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Introduction

Induction is a reasoning principle that is pervasive in mathematics and computer science. There-
fore there is a strong desire to automate the search of proofs by induction. Automated inductive
theorem proving is an area of research that is concerned with the development of algorithms
which find proofs by induction automatically.

In this lecture we study the logical foundations of this topic. We use proof-theoretic and model-
theoretic methods to analyse common approaches and algorithms in terms of mathematical
logic. The emphasis is on delineating the strength and capabilities of these methods. In par-
ticular, we analyse straightforward induction proofs, equational theory exploration, saturation
theorem proving with explicit induction axioms, and clause set cycles. The employed mathe-
matical methods concern mostly weak arithmetical theories such as open induction or existential
induction.

The order of the chapters in this lecture notes (roughly) follows the strengths of the methods
considered.
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Chapter 0

Preliminaries

In this chapter we briefly review important notions, definitions, and results which will be relevant
for this lecture. Recommendable introductions to first-order logic can be found, e.g., in [1]
and [24].

0.1 First-order logic

Throughout this lecture we will work with first-order logic with equality. A first-order language
is a set L consisting of constant symbols, function symbols, and predicate symbols. An L
term is composed of variables and function symbols and constant symbols from L. The free
variables of a term are defined as usual. We will often write t, u, v, . . . for terms. The notation
t(x1, . . . , xn) indicates that the free variables of t are among x1, . . . , xn. An L atom consists
of a predicate symbol from L or the equality symbol = together with a tuple of L terms of
appropriate arity. An L formula is composed from atoms using the quantifiers ∀, ∃ and the
propositional connectives ∧, ∨, ¬, and →. We will write F(L) for the set of L formulas. The free
variables of a formula are defined as usual. As for terms, the notation φ(x1, . . . , xn) indicates
that the free variables of the formula φ are among x1, . . . , xn. An L sentence is a formula
without free variables. Often the language L will be clear from the context or irrelevant. Then
we simply speak about terms, atoms, and formulas without mentioning L explicitly. We will
use (the meta-level symbol) ≡ to denote syntactic equality between terms, formulas, etc. which
is not to be confused with (the object-level symbol) = representing equality. For a formula F , a
term t, and similiar objects we will write L(F ), L(t), . . . for the first-order language consisting
of all constant, function, and predicate symbols that occur in F , in t, etc. A quantifier ∀x in a
formula φ is called strong quantifier if it occurs under an even number of negations in φ (where
the left-hand side of an implication is counted as a negation) and weak quantifier if it occurs
under an odd number of negations in φ. Dually, a quantifier ∃x in a formula φ is called strong
quantifier if it occurs under an odd number of negations in φ and weak quantifier if it occurs
under an even number of negations.

An L structure M is given by 1. a non-empty set M , the domain of M, 2. for every constant
symbol c ∈ L an element cM ∈M , 3. for every function symbol f ∈ L a function fM :Mk →M
where k is the arity of f , and 4. for every predicate symbol P ∈ L a predicate PM ⊆Mk where
k is the arity of P . Often we will write a ∈ M instead of a ∈M to indicate that a is an element
of the domain of M. A variable assignment for M is a mapping v from a set of variables to M .
For an L structure M, an L formula φ, and a variable assignment v that maps all free variables
of φ to elements of M , we define M, I |= φ in the usual way by induction of φ. Then M, I |= φ
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means that φ is true in M under the interpretation I of its free variables. For a sentence σ
we simply write M |= σ since I is not needed. If we write M |= φ for a formula φ we mean
M |= ∀∗ φ where ∀∗ φ denotes the universal closure of the formula φ. If M |= φ for a formula
φ we also say that M is a model of φ.

An L formula φ is called satisfiable if there is an L structure M with M |= φ. An L formula φ
is called valid if M |= φ for every L structure M. We also write |= φ to state that φ is a valid
formula.

Let L and L′ be first-order languages with L′ ⊆ L. For an L structure M, the L′ reduct of M,
written as M↾L′ , is an L′ structure with the same domain as M whose interpretation has been
restricted to the symbols of L′. If N is the L′ reduct of the L structure M, we also say that M
is an expansion of N to L.

There are many different proof systems for first-order logic with equality. They are all equivalent
w.r.t. provability. For a set of sentences Γ and a sentence σ we write Γ ⊢ σ to denote that there
is a proof of σ from Γ. We write Γ |= σ if M |= Γ implies M |= σ for all structures M.

Theorem 0.1 (Soundness). Let Γ be a set of sentences and let σ be a sentence. If Γ ⊢ σ, then
Γ |= σ.

Theorem 0.2 (Completeness). Let Γ be a set of sentences and let σ be a sentence. If Γ |= σ,
then Γ ⊢ σ.

A theory is a deductively closed set of sentences T , i.e., T ⊢ σ implies σ ∈ T . An axiomatisation
of a theory T is a set of sentences A s.t. A ⊢ σ iff T ⊢ σ. For a structure M, the theory of M is
defined as Th(M) = {σ sentence | M |= σ}. A theory T is called complete if for every sentence
σ: T ⊢ σ or T ⊢ ¬σ. A theory T is called consistent if there is no sentence σ s.t. T ⊢ σ and
T ⊢ ¬σ. A theory T ′ is called extension of a theory T if T ′ ⊇ T .

One of the most central results about first-order logic is the compactness theorem.

Theorem 0.3 (Compactness Theorem). Let Γ be a set of sentences. If every finite Γ0 ⊆ Γ is
satisfiable, then Γ is satisfiable.

0.2 Theories of arithmetic

The language of arithmetic is LA = {0, s,+, ·,≤}. Robinson’s theory of minimal arithmetic Q
consists of the universal closures of the following formulas:

s(x) ̸= 0 (Q1)

s(x) = s(y) → x = y (Q2)

x ̸= 0 → ∃y x = s(y) (Q3)

x+ 0 = x (Q4)

x+ s(y) = s(x+ y) (Q5)

x · 0 = 0 (Q6)

x · s(y) = (x · y) + x (Q7)

x ≤ y ↔ ∃z z + x = y (Q8)

Let φ(x, z1, . . . , zk) be a formula. Then the induction axiom with induction formula φ(x, z) is:

Ixφ(x, z) ≡ φ(0, z) ∧ ∀x (φ(x, z) → φ(s(x), z) → ∀xφ(x, z).
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The variables z1, . . . , zk are called parameters of this induction axiom. Let Φ be a set of formulas.
Then we define Φ-IND = {∀z Ixφ(x, z) | φ(x, z) ∈ Φ}. The theory of Peano arithmetic (PA) is
axiomatised by Q+ F-IND where F is the set of all LA formulas.

For i ∈ N and a term t we define the term si(t) by s0(t) :≡ t and si+1(t) :≡ s(si(t)). For n ∈ N
the numeral n is defined as the term sn(0). Let L be a language containing 0 and s, let M
be an L structure, and let a ∈ M. Then a is called standard number if there is an n ∈ N s.t.
a = nM and nonstandard number otherwise. The set of natural numbers N with the natural
interpretation of the symbols in LA is an LA structure: the standard model (of arithmetic).
This structure, which is written as N, does not contain a nonstandard number. However, one
can use the compactness theorem of first-order logic to establish the existence of a structure
with nonstandard numbers.

The following proof establishes the existence of a nonstandard model of Th(N). It is a typical
example for a compactness argument: let L = LA∪{c/0} and let Γ = Th(N)∪{c ̸= 0, c ̸= 1, c ̸=
2, . . .}. Let Γ0 be a finite subset of Γ. Then Γ0 contains only a finite numbers of formulas of the
form c ̸= i. We define the L structure M0 as the expansion of the standard model N by setting
cM0 = n for an n ∈ N s.t. c ̸= n /∈ Γ0. Then M0 |= Γ0, so, by the compactness theorem, there
is an L structure M s.t. M |= Γ. We define N as the LA reduct of M. Then N is a model of
Th(N) which contains the nonstandard element cM.

