Σ∗) is closed because M is discrete. Let now

m be in M such that m = φ′′(x) with x ∈ Σ̂∗ and x = limxn with xn ∈ Σ∗ for all n ∈ N.
Since φ′′ is continuous, we can write m = φ′′(x) = φ′′(limxn) = limφ′′(xn) as the limit
of a sequence in φ′′(Σ∗). Therefore, m ∈ φ′′(Σ∗) = φ′(Σ∗) and we get that φ′ is already
surjective. Furthermore, we have that x ∼V y implies that φ′(x) = φ′(y) and we can define
ψ : Σ∗

/∼V
→M with ψ([u]) = φ′(u), which is obviously well defined and a homomorphism.

We see that φ′ = ψ ◦ πV . We now claim that ψ uniformly continuous. To prove this claim,
we set n = |M | and consider x, y ∈ Σ∗

/∼V
with dV(x, y) < 2−n. We see that x and y cannot

be separated byM and therefore ψ(x) = ψ(y), which proves the claim. We can now extend
ψ to a uniformly continuous homomorphism from F̂V(Σ) to M because of Lemma 5.1.9.
Clearly, it still holds for all a ∈ Σ that ψ(πV(a)) = ϕ(x). ■

Lemma 5.1.12. A finite Σ-generated monoid belongs to V iff it is a continuous quotient
of F̂V(Σ)

Proof.

⇒ Let M ∈ V be Σ-generated with size ≤ n. Then we can extend the function f :
Σ → M : a 7→ a to a homomorphism φ from Σ∗ to M . Note, that φ is surjective
because M is Σ-generated. Now, define ψ : Σ∗

/∼n
→ M : [x] 7→ φ(x). Again, this is

function is clearly well defined because u ∼n v implies that M does not separate u
and v and therefore φ(u) = φ(v). Also, ψ inherits the necessary properties of φ to be
a homomorphism. Furthermore, ψ is surjective as well. By Lemma 5.1.9 we get that
there is a uniformly continuous extension of ψ from F̂V(Σ) toM , which is clearly also
surjective. Therefore, M is a continuous quotient of F̂V(Σ).
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⇐ Let M be a continuous quotient of F̂V(Σ) and π the surjective homomorphism from
F̂V(Σ) to M . We define

D = {(x, y) ∈ F̂V(Σ)× F̂V(Σ) | π(x) = π(y)},

which is inverse image of the diagonal of M ×M under π×π (i.e. (π×π)−1({(x, x) |
x ∈M}).We note that π×π is continuous because it is continuous in every component
and since M ×M is discrete because M is, we get that {(x, x) | x ∈ M} is clopen.
Therefore D is also clopen. Let M be the class of all homomorphisms from F̂V(Σ) to
a monoid of V. For each ϕ ∈ M, we define

Cφ = {(x, y) ∈ F̂V(Σ)× F̂V(Σ) | φ(x) ̸= φ(y)}.

We note that Cφ is clopen because every φ is continuous and Cφ is inverse image
of M × M \ {(x, x) | x ∈ M}, which again is clopen because M × M is discrete.
Furthermore, we see that if (x, y) is not in any Cφ, it certainly holds that π(x) = π(y)
and therefore (x, y) ∈ D. In total, this gives us that

F̂V(Σ)× F̂V(Σ) = D ∪
⋃
φ∈M

Cφ.

Since F̂V(Σ)× F̂V(Σ) is compact and all of the Cφ are open as is D, we get that there
is a finite set F ⊂ M such that

F̂V(Σ)× F̂V(Σ) = D ∪
⋃
φ∈F

Cφ.

Let us now consider the finite monoid L =
∏
φ∈F φ(F̂V(Σ)). Every one of the φF̂V(Σ)

is by definition of M a submonoid of some monoid N ∈ V and therefore in V. Thus,
L is in V. Now look a the set N := {(φ(x))φ∈F | x ∈ F̂V(Σ)}. This set is clearly

a submonoid of L and therefore in V. We now see that for x, y ∈ F̂V(Σ), it holds
φ(x) = φ(y) for all φ ∈ F implies π(x) = π(y) since (x, y) is in none of the Cφ. That
means that the function

ψ : L→M : (φ(x))φ∈F 7→ π(x)

is well defined and clearly a homomorphism. Also ψ is surjective because π is. It
follows that M is a quotient of a monoid in V and therefore also in V.