0.3 Inductive data types

We will often work with a slight extension of first-order logic with equality: many-sorted first-
order logic with equality. In this setting there is a fixed finite set of sorts: s1, . . . , sn. A
many-sorted (first-order) language L is a set of typed constant symbols, functions symbols, and
predicate symbols where the type of a constant symbols is a sort si, the type of a k-ary function
symbols is an expression of the form si1 × · · · × sik → sik+1

, and the type of a predicate symbol
is an expression of the form si1 × · · · × sik . The set of L terms is defined inductively, allowing
composition of terms only when they are typed correctly. When forming an L atom it is now also
necessary to respect types, also in the case of equality atoms. The set of L formulas is defined
inductively, with every variable being annotated with one of the sorts s1, . . . , sn. Usually, we
will not write the sort annotations of variables as the sort of a variable will be clear from the
context. An L structure M has a domain for each of the sorts s1, . . . , sn, written as sM1 , . . . , sMn .

Example 0.4. Given two sorts s1 and s2 let L = {f : s1×s2 → s1, c : s1, d : s2}. Then f(c, d) = c
is an L atom but f(c, c) = c and f(c, d) = d are not.

Inductive data types are special sorts. Let s1, . . . , sn be sorts. A definition of an inductive
datatype D on top of s1, . . . , sn is given by a finite set of constructors c1, . . . , ck where, for
i = 1, . . . , k, ci is a many-sorted function symbol of type τ1i × . . .×τ

mi
i → D where τ1i , . . . , τ

mi
i ∈

{D, s1, . . . , sn}. In order for such a set of constructors to be a valid definition of an inductive
data type, there has to be an i ∈ {1, . . . , k} with τ1i , . . . , τ

mi
i ∈ {s1, . . . , sn}. This i is a base

case. A term that consists of construtors only will also be called constructor term. It is useful to
think of constructor terms as denotations of objects. Later we will define additional functions
that manipulate these objects.

Example 0.5. The inductive data type Nat of natural numbers is defined by the constructors
0 : Nat and s : Nat → Nat. The constructor terms of Nat are exactly the numerals.

Example 0.6. Given a sort s, the inductive data type List(s) of lists with elements from s is
defined on top of s by the constructors nil : List(s) and cons : s×List(s) → List(s). The term nil
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represents the empty list. A term of the form cons(a, L) represents the list whose first element
is a and whose rest is L. In particular, List(Nat) is the type of lists of natural numbers.

Let D be an inductive data type defined on top of s1, . . . , sn. Let M1, . . . ,Mn be sets, intended
as interpretations of s1, . . . , sn. Then the set of constructor terms of D w.r.t. M1, . . . ,Mn,
written as TD(M1, . . . ,Mn) is the smallest set X that satisfies

aj ∈ X if τ ji = D and aj ∈Ml if τ
j
i = sl for all j ∈ {1, . . . ,mi}

ci(a1, . . . , ami) ∈ X

for all i ∈ {1, . . . , k}.
Let s1, . . . , sn be sorts s.t. sl+1, . . . , sn are inductive data types with si being defined on top of
s1, . . . , si−1. Let M1, . . . ,Ml be sets. Then the standard model S of s1, . . . , sn w.r.t. M1, . . . ,Ml

is defined by

sSi =

{
Mi for i = 1, . . . , l

Tsi(sS1 , . . . , s
S
i−1) for i = l + 1, . . . , n

and the constructors being defined as themselves in the semantics.

Example 0.7. TNat is the smallest set X closed under

0 ∈ X

a1 ∈ X

s(a1) ∈ X

TList(s)(TNat) is the smallest set X closed under

nil ∈ X

a1 ∈ TNat L2 ∈ List(Nat)

cons(a1, L2) ∈ List(Nat)

So the standard model S of List(Nat) has the domains NatS = TNat and List(Nat)S = TList(s)(TNat).

Just as numerals denote numbers in the context of arithmetic, construtor terms denote data in
the context of inductive data types. The role of programs will be played by functions defined by
primitive recursion. A primitive recursive function definition over an inductive datatype has the
following form: Let s1, . . . , sn be types and let D be an inductive data type on top of s1, . . . , sn
with constructors c1, . . . , ck where ci : τ

1
i × . . . × τmi

i → D with τ1i , . . . , τ
mi
i ∈ {D, s1, . . . , sn}.

Let f : σ1 × · · · × σl ×D → D be a new function symbol. Then a primitive recursive definition
of f consists of the set Df = {Dci

f | 1 ≤ i ≤ k} of equations where Dci
f is

f(x, ci(y1, . . . , ymi)) = ti(x, y1, . . . , ymi , f(x, yj1), . . . , f(x, yjp)) (Dci
f )

for a term ti which does not contain f and {j1, . . . , jp} = {j ∈ {1, . . . ,mi} | τ ji = D}. Here
we have defined f w.l.o.g. by recursion on the last argument. In fact we allow definition by
recursion on any argument.

Example 0.8. In the inductive data type Nat, the following equations are primitive recursive
definitions of the precessor function and of addition.

p(0) = 0 (D0
p)

p(s(x)) = x (Ds
p)

x+ 0 = x (D0
+)

x+ s(y) = s(x+ y) (Ds
+)

Based on these definitions we can compute with the defined functions as in the following calcu-
lation:

p(s(s(0))) + s(0) =Ds
p s(0) + s(0) =Ds

+ s(s(0) + 0) =D0
+ s(s(0))
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Example 0.9. In the inductive data type List(s), the following equations are a primitive recursive
definition of the concatenation of lists.

nil ◦ L = L (Dnil
◦ )

cons(x,K) ◦ L = cons(x,K ◦ L) (Dcons
◦ )

We can compute the concatenation of two lists as in

cons(a, cons(b, nil)) ◦ cons(c, nil) =Dcons
◦ cons(a, cons(b, nil) ◦ cons(c, nil))

=Dcons
◦ cons(a, cons(b, nil ◦ cons(c, nil)))

=Dnil
◦ cons(a, cons(b, cons(c, nil))).

The observations at the end of examples 0.8 and 0.9 can be generalised in the sense of the
following theorem.

Theorem 0.10. Let s1, . . . , sn be types, let D be an inductive data type defined on top of
s1, . . . , sn, let S be the standard model of s1, . . . , sn, D w.r.t. the sets M1, . . . ,Mn, and let Df

be a definition of f by primitive recursion on D. Then there is a unique function F s.t. S, f 7→
F |= Df .

Each inductive data type induces an induction axiom for structural induction. Let c1, . . . , ck be
the constructors of an inductive data type D. Let φ(x, z) be a formula. For i = 1, . . . , k define

αi,xφ(x, z) ≡ ∀x1 · · · ∀xmi

 ∧
j∈{1,...,mi}

τ ji =D

φ(xj , z) → φ(ci(x1, . . . , xmi), z)


Then the structural induction axiom for D is

IDx φ(x, z) ≡
k∧

i=1

αi,xφ(x, z) → ∀xφ(x, z).

Example 0.11. For the inductive data type Nat we have

α1,xφ(x, z) ≡ φ(0, z),

α2,xφ(x, z) ≡ ∀x1 (φ(x1, z) → φ(s(x1), z)), and

INatx φ(x, z) ≡ α1,xφ(x, z) ∧ α2,xφ(x, z) → ∀xφ(x, z).

Example 0.12. For the inductive data type List(s) we have

α1,xφ(x, z) ≡ φ(nil, z),

α2,xφ(x, z) ≡ ∀x1∀L2 (φ(L2, z) → φ(cons(x1, L2), z)), and

IListx φ(x, z) ≡ α1,xφ(x, z) ∧ α2,xφ(x, z) → ∀Lφ(L, z).

0.4 Saturation theorem proving

The set of formulas which are valid in first-order logic is undecidable but computationally
enumerable. So there are algorithms which, when given a first-order formula φ, will terminate
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with the information “φ is valid” whenever φ is indeed valid. But, in general, for non-valid
φ they will not terminate. Automated deduction is a research area that is concerned with
developing practically efficient such algorithms. Resolution-based saturation theorem proving
is the most successful technique for automated deduction in pure first-order logic. In this section
we briefly introduce some basic notions of this area in so far they are relevant for the rest of
this course.

Resolution-based saturation theorem proving works with clause sets. A literal is an atom or
a negated atom. A clause is a finite set of literals, interpreted as the universal closure of the
disjunction of these literals. A clause set is simply a set of clauses and is interpreted as the
conjunction of its clauses. Most of the clause sets we will be dealing with will be finite sets.

The standard transformation of a formula φ, whose validity we would like to check, proceeds
as follows:

1. Negate φ to obtain ¬φ (which is unsatisfiable iff φ is valid)

2. Skolemize ¬φ, i.e., remove all weak quantifiers, to obtain SK∃(¬φ)

3. Compute the clause normal form C = CNF(SK∃(¬φ)) of the Skolemization of ¬φ.

Then C is unsatisfiable iff φ is valid. We will now look at steps 2. and 3. in detail.

Skolemisation.

Skolemisation is a transformation of formulas that removes one type of quantifiers, either the
weak or the strong quantifiers.

Definition 0.13. We write s(L) for a set of constant and function symbols which consists of
distinct and new function symbols f/n for every L formula Qxφ with n free variables and
Q ∈ {∀,∃}. We define sk(L) = L∪s(L). We write ski(L) for the i-fold iteration of sk and define
skω(L) =

⋃
i∈N sk

i(L).

Strictly speaking, the above definition is not well-formed: s(·) is not a function because the
function symbols in s(L) are not specified. The essential point if that the concrete symbols
are not relevant as long as they are new and distinct. New means that f does not occur in L
and distinct means that two different formulas Q1x1 φ1 and Q2x2 φ2 yield two different function
symbols. If n = 0 then f , being a 0-ary function symbol, is a constant symbol. In abuse of
notation, we will often write f = s(Qxφ) to denote that f is the Skolem symbol corrensponding
to Qxφ.

For Q ∈ {∀, ∃} we define

Q =

{
∀ if Q = ∃
∃ if Q = ∀

Definition 0.14. We define the functions SK∃,SK∀ : F(skω(L)) → F(skω(L)) as follows:

SKQ(A) = A for an atom A

SKQ(A ◦B) = SKQ(A) ◦ SKQ(B) for ◦ ∈ {∀, ∃}

SKQ(¬A) = ¬SKQ(A)

SKQ(A→ B) = SKQ(A) → SKQ(B)

SKQ(QyA(x, y)) = SKQ(A(x, f(x))) (*)

SKQ(QxA) = QxSKQ(A)
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where, in (∗), x are exactly the free variables of QyA(x, y) and f = s(QyA(x, y)).

Example 0.15. Let P/2 and Q/3 be predicate symbols, then

SK∃(∃x (∃y P (x, y) → ∀u∃v Q(x, u, v))) ≡ SK∃(∃y P (c, y) → ∀u∃v Q(c, u, v))

≡ SK∀(∃y P (c, y)) → SK∃(∀u∃v Q(c, u, v))

≡ ∃y SK∀(P (c, y)) → ∀uSK∃(∃v Q(c, u, v))

≡ ∃y P (c, y) → ∀uSK∃(Q(c, u, f(u)))

≡ ∃y P (c, y) → ∀uQ(c, u, f(u)).

Note that SK∃(F ) does not contain weak quantifiers and SK∀(F ) does not contain strong quan-
tifiers.

Definition 0.16. The Skolem axioms for a formula φ(x, y) are:

∃y φ(x, y) → φ(x, f(x)) (S∃
yφ)

φ(x, g(x)) → ∀y φ(x, y) (S∀
yφ)

where f = s(∃y φ(x, y) and g = s(∀y φ(x, y). For a language L we define

L-SA = {∀xSQ
y φ(x, y) | Q ∈ {∀,∃}, φ(x, y) is an L formula}.

The Skolem axioms provide a good intuition for the meaning of the Skolem functions. For the
existential quantifier: if there is a y s.t. φ(x, y), then f(x) is such a way. For the universal
quantifier, one can think of g(x) as an object y for which φ(x, y) is not true, if such an object
exists. Then, if φ(x, ·) is even true of this object of which it is not true (if such an object exists),
then it is true for all y.

Lemma 0.17. Let L be a first-order language, let φ be an skω(L) formula, and let Q ∈ {∀,∃}.
Then we have skω(L)-SA ⊢ φ↔ SKQ(φ).

: For sets of sentence Γ1 and Γ2 and a set F of formulas we write Γ1 ≃F Γ2 if for all φ ∈ F :
Γ1 ⊢ φ iff Γ2 ⊢ φ.

Theorem 0.18. Let L be a first-order language and let Γ be a set of L sentences. Then

1. skω(L)-SA + Γ ≃F(L) Γ,

2. SK∃(Γ) ≃F(L) Γ, and

3. Γ is satisfiable iff SK∃(Γ) is satisfiable.

Clause form transformation.

In transforming a formula without weak quantifiers into a clause set, there is a number of
issues, mostly concerning complexity, to consider which are imporant in practical applications.
For the purposes of this course, we do not have to deal with these aspects. So we will simply
fix a function CNF that maps a formula without weak quantifers to a clause set. We assume
that 1. L(CNF(φ)) ⊆ L(φ) and 2. |= φ ↔ CNF(φ). A straightforward way to realise such a
function is to move all quantifiers to a prenex position, push negations to the bottom, and then
distribute disjunctions of conjunctions. Note that, in practical applications, often normal form
transformations are used which do not satisfy 1. In order to simplify the results, for the time
being, we work with these assumptions.
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Saturation systems.

A saturation system is, essentially, a set of rules for modifying a clause. More specifically:

Definition 0.19. A reduction rule is a set of instances of the form

C1 · · · Cn

D1, . . . , Dm

where C1, . . . , Cn and D1, . . . , Dm are clauses.

The above reduction rule is interpreted as replacing C1, . . . , Cn with D1, . . . , Dm in the current
clause set.

Definition 0.20. An inference rule is a reduction rule that reintroduces its premises, i.e., a
reduction rule of the form

C1 · · · Cn

C1, . . . , Cn, D1, . . . , Dm

As a shorthand notation we will write

C1 · · · Cn

D1, . . . , Dm

for this inference rule.

Definition 0.21. A saturation system is a set of reduction rules. Let S be a saturation system.
Then S is called sound if, whenever a clause D is derivable from a clause set C in S, then C |= D.
Moreover, S is called refutationally complete if, whenever a clause set C is inconsistent, then S
derives the empty clause ∅ from C.

The central idea of saturation theorem proving is the following: in order to determine the
unsatisfiability of the input clause set C we start with setting C0 = C. Then we iteratively
add new clauses to the current clause set according to the rules of S, resulting in a sequence
C0, C1, C2, . . .. If S is sound then all Ci follow logically from C. If S is refutationally complete,
then one of the Ci will contain ∅ if C is unsatisfiable (and the rules are applied in a fair way).
I.e. we try to saturate the clause set C with all its logical consequences. Therefore one of the
following three things will happen when a sound and refutationally complete saturation system
is applied to a concrete input clause set C:

1. One of the Ci contains ∅. In this case we can conclude that C is unsatisfiable.

2. After a finite number of steps, no more new clauses can be added, i.e., the current clause
set is saturated. In this case we can conclude that C is satisfiable.