■

The next goal is to describe the structure of a variety F̂V. In general, this is rather
difficult, but let us assume that V is generated by a single monoid M . Let MΣ be the
set of all functions from Σ to M . All of these functions γ can be extended to a unique
homomorphism γ̂ from Σ∗ to M . Now let MMΣ

be the set of all functions from MΣ to
M . Clearly, this set forms a monoid if equipped with the pointwise multiplication as the
binary operation and the neutral element f : MΣ → M : φ 7→ e with e being the neutral
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element of M . Let us now define1

φ : Σ →MMΣ
: a 7→ (γ 7→ γ(a)).

We can now extend φ to a homomorphism ψ from Σ∗ onto MMΣ
. Now, consider any

x = a1a2 · · · an ∈ Σ∗ with ai ∈ Σ. For any γ ∈MΣ it holds that ψ(x)(γ) = γ̂(x) because

ψ(x)(γ) = ψ(a1 · · · an)(γ) = ψ(a1)(γ) · · ·ψ(an)(γ) = γ(a1) · · · γ(an) = γ̂(a1 · · · an) = γ̂(x).

We define
F = ψ(Σ∗), (5.1)

which is clearly a submonoid of MMΣ
. We can even prove the following property:

Lemma 5.1.13. If V is generated by a single monoid M , then F̂V(Σ) is isomorphic to F

as defined in (5.1) Therefore, F̂V(Σ) is isomorphic to a submonoid of MMΣ
and thus finite.

Proof. Let again φ be the function from Σ toM withMMΣ
with φ(x) = (γ 7→ γ(x)) and ψ

its homomorphic extension on Σ∗. Let us consider the function π : Σ∗
/∼n

→ F : [u] 7→ ψ(u).
First, let us show that this function is well defined. Let u, v be in Σ∗

/∼n
such that u ∼n v.

This means that for all monoids N ∈ V and homomorphisms γ : Σ∗ → N it holds that
γ(u) = γ(v). Now let γ be any function from Σ to M . This function can be extended
to a unique γ̂ homomorphism from Σ∗ to M and since M ∈ V and u ∼V v, it holds that
ψ(u)(γ) = γ̂(u) = γ̂(v) = ψ(v)(γ). Since γ was arbitrary, we get that ψ(u) = ψ(v). There-
fore, π is well defined.
We also note, that π is a homomorphism because ψ is. Furthermore, π is clearly surjective.
We claim, that π is injective. To prove this, we consider u, v ∈ Σ∗ such that ψ(u) = ψ(v).
Let us now take a monoid N ∈ V and a homomorphism ζ : Σ∗ → N . Since N ∈ V and V is
generated by M , we have that N is a quotient of a submonoid of a power of M . Therefore,
there is an n ∈ N, a submonoid T of Mn and a surjective homomorphism ξ : T → N .
By Lemma 2.2.10, there exists a homomorphism α : Σ∗ → T such that ζ = ξ ◦ α. For all
i ≤ n, we define αi = πi ◦ α with πi : M

N → M being the i − th projection. Obviously,
α(u) = (αi(x))

n
i=1. Moreover, we see that αi is a homomorphism from Σ∗ to M for all

i and that αi implies a unique function βi from Σ to M . Since ψ(u) = ψ(v), we have
that αi(u) = ψ(u)(βi) = ψ(v)(βi) = αi(v) and therefore α(u) = α(v). Thus, we get that
ζ(u) = ζ(v) because ζ = ξ ◦ α. Since ζ and N were arbitrary, we get that u and v cannot
be separated by any monoid in V and thus u ∼V v, which proves the claim.
We now have the situation that of Theorem 1.1.27 because π−1 is clearly uniformly continu-
ous since F is equipped with the discrete metric. Therefore, there exists a unique bijective,
uniformly continuous extension π̂ of π on F̂V(Σ). By Lemma 5.1.9 this extension is also a
homomorphism. Therefore, F̂V(Σ) is isomorphic to F . ■

If F̂V(Σ) is finite for every Σ, we call V locally finite. Clearly, every variety that is
generated by a single monoid is locally finite, however the converse is generally not true.