3. The saturation process does not terminate.

Unification.

In order to describe a concrete saturation system we need to introduce the concept of unification.
A substitution is a mapping of finitely many variables to terms. The application of a substitution
σ to a term t is written as tσ. It replaces all variables in the domain of σ by the associated
terms. All other variables remain unchanged. The concatenation of two substitutions σ and τ
is written as σ ◦ τ . The application of σ ◦ τ to a term t is defined as t(σ ◦ τ) = (tσ)τ , i.e., first
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apply σ, then τ . We say that σ is more general than θ, written as σ ≤ θ, if there is a τ s.t.
σ ◦ τ = θ. A unifier of two terms t1 and t2 is a substitution σ s.t. t1σ = t2σ. A substitution σ
is called most general unifier of t1 and t2 if σ is a unifier of t1 and t2 and, for every unifier θ of
t1 and t2: σ ≤ θ. The central result about unification is the following

Theorem 0.22. If two terms have a unifier, then they have a most general unifier.

Example 0.23. Let t1 ≡ f(x, g(x)) and t2 ≡ f(g(y), z). Then t1 and t2 are unifiable and the
most general unifier of t1 and t2 is σ = [x\g(y), z\g(g(y))].

Resolution and Paramodulation.

For a literal L we define

L =

{
A if L ≡ ¬A
¬A if L is an atom A

Example 0.24. The resolution rule (including renaming) is

C ∨ L L′ ∨D
(C ∨D)σ

Res

where C ∨L and L′ ∨D are w.l.o.g. variable-disjoint and σ is the most general unifier of L and
L′.

Example 0.25. The factoring rule is

L1 ∨ L2 ∨ C
(L1 ∨ C)σ

Fact

where σ is the most general unifier of L1 and L2.

Example 0.26. Let C = {{P (c)}, {¬P (x), P (f(x))}, {¬P (f(f(c)))}}. Then C is unsatisfiable
and has the following resolution refutation.

P (c) ¬P (x), P (f(x))
P (f(c))

Res[x\c] ¬P (x), P (f(x))
P (f(f(c)))

Res[x\f(c)] ¬P (f(f(c)))
∅ Resid

Theorem 0.27. Res + Fact is a sound and refutationally complete saturation system for first-
order logic without equality.

In order to deal with equality, we introduce the paramodulation rules.

Example 0.28. Paramodulation is the inference rule

C ∨ s = t D
(C ∨D[t]p)σ

Paramod

where σ is the most general unifier of s and D|p.
Example 0.29. Reflexivity is the inference rule

t = t Ref

for any term t.
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Example 0.30. Let G = {{u · (v ·w) = (u · v) ·w}, {e · x = x}, {x−1 · x = e}, {x · x−1 = e}}. We
want to show that G ⊢ ∀xx · e = x by resolution and paramodulation. To that aim, we negate
and Skolemise the goal to obtain the clause set C = G ∪ {{c · e ̸= c}} which has the following
refutation:

e · x = x

y · y−1 = e

u · (v · w) = (u · v) · w
x−1 · x = e c · e ̸= c

c · (x−1 · x) ̸= c
Paramodid

(c · x−1) · x ̸= c
Paramod[u\c,v\x−1,w\x]

e · c ̸= c
Paramod[y\c,x\c]

∅
Res[x\c]

Throughout this course we will occasionally want to work with a particular saturation system
that is sound and refutationally complete for first-order logic with equality. We define the
saturation system R = Res + Fact + Paramod + Ref.

Theorem 0.31. R is a sound and refutationally complete saturation system for first-order logic
with equality.
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Chapter 1

Straightforward induction proofs

1.1 The use of new formulas

We begin with a basic example, probably the most well-known1 induction proof:

Theorem 1.1. For all n ≥ 1:

n∑
i=1

i =
n(n+ 1)

2
.

Proof. We proceed by induction on n. In the base case n = 1 we simply observe that 1 = 1·2
2 .

For the step case we have:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2

Claim:
∑n+1

i=1 i =
(n+1)(n+2)

2

and we show that

n+1∑
i=1

i =
n∑

i=1

i+ (n+ 1) =IH n(n+ 1)

2
+

2(n+ 1)

2
=

(n+ 2)(n+ 1)

2
,

which finishes the induction step and hence completes the proof.

Let us look at a another example now. By summing up odd numbers as in the following table

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

...

we notice that the first n consecutive odd numbers seem to always sum up to a square. We try
to prove this result now.

Theorem 1.2. The sum of the first n odd numbers is a square, i.e., for all n ≥ 1 there is a

k ∈ N s.t.

n∑
i=1

(2i− 1) = k2.

1J. C. F. Gauss was a nine year old schoolboy when, given the task to sum up the numbers from 1 to 100, he
amazed his teacher by giving the correct answer without any calculation. He did so, essentially, by reducing the
problem to a single multipliation along the line of the above formula for n = 100.
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We first try to prove this result as we did Theorem 1.1 above.

First proof attempt. For the base case n = 1 we have 1 = 12. For the step case we have
Induction hypothesis: ∃k0

∑n
i=1(2i− 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i− 1) = k21

We try to prove the claim by the following calculuation:

n+1∑
i=1

(2i− 1) =
n∑

i=1

(2i− 1) + (2n+ 1) =IH k20 + 2n+ 1 =
?· · ·= k21.

However, we get stuck trying to define k1 s.t. k20 + 2n+ 1 = k21. ⊠

What is the solution? Let us examine the examples above one more time. They do show that
the sum of the first n odd numbers is a square. But, beyond that, they also show the square of
which number it is. In fact, a short look suffices to come up with the conjecture that the sum
of the first n odd numbers is n2. This conjecture can now be proved in a straightforward way
by induction.

Proof of Theorem 1.2. For proving Theorem 1.2 it suffices to show that
∑n

i=1(2i− 1) = n2 for
all n ≥ 1. We will prove this by induction on n. For the base case n = 1 we have 1 = 12. For
the step case we have

Induction hypothesis:
∑n

i=1(2i− 1) = n2

Claim:
∑n+1

i=1 (2i− 1) = (n+ 1)2

and we prove the claim by the following calculation:

n+1∑
i=1

(2i− 1) =
n∑

i=1

(2i− 1) + 2n+ 1 =IH n2 + 2n+ 1 = (n+ 1)2.

The situation we are in now is this: the first proof attempt got stuck. The second attempt has
worked. But we do not know whether the first attempt is necessarily doomed to fail or we just
did not find the right way to carry it out. In the next section we will show that, indeed, it is
not possible to complete the first proof attempt. However, showing such an impossibility result
requires a thorough logical analysis.

This example, although it is quite simple, already illustrates the fundamental problem when
dealing with induction. Often, in order to prove some statement A, we have to carry out induc-
tion on another statement B (or several other statements). Finding suitable B’s algorithmically
is difficult. Put in simple terms, the relationship between such A’s and B’s is the central topic
of this lecture.

1.2 The need for new formulas

In this section we carry out a thorough logical analysis of the failed proof attempt for Theo-
rem 1.2. Our main result will be that, in a very strong sense, it is impossible to complete this
partial proof. To that aim we introduce some logical notions and we will rely on some logical
results and techniques covered in Chapter 0.
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The most fundamental difference between the proof of Theorem 1.1 and the proof of Theorem 1.2
is that the first was by induction on the very formula of the theorem, while the latter was not.
We make this distinction precise with the notion of a straightforward induction proof. For the
sake of flexibility, we already treat the case of several universal quantifiers here.

Definition 1.3. Let T be a theory and let ∀x1 · · · ∀xn φ(x1, . . . , xn) be a sentence s.t. φ(x)
does not start with ∀. Then ∀xφ(x) has a straightforward induction proof in T if there is an
i ∈ {1, . . . , n} s.t. T, Ixi∀x<i∀x>iφ(x) ⊢ ∀xφ(x).

For n = 1 this definition simplifies to: ∀xφ(x) has a straightforward induction proof if T, Ixφ(x) ⊢
∀xφ(x).
Example 1.4. We show that Theorem 1.1 has a straightforward induction proof. To that aim, we
first have to give a logical formalisation of the theorem. We will take the language of arithmetic
LA = {0, s,+, ·,≤} as basis. For representing the finite sum we extend LA by a unary function
symbol to obtain Lg = LA ∪ {g/1}. Our intention is to axiomatise g in such a way that it
represents the function n 7→

∑n
i=1 i via the direct computation of the sum. Consequently, we

define the following two axioms:

g(0) = 0 (D0
g)

∀x g(s(x)) = g(x) + s(x) (Ds
g)

As background theory we use Tg = Th(N) ∪ {D0
g , D

s
g}. Then Tg ⊢ g(n) =

∑n
i=1 i for all n ∈ N.

Note that the set Th(N) of all true arithmetical sentences is a very powerful set of axioms. For
this example, a much weaker set would suffice. The reason for choosing Th(N) at this point is
to facilitate the comparison with Theorem 1.11, which will establish that Theorem 1.2 does not
have a straightforward induction proof.

The theorem we want to show is
∑n

i=1 i =
n(n+1)

2 . Since fractions are not in our language we
simply multiply this equation with 2 so that our goal becomes 2 ·

∑n
i=1 i = n(n+1), or, formally:

∀xφ(x) where φ(x) ≡ 2 ·g(x) = x · s(x). We claim that ∀xφ(x) has a straightforward induction
proof in Tg. In order to show that, it suffices to show that Tg ⊢ φ(0) and Tg ⊢ ∀x (φ(x) →
φ(s(x))).

For the base case work in Tg: We have

2 · g(0) =D0
g 2 · 0 = 0 = 0 · 1.

For the step case work in Tg: Assuming 2 · g(x) = x · s(x) we have

2 · g(s(x)) =Ds
g 2 · (g(x) + s(x)) = 2 · g(x) + 2 · s(x)

=IH x · s(x) + 2 · s(x) = (x+ 2) · (x+ 1) = s(x) · s(s(x)).

Consequently Tg, Ixφ(x) ⊢ ∀xφ(x), i.e., ∀xφ(x) has a straightforward induction proof in Tg.

We now carry out an analogous formalisation of Theorem 1.2 and set out to prove that, in
contrast to Theorem 1.1, it does not have a straightforward induction proof. As in Example 1.4
we have to formalise a particular sum and we do so by introducing a new unary function
symbol that will be used on top of LA. We phrase the formalisation of Theorem 1.2 as a
challenge problem, a format that we will use frequently in this course. A challenge problem
typically consists of: 1. a first-order language L, 2. an L theory T , and 3. an L sentence σ.
The challenge consists of proving σ from T by a suitable form of induction. What makes it a
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challenge is the fact that, in one way or another, it is “difficult” to find a suitable induction. A
challenge problem is not a fully specified problem, since we do not want to make it precise what
“suitable induction” means. The intention is that a challenge problem is useful as an input to
an automated inductive theorem prover.

Challenge Problem 1.1 (Sum of odd numbers is a square).

� Language: Lf = LA ∪ {f/1}

� Axioms: Tf = Th(N) ∪ {D0
f , D

s
f} where

f(0) = 0 (D0
f )

∀x f(s(x)) = f(x) + s(2 · x) (Ds
f )

� Goal: ∀xψ(x) where ψ(x) ≡ ∃y f(x) = y · y

Note that Tf ⊢ f(n) =
∑n

i=1(2i− 1) for all n ∈ N. In order to show that Challenge Problem 1.1
does not have a straightforward induction proof, it is helpful to first work out an alternative
characterisation of the notion of straightforward induction proof in terms of inductive formulas.

Definition 1.5. Let L be a language containing 0 and s, let T be an L theory, and let φ(x) be
an L formula. Then we say that φ(x) is T -inductive if T ⊢ φ(0) and T ⊢ ∀x (φ(x) → φ(s(x))).

Note that the notion of T -inductive applies only to formulas with exactly one free variable. We
start by observing some simple properties of T -inductive formulas.

Lemma 1.6. Let L ⊇ {0, s} and let T be an L theory.

1. If φ(x) is T -inductive and T ⊆ T ′, then φ(x) is T ′-inductive.

2. If φ1(x) and φ2(x) are T -inductive, then φ1(x)∧φ2(x) and φ1(x)∨φ2(x) are T -inductive.

3. φ(x) is T -inductive iff T, Ixφ(x) ⊢ ∀xφ(x).

4. φ(x) is T -inductive iff T ⊢ Ixφ(x) ↔ ∀xφ(x).

Proof. 1 follows directly from the definition. For 2 assume that φ1(x) and φ2(x) are T -inductive.
Then

T ⊢ φ1(0) (1.1)

T ⊢ ∀x (φ1(x) → φ1(s(x))) (1.2)

T ⊢ φ2(0) (1.3)

T ⊢ ∀x (φ2(x) → φ2(s(x))) (1.4)

So, by (1.1) and (1.3), we have T ⊢ φ1(0) ∧ φ2(0) and T ⊢ φ1(0) ∨ φ2(0). Moreover, by (1.2)
and (1.4), we have T ⊢ ∀x (φ1(x) ∧ φ2(x) → φ1(s(x)) ∧ φ2(s(x))) and T ⊢ ∀x (φ1(x) ∨ φ2(x) →
φ1(s(x)) ∨ φ2(s(x))) by a case distinction in T .

For the left-to-right direction of 3, assume that φ(x) is T -inductive. Then T ⊢ φ(0) and
T ⊢ ∀x (φ(x) → φ(s(x))), so T, Ixφ(x) ⊢ ∀xφ(x). For the right-to-left direction of 3, we
proceed by showing the contraposition. To that aim, assume that φ(x) is not T -inductive.
Then i) T ⊬ φ(0) or ii) T ⊬ ∀x (φ(x) → φ(s(x))). In case i) there is an M0 |= T with
M0 ̸|= φ(0). So M0 ̸|= ∀xφ(x) but M0 |= Ixφ(x) because Ixφ(x) is equivalent to a formula of

16



the form ⊥ ∧ A → B in M0. Hence T, Ixφ(x) ⊬ ∀xφ(x). In case ii) there is an Ms |= T with
Ms ̸|= ∀x (φ(x) → φ(s(x))), so there is an a ∈ Ms s.t. Ms |= φ(a) and Ms ̸|= φ(s(a)). So
Ms ̸|= ∀xφ(x). On the other hand, Ms |= Ixφ(x) because Ixφ(x) is equivalent to a formula of
the form A ∧ ⊥ → B in Ms. Hence T, Ixφ(x) ⊬ ∀xφ(x).
4 follows immediately from 3 with the missing implication being obtained from the observation
that ∀xφ(x) → (A→ ∀xφ(x)) is a tautology.

The above properties 3 and 4 are useful characterisations of the T -inductive formulas. On the
one hand, a formula φ(x) is T -inductive iff ∀xφ(x) can be proved from Ixφ(x) in T (as in 3).
Note that this is just the definition of having a straightforward induction proof for a formula
with one free variable. On the other hand, a formula is T -inductive iff its universal closure
is equivalent to its induction axiom in T (as in 4). We will sometime use one, sometimes the
other characterisation. We now proceed to link straightforward induction proofs with inductive
formulas by carrying these observations over to the case of several variables.