1This concept is very similar to the evaluation functional known from functional analysis.
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5.2 Identites

Definition 5.2.1. Let Σ be an alphabet, u, v in Σ̂∗ and M a monoid. M satisfies the
profinite identity u = v if for every homomorphism φ : Σ∗ →M and its extension φ̂ : Σ̂∗ →
M it holds that φ̂(u) = φ̂(v). If u and v are words, we call u = v an explicit identity.

Note, that we could speak of the homomorphisms from Σ̂∗ to M directly because they
each induce a unique homomorphism from Σ∗ to M . As stated in the definition above
a profinite identity is actually a pair of profinite words. However, if we have an explicit
identity, we can think of it in terms of elements of a monoid. Consider the following
example:

Example 5.2.2. Given the explicit identity ab = ba with a, b ∈ Σ, we can look at the
monoids fulfilling it in two ways. One way is the definition, that M fulfills the identity
if for every homomorphism φ it holds that φ(ab) = φ(ba). Note, that we don’t have to
consider the extension of φ since ab and ba are words. Since we can choose φ(a) and φ(b)
freely, we have that M fulfills that for every x, y ∈M it holds that xy = yx. Furthermore,
if this property holds for all x, y ∈ M , it clearly follows that φ(ab) = φ(ba) for every
homomorphism φ. Therefore, we can simply consider a and b to be elements of the monoid
M and do not have to rename them to x and y.

We can also use this approach to interpret identities containing ω-terms:

Example 5.2.3. Consider the profinite identity xωyω = yωxω with letters x and y. We
claim that this identity is equivalent to the demand that for all idempotent elements a, b of
M it holds that ab = ba. We have shown that under every homomorphism ψ from Σ̂∗ toM
it holds that ψ(xω) = ψ(x)ω (with ω being the exponent of M) is idempotent. Therefore,
the implication thatM satisfies the identity if all the idempotents ofM commute is trivial.
On the other hand, assume that M satisfies the identity and let a, b be two idempotent
elements of M . Now consider the homomorphism ψ that fulfills x 7→ a and y 7→ b. This is
possible because x and y are letters. Now, a and b have to commute in M , which proves
the claim.

One important property of identities is the following:

Lemma 5.2.4. Let u and v be profinite words in Σ̂∗ and M a monoid that satisfies the
identity u = v. Then for all x, y ∈ Σ̂∗ it holds that M satisfies the identity xuy = xvy.
Furthermore, for every alphabet Γ and homomorphism φ : Σ∗ → Γ∗ with extension φ̂ it
holds that M satisfies the identity φ̂(u) = φ̂(v).

Proof. Let φ be any homomorphism from Σ∗ to M and φ̂ its extension from Σ̂ to M .
Since M fulfills the identity u = v, it clearly holds that φ̂(xuy) = φ̂(x)φ̂(u)φ̂(y) =
φ̂(x)φ̂(v)φ̂(y) = φ̂(xvy). Therefore, M satisfies the identity xuy = xvy.
Let ζ be a homomorphism from Σ∗ to Γ∗ with extension ζ̂ and φ a homomorphism from
Γ∗ to M with extension φ̂. Then, it holds that φ ◦ ζ is a homomorphism from Σ∗ to
M with extension χ. Furthermore, we see that φ̂ ◦ ζ̂ extends φ ◦ ζ and because this ex-
tension is unique, we have that φ̂ ◦ ζ̂ = χ. Because M satisfies the original identity, we
have that φ̂(ζ̂(u)) = χ(u) = χ(v) = φ̂(ζ̂(v)) and therefore that M satisfies the identity
ζ̂(u) = ζ̂(v). ■
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5.3 Reiterman’s theorem

We now come to the most important result of this thesis: Theorem 5.3.5. It shows the
connection between varieties of monoids and profinite identities. Before we get to the
theorem, we should agree on important notation:

Definition 5.3.1. Let E be a set of profinite identities. Then [E] denotes the class of
finite monoids that satisfy E.