Lemma 1.7. Let T be a theory and let ∀x1 · · · ∀xn φ(x1, . . . , xn) be a sentence s.t. φ(x) does
not start with ∀. Then ∀xφ(x) has a straightforward induction proof in T iff there is an
i ∈ {1, . . . , n} s.t. ∀x<i∀x>iφ(x) is T -inductive.

Proof. For i = 1, . . . , n let ψi(xi) = ∀x<i∀x>i φ(x). Then

T, Ixiψi(xi) ⊢ ∀xφ(x) iff T, Ixiψi(xi) ⊢ ∀xi ψi(xi) iffLem. 1.6/3 ψi(xi) is T -inductive.

Now we come back to showing that Challenge Problem 1.1 does not have a straightforward
induction proof. This will be essentially a compactness argument.

Definition 1.8. We define the language Lc,f = Lf ∪ {c/0} and the following sets of Lc,f

sentences:

Γ0,s
c = Th(N) ∪ {D0

f , D
s
f , ψ(c),¬ψ(s(c))}

Γs
c = Th(N) ∪ {Ds

f , ψ(c),¬ψ(s(c)), c ̸= 0, c ̸= 1, c ̸= 2, . . .}

Lemma 1.9. If Γs
c is satisfiable, then Γ0,s

c is satisfiable.

Proof. Let M |= Γs
c, then c

M is nonstandard. Define N from M by N↾LA∪{c}= M↾LA∪{c} and

fN (x) =

{
x2 if x is standard

fM(x) otherwise

Then N |= Th(N). N |= D0
f because fN(0) = 0. N |= Ds

f because n 7→ n2 satisfies Ds
f on the

standard numbers of N and fM satisfies Ds
f on the nonstandard numbers of N . Since cM is

nonstandard, f(c)N = f(c)M so N |= ψ(c) and f(s(c))N = f(s(c))M so N |= ψ(s(c)).

We can understand the above proof as, essentially, taking a model M of Γs
c and overwriting the

interpretation of f on the standard numbers in order to obtain a model N of Γ0,s
c . We need to

overwrite the interpretation of f(0) to satisfy D0
f . But since we also want to keep Ds

f satisfied,
this entails overwriting the interpretation of f on all standard numbers. Working with Γs

c instead
of Γ0,s

c allows us, in a next step, a higher degree of flexibility in defining the interpretation of
f on the standard numbers. This will be useful for obtaining a suitable counterexample by a
compactness argument.
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Lemma 1.10. Γs
c is satisfiable.

Proof. Let Γ0 ⊆ Γs
c be finite. Then there is an m ∈ N s.t. c ̸= m /∈ Γ0. Define the Lc,f structure

M0 by: M0 ↾LA
= N, cM0 = m, fM0 = βm where βm : N → N, n 7→ n2 + 2m + 1. Then

M0 |= Th(N). Moreover, βm(n+1) = (n+1)2+2m+1 = βm(n)+ 2n+1, so M0 |= Ds
f . Since

βm(m) = (m+1)2, we have M0 |= ψ(c). On the other hand βm(m+1) is not a square because

(m+ 1)2 = m2 + 2m+ 1 < βm(m+ 1) = m2 + 4m+ 2 < m2 + 4m+ 4 = (m+ 2)2.

So M0 ̸|= ψ(s(c)). The choice of m guarantees that M0 |= c ̸= i for all c ̸= i ∈ Γ0. Therefore
Γ0 is satisfiable. So, by the compactness theorem, Γs

c is satisfiable.

Theorem 1.11. Challenge Problem 1.1 does not have a straightforward induction proof.

Proof. From Lemmas 1.10 and 1.9 we obtain an Lc,f structure M with M |= Γ0,s
c . Let N =

M↾Lf
. Then N |= Tf but N ̸|= ∀x (ψ(x) → ψ(s(x))) with counterexample cM. Therefore ψ(x)

is not Tf -inductive and thus, by Lemma 1.7, ∀xψ(x) does not have a straightforward induction
proof in Tf .

Using the very strong theory Th(N) as a basis here is quite unrealistic for applications in
automated deduction. However, it gives the strongest result. In particular, we obtain the
following

Corollary 1.12. Let T ⊆ Th(N) ∪ {D0
f , D

s
f} . Then ∀xψ(x) does not have a straightforward

induction proof in T .

1.3 Weak base theories

In this section we study straightforward induction proofs in the very weak setting of linear
arithmetic axiomatised with only a few simple axioms. Also in such a setting, the phenomenon
of the existence and non-existence of straightforward induction proofs can be observed and plays
an important role for understanding the difficulty of proving statements by induction. However,
in contrast to the setting studied above we can show non-existence of a straightforward induction
proof by handcrafting a suitable model without using the compactness theorem.

Definition 1.13. The language of linear arithmetic with predecessor is LLA = {0, s, p,+}. We
define the basic LLA-theory B by the following axioms:

s(x) ̸= 0 (A1)

p(0) = 0 (A2)

p(s(x)) = x (A3)

x+ 0 = x (A4)

x+ s(y) = s(x+ y) (A5)

We start out by showing that associativity of addition has a straightforward induction proof.
In order to do this in a comfortable way, it is useful to first introduce the notion of uniform
straightforward induction proof.
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Definition 1.14. Let L be a language containing 0 and s, let T be an L theory, and let
∀x1 · · · ∀xn φ(x1, . . . , xn) be an L sentence s.t. φ(x) does not start with ∀. Then ∀xφ(x)
has a uniform straightforward induction proof in T if there is an i ∈ {1, . . . , n} s.t. the L ∪
{c1, . . . , ci−1, ci+1, . . . , cn} formula ∀xi φ(c1, . . . , ci−1, xi, ci+1, . . . , cn) has a straightforward in-
duction proof in T .

For justifying this terminology, we quickly make the following observation.

Lemma 1.15. For L, T , and ∀xφ(x) as in Definition 1.14: If ∀xφ(x) has a uniform straight-
forward induction proof, then ∀xφ(x) has a straightforward induction proof.

Proof. If ∀xφ(x) has a uniform straightforward induction proof in T , then there is an i ∈
{1, . . . , n} s.t. the L ∪ {c1, . . . , ci−1, ci+1, . . . , cn} formula ∀xi φ(c1, . . . , ci−1, xi, ci+1, . . . , cn) has
a straightforward induction proof in T . W.l.o.g. let i = 1. Then, by Lemma 1.7,

(1) T ⊢ φ(0, c2, . . . , cn) and (2) T ⊢ ∀x1 (φ(x1, c2, . . . , cn) → φ(s(x1), c2, . . . , cn)).

Since the ci do not occur in T nor in φ(x) we have

T ⊢ ∀x2 · · · ∀xn φ(0, x2, . . . , xn)

from (1). Moreover, we have

T, φ(x1, c2, . . . , cn) ⊢ φ(s(x1), c2, . . . , cn)

from (2). Therefore

T, ∀x2 · · ·xn φ(x1, x2, . . . , xn) ⊢ φ(s(x1), c2, . . . , cn)

and, since the ci do not occur in T nor in φ(x), we have

T, ∀x2 · · ·xn φ(x1, x2, . . . , xn) ⊢ ∀x2 · · ·xn φ(s(x1), x2, . . . , xn)

and thus

T ⊢ ∀x1 (∀x2 · · ·xn φ(x1, x2, . . . , xn) → ∀x2 · · ·xn φ(s(x1), x2, . . . , xn)) .

So ∀x2 · · · ∀xn φ(x) is T -inductive and thus, by Lemma 1.7, ∀xφ(x) has a straightforward in-
duction proof in T .

Theorem 1.16. ∀x∀y∀z (x+ y) + z = x+ (y + z) has a straightforward induction proof in B.

Proof. Let φ(x, y, z) ≡ (x + y) + z = x + (y + z). We will show that ∀x∀y∀z φ(x, y, z) has
a uniform straightforward induction proof by induction on z. The result then follows from
Lemma 1.15. For the induction base work in B: (x + y) + 0 =(A4) x + y =(A4) x + (y + 0).
Thus B ⊢ φ(x, y, 0). For the induction step work in B and assume φ(x, y, z). Then (x + y) +
s(z) =(A5) s((x + y) + z) =IH s(x + (y + z)) =(A5) x + s(y + z) =(A5) x + (y + s(z)). So
B ⊢ ∀z(φ(x, y, z) → φ(x, y, s(z)).

We will now show that, in contrast, commutativity does not have a straightforward induction
proof in B. To that aim we define the following model of B.
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Definition 1.17. We define the LLA-structure M2 as follows: the domain of M2 is N∪ {a, b},
0, s and p are interpreted as:

0M2 = 0 sM2(m) =

{
m+ 1 if m ∈ N
m if m ∈ {a, b}

pM2(m) =


m− 1 if m ∈ N,m ≥ 1

0 if m = 0

m if m ∈ {a, b}

Addition is intrepreted according to the following table:

+ 0 1 2 · · · a b

0

as in N

b a
1 b a
2 b a
...

...
...

a a a a · · · b a
b b b b · · · b a

Lemma 1.18. M2 |= B

Proof. M2 |= ∀x s(x) ̸= 0 because 0 is not a successor. M2 |= p(0) = 0 by definition. For
M2 |= ∀x p(s(x)) = x we make a case distinction: if m ∈ N, then M2 |= p(s(m)) = p(m+ 1) =
m. If m ∈ {a, b}, then M2 |= p(s(m)) = p(m) = m. M2 |= ∀xx + 0 = x follows immediately
from the first column of the addition table. For showing M2 |= ∀x∀y x + s(y) = s(x + y) we
make a case distinction:

1. If m,n ∈ N then we are done because N |= m+ s(n) = s(m+ n).

2. If m ∈ {a, b} and n ∈ N, then M2 |= m+ s(n) = m and M2 |= s(m+ n) = s(m) = m.

3. If m ∈ N∪{a, b} and n ∈ {a, b}, then M2 |= m+s(n) = m+n = n′ and M2 |= s(m+n) =
s(n′) = n′. where

n′ =

{
a if n = b

b if n = a

Theorem 1.19. ∀x∀y x+ y = y + x does not have a straightforward induction proof in B.

Proof. By Lemma 1.7 and the symmetry of the formula, it suffices to show that ∀y x + y =
y + x is not B-inductive. This follows immediately from Lemma 1.18 and the observation that
M2 |= a+ 0 = a ̸= b = 0 + a.

So commutativity of addition does not have a straightforward induction proof, a fact that we
could show without the compactness theorem by handcrafting a suitable model. On the other
hand, commutativity of addition does have a proof by induction in B.

Theorem 1.20. Let F be the set of LLA formulas. Then B + F-IND ⊢ ∀x∀y x+ y = y + x

Proof. We start by showing that A′
4 ≡ ∀x 0+x = x has a straightforward induction proof in B.

The base case is an instance of (A4). For the step case work in B: 0 + s(x) =(A5) s(0 + x) =IH

s(x).
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Next we show that A′
5 ≡ ∀x∀y s(x)+y = s(x+y) has a uniform straightforward induction proof

by induction on y in B. For the base case work in B: s(x) + 0 =(A4) s(x) =(A4) s(x + 0). For
the step case work in B: s(x) + s(y) =(A5) s(s(x) + y) =IH s(s(x+ y)) =(A5) s(x+ s(y)).

Finally we show that ∀x∀y x + y = y + x has a uniform straightforward induction proof by
induction on y in B,A′

4, A
′
5. For the base case work in B,A′

4, A
′
5: x+ 0 =(A4) x =A′

4 0 + x. For
the step case work in B,A′

4, A
′
5: x+ s(y) =(A5) s(x+ y) =IH s(y + x) =A′

5 s(y) + x.

1.4 No need for many induction axioms

In the previous section we have seen that associativity of plus has a straightforward induction
proof (over the base theory B) but commutativity of plus does not. Instead, we showed the
commutativity of plus by showing the lemmas ∀x 0 + x = x and ∀x∀y s(x) + y = s(x + y)
by straightforward induction proofs. Proving a theorem by first showing several lemmas by
straightforward induction proofs is indeed a common strategy, one that we will also see at work
with considerable success in Chapter 2. This example may lead one to the assessment that, in
general, it is necessary to carry out several inductions. This assessment is not correct. In this
section we will see techniques for pulling several inductions together into a single one.

An induction axiom is called parameter-free if it is of the form Ixφ(x), i.e., if the induction
formula contains only a single free variable, and hence, no parameters. One way of transforming
arbitrary induction axioms into parameter-free induction axioms, at the expense of increasing
the quantifier complexity of the induction formula, is shown in the following lemma.

Lemma 1.21. Let L ⊇ {0, s}, let φ(x, z) be an L formula and define

φ−(x) ≡ ∀z
(
φ(0, z) ∧ ∀y (φ(y, z) → φ(s(y), z)) → φ(x, z)

)
.

Then φ−(x) is ∅-inductive and ⊢ ∀z Ixφ(x, z) ↔ Ixφ
−(x).

Proof. Observe that ⊢ φ−(0) holds trivially. For showing ⊢ ∀x (φ−(x) → φ−(s(x))), let x0 be
s.t. φ−(x0) holds and let z be s.t. the premises (1) φ(0, z) and (2) ∀y (φ(y, z) → φ(s(y), z)) of
φ−(s(x0)) hold. Then, from φ−(x0), (1), and (2) we obtain φ(x0, z) and it remains to show
φ(s(x0), z). This is done by letting y = x0 in (2).

Then, by Lemma 1.6/4, ⊢ Ixφ
−(x) ↔ ∀xφ−(x) and, by a quantifier shift, ⊢ ∀xφ−(x) ↔

∀z Ixφ(x, z).

The parameter-free induction axioms obtained in Lemma 1.21 can now be used to pull several
induction together into a single one.

Theorem 1.22. Let L ⊇ {0, s} and let φ1(x, z), . . . , φn(x, z) be L formulas. Then there is an
L formula φ(x) s.t. ⊢

∧n
i=1 ∀zIxφi(x, z) ↔ Ixφ(x).

Proof. For i = 1, . . . , n apply Lemma 1.21 to obtain an ∅-inductive formula φ−
i (x) with ⊢

∀z Ixφi(x, z) ↔ Ixφ
−
i (x). Define φ(x) ≡

∧n
i=1 φ

−
i (x). Then φ(x) is ∅-inductive by Lemma 1.6/2.

So, by Lemma 1.6/4 we have ⊢ Ixφ
−
i (x) ↔ ∀xφ−

i (x) and ⊢ Ixφ(x) ↔ ∀xφ(x). Therefore we
obtain

⊢
n∧

i=1

∀z Ixφi(x, z) ↔
n∧

i=1

Ixφ
−
i (x) ↔

n∧
i=1

∀xφ−
i (x) ↔ ∀xφ(x) ↔ Ixφ(x).
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Lemma 1.21 increases the quantifier complexity of induction formulas in order to remove the
parameters and to obtain ∅-inductive formulas that can be combined into a single one. In the
following theorem we will see another strategy for merging several inductions into one. This
strategy does not increase quantifier complexity but makes the (very mild) assumption that
different numerals can be proved different in the background theory.