This leads directly to this important lemma:

Lemma 5.3.2. Let E be a set of profinite identities. Then [E] is a variety of monoids.

Proof. We know from Lemma 3.1.2 that varieties of monoids are closed under intersection.
Therefore, it suffices to consider the case, where E = {u = v}. Now let us show, that [E]
is a variety.

(i) Let M be a monoid that satisfies u = v. Then clearly, every submonoid N of M
satifies the identity and N ∈ [E]

(ii) Let M be in [E] and N a quotient of M . That means, there is a surjective homo-
morphism π from M to N . Now take any homomorphism φ from Σ∗ to N with
extension φ̂. By Lemma 2.2.10 there exists a homomorphism γ : Σ∗ → M such that
φ = π ◦ γ. Since M satisfies the identity, we have that γ̂(u) = γ̂(v) and therefore
π(γ̂(u)) = π(γ̂(v)). Moreover, we have that π ◦ γ̂ extends φ. But since this extension
is unique, we have that φ̂ = π ◦ γ̂ and therefore N satisfies the identity.

(iii) Let (Mi)i∈I be a finite family of monoids that satisfy the identity and define M =∏
i∈IMi. Now take any homomorphism from Σ∗ to M and consider the homomor-

phisms πi ◦ φ from Σ∗ to Mi with πi being the projection from M onto Mi. Since
πi ◦ φ is a homomorphism from Σ∗ to Mi and because πi ◦ φ̂ is the unique extension
of πi ◦ φ, we have that πi(φ̂(u)) = πi(φ̂(v)) for every i ∈ I. Therefore, φ̂(u) = φ̂(v)
and M fulfills the identity.

■

Definition 5.3.3. We say a variety of monoids V satisfies an identity if all the monoids of
V satisfy the identity. In this case, we say the identity is an identity of V.

Lemma 5.3.4. Let Σ be a finite alphabet and u, v two profinite words of Σ̂∗. Then a variety
V satisfies the identity u = v iff π̂V(u) = π̂V(v) with π̂V being the extension of πV .

Proof.

⇒ If V satisfies u = v, then u and v cannot be separated by any monoid of V. Unfortu-
nately, u and v are not words and we have to approach this problem via sequences.
Let (un)n∈N and (vn)n∈N be sequences in Σ∗ such that limun = u and lim vn = v.
Since V satisfies the identity, we have that for every M ∈ V and every homomor-
phism φ : Σ∗ → M it holds that φ̂(u) = φ̂(v). Note that φ and φ̂ are continuous
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and therefore limφ(un) = φ̂(u) = φ̂(v) = limφ(v). Since M is discrete, this can only
be the case if there is an Nφ ∈ N such that φ(un) = φ(vn) for all n ≥ Nφ. If we
now take any n ∈ N and consider M as the class of all homomorphisms from Σ∗ to
any M ∈ V with size ≤ n. Note, that this class is a finite set, if we only consider
the monoids that are not isomorphic. Now define N = max{Nφ | φ ∈ M} < +∞.
By choice of N it follows that φ(uk) = φ(vk) for all φ ∈ M, k ≥ N and therefore
dV(uk, vk) < 2−n for all k ≥ N . That means that lim dV(un, vn) = 0. Now con-
sider the sequences πV(un) and πV(vn). Per definition, it holds for all n ∈ N that
dV(πV(un), πV(vn)) = dV(un, vn). Therefore, lim dV(πV(un), πV(vn)) = 0 and thus,
we get by Lemma 1.1.5 that π̂V(u) = limπV(un) = limπV(vn) = π̂(v).

⇐ Now let π̂V(u) = π̂V(v). This means, that u and v can be approached with sequences
(un)n∈N and (vn)n∈N such that limπV(un) = limπV(vn) and therefore lim dV(un, vn) =
lim dV(πV(un), πV(vn)) = 0. Thus, for every k ∈ N there exists an N ∈ N such that
un and vn cannot be separated by a monoid in V with size ≤ k for all n ≥ N .
Therefore, for any homomorphism φ : Σ∗ →M with M ∈ V there is an N such that
φ(un) = φ(vn) for all n ≥ N and thus φ̂(u) = φ̂(v).

■

Theorem 5.3.5 (Reiterman). A class of finite monoids is a variety iff it can be defined
by a set of profinite identities.

Proof. We have already shown in Lemma 5.3.2 that the class of monoids defined by a
set of profinite identities is a variety. Now, we only need to show that every variety can
be described that way. Let V be a variety of finite monoids, E the class of profinite
identities that are satisfied by all M ∈ V and W = [E]. Obviously, V ⊆ W. Now take any
monoid in W. We claim that M is in V. M is finite and therefore, there is an alphabet
Σ and a surjective homomorphism φ : Σ → M , which can be extended to a uniformly
continuous homomorphism φ̂ : Σ̂∗ → M , which is clearly surjective as well. Without loss
of generality, we can assume that M is Σ-generated. If it were not, we could consider the
Σ-generated monoid that is isomorphic to M , which is clearly in V if and only if M is
in V. Now let π̂V : Σ̂∗ → F̂V(Σ) be the extension of the natural homomorphism πV and

u, v ∈ Σ̂∗. By Lemma 5.3.4 we have that π̂V(u) = π̂V(v) iff u = v is an identity of V. In
particular, it holds that πV(u) = πV(v) implies that φ̂(u) = φ̂(v). Therefore, the function
γ : F̂V(Σ) → M : π̂V(u) 7→ φ̂(u) is well defined because π̂V is surjective. We also see that
φ̂ = γ ◦ π̂V and that γ is a surjective homomorphism. We now show that γ is continuous.
M is discrete and finite. Therefore, every closed set can be written as finite union of sets of
the kind {m}. Showing that γ−1({m}) is closed, proves that γ is continuous. We see that
φ̂−1({m}) = (γ ◦ π̂V)−1({m} = π̂−1

V (γ−1({m})) and therefore π̂V(φ̂
−1({m})) = γ−1({m}).

Since φ̂ is continuous, we have that φ̂−1({m}) is closed and as a closed subset of a compact
set it is also compact by Lemma 1.1.24. Therefore π̂V(φ̂

−1({m})) is compact by Lemma
1.1.25 and thus closed, which shows that γ is continuous. That means, that M is in V by
Lemma 5.1.12 as it is a continuous quotient of F̂V(Σ) and Σ-generated. ■

Example 5.3.6. As we have seen in Example 5.1.3, the class C of the commutative finite
monoids is a variety. Having defined identities, we also see with whith identity we can
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describe C. Clearly, all the monoids in satisfy the identity ab = ba over the alphabet {a, b}.
Furthermore, if a monoid satisfies this identity, it is clearly commutative and we get the
equality.

Example 5.3.7. Consider the aperiodic monoid M . That means that for every element
x ∈ M there is an n ∈ N such that xn+1 = xn. Let x be any element in M and xl = s its
idempotent power. Now take a multiple ml of l such that ml > n. Then sx = smxxmlx =
xml = xl = s. Therefore M fulfills the profinite identity xωx = xω.
Now consider any monoid M that fulfills the profinite identity xωx = xω. Then, clearly

M is aperiodic. Simply choose the homomorphism φ : Σ∗ →M that maps x to any element
m ∈M . Then xω is mapped to the idempotent ml and we have that mlm = ml.
It follows that the class of aperiodic finite monoids can be described by the profinite

identity xωx = xω and is therefore a variety.
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