Theorem 1.23. Let L ⊇ {0, s}, let T be an L theory s.t. T ⊢ i ̸= j for all i, j ∈ N with i ̸= j, let
φ1(x, z), . . . , φn(x, z) be L formulas, and let σ be an L sentence s.t. T, ∀z Ixφ1(x, z), . . . ,∀z Ixφn(x, z) ⊢
σ. Then there is an L formula φ(x, y, z) s.t. T, ∀y∀z Ixφ(x, y, z) ⊢ σ.

Proof. Define φ(x, y, z) ≡
∧n

j=1(y = j → φj(x, z)). Then we have

T ⊢ φ(x, i, z) ↔ ⊤∧ · · · ∧ ⊤ ∧ φi(x, z) ∧ ⊤ ∧ · · · ∧ ⊤ ↔ φi(x, z)

and hence

T ⊢ Ixφ(x, i, z) ↔ Ixφi(x, z).

Therefore

T, ∀y∀z Ixφ(x, y, z) ⊢
n∧

i=1

∀z Ixφi(x, z)

and thus

T, ∀y∀zIxφ(x, y, z) ⊢ σ.

Example 1.24. Towards proving commutativity of addition with a single induction we first
observe that i ̸= j implies B ⊢ i ̸= j. To see this, let w.l.o.g. i < j and proceed by induction
on i. If i = 0 then B ⊢ 0 ̸= s(j − 1) by (A1). For the case i > 0 we have B ⊢ i− 1 ̸= j − 1 by
induction hypothesis, so it suffices to show that B ⊢ i− 1 ̸= j − 1 → i ̸= j. To that aim show
the contraposition in B: if i = j then p(i) = p(j) and so, by (A3), i− 1 = j − 1.

Then an application of Theorem 1.23 to the proof of Theorem 1.20 shows that the formula

φ(x, y) ≡ (y = 1 → 0 + x = x) ∧ (y = 2 → ∀z s(z) + x = s(z + x)) ∧ (y = 3 → ∀z x+ z = z + x)

satisfies

B, ∀y Ixφ(x, y) ⊢ ∀x∀y x+ y = y + x.

1.5 No need for strict strenghtenings

In Section 1.2 we have seen that ∀n∃k
∑n

i=1(2i − 1) = k2 does not have a straightforward
induction proof. The solution was to show the stronger statement ∀n

∑n
i=1(2i− 1) = n2 with a

straightforward induction proof. This is an experience one often makes when trying to prove a
statement by induction: the original statement cannot be shown by a straightforward induction
proof, but a slight generalisation or strengthening can be. As useful as this technique is for
manually finding proofs by induction, it is also somewhat misleading, since it seems to suggest
that a logical strenghtening is often necessary. In fact, it is quite easy to show that, in the sense
of the following theorem, a strict logical strenghtening is never necessary.

Theorem 1.25. If T, Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T, Ixψ(x) ⊢ σ and T ⊢ ∀xψ(x) ↔ σ.
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Proof. Let T, Ixφ(x) ⊢ σ. Then we claim that

T ⊢ φ(0) ∨ σ (1.5)

T ⊢ ∀x (φ(x) → φ(s(x))) ∨ σ, and (1.6)

T ⊢ ∀xφ(x) → σ. (1.7)

To show this let A, B, and C be sentences and assume T,A ∧ B → C ⊢ σ. Let M |= T . Then
M ̸|= A and M ̸|= σ is impossible which shows (1.5) and (1.6). Moreover, M |= C and M ̸|= σ
is impossible which shows (1.7).

Let ψ(x) ≡ φ(x)∨σ. Then by (1.5) we have T ⊢ ψ(0). Moreover, we claim that T ⊢ ∀x(ψ(x) →
ψ(s(x))). To see this work in T : let x0 be s.t. ψ(x0), i.e., φ(x0) ∨ σ. If σ then ψ(s(x0)) and we
are done. If ¬σ then, by (1.6), ∀x (φ(x) → φ(s(x))), which, by letting x := x0, yields φ(s(x0))
and thus ψ(s(x0)).

So ψ(x) is T -inductive and therefore T, Ixψ(x) ⊢ ∀xψ(x) and thus, by (1.7), we obtain T, Ixψ(x) ⊢
σ. Moreover, we have ⊢ σ → ∀xψ(x). T ⊢ ∀xψ(x) → σ follows from (1.7).

Example 1.26. Using the notation of Challenge Problem 1.1 let θ(x, y) ≡ f(x) = y · y. Then
we have shown in Theorem 1.11 that ∀x∃y θ(x, y) does not have a straightforward induction
proof in Tf . On the other hand, the natural formalisation of the proof of Theorem 1.2 shows
that ∀x θ(x, x) does have a straightforward induction proof in Tf , i.e., Tf , Ixθ(x, x) ⊢ ∀x θ(x, x).
Thus we also have Tf , Ixθ(x, x) ⊢ ∀x∃y θ(x, y). Theorem 1.25 now shows that the formula
ψ(x) ≡ θ(x, x) ∨ ∀x∃y θ(x, y) satisfies

Tf , Ixψ(x) ⊢ ∀x∃y θ(x, y) and
Tf ⊢ ∀xψ(x) ↔ ∀x∃y θ(x, y).

Chapter notes

Theorem 1.11 is due to Lundstedt [20]. The notion of a T -inductive formula has been studied in
the context of automated inductive theorem proving in [15] for different induction schemes. It is
closely related to the notion of cut in models of arithmetic, see, e.g., [17, 11]. The basic theory B
of linear arithmetic was studied in [22] which gave a simple finite axiomatisation of B together
with open induction. Section 1.4 is based on Section 2.4 of [15]. The proof of Theorem 1.23 is
due to Gentzen [7]. Theorem 1.25 is a slight generalisation of [15, Theorem 3.1.].
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Chapter 2

Equational theory exploration

It is quite common for proofs by induction to proceed by establishing some lemmas by straight-
forward induction and then using these lemmas to prove the main theorem, possibly by induction
again (as we have seen, e.g., in the case of commutativity of addition). This observation has
prompted an interest in applying the approach of theory exploration to inductive theorem prov-
ing. The basic idea of theory exploration is that a user specifies a theory, i.e., some axioms and
definitions, and the computer system explores this theory, i.e., it proves some interesting facts
about these notions. In contrast to traditional theorem proving which is usually goal-oriented,
theory exploration proceeds in the other direction, starting from the axioms trying to discover
useful lemmas. In this chapter we study a simple such algorithm that is restricted to equational
lemmas. This class is already very useful for simple examples in functional programming based
on primitive recursive functions over inductive data types. The algorithm has two phases:

1. Find a set of conjectures (equations that could not be falsified).

2. Try to prove these conjectures by induction, possibly using other conjectures which have
already been proved.

2.1 Finding conjectures

The first phase consists in conjecturing a set of equations. We start out with inductive data
types D1, . . . , Dn together with primitive recursive definitions for functions symbols over these
data types. In this setting we have the following procedures at our disposal.

1. Value(t) which, given a variable-free term t computes the value of t.

2. GenerateRandomTuple(x) which, given a tuple of typed variables, generates a tuple
of random values, i.e., constructor terms, of the appropriate types.

The value of a variable-free term t is simply a constructor term t∗ which is the result of com-
puting the function defined by primitive recursion in the standard model as in Theorem 0.10.
What random means here exactly is not very important (it should be rather small values and
reasonably random in the sense that there is a high probability that n consecutive calls result
in n pairwise different tuples of variables). We will write |t| for the size of a term t which is
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defined inductively as follows:

|c| = 1 for a constant symbol c

|f(t1, . . . , tn)| = 1 +
n∑

i=1

|ti| for an n-ary function symbol f

But again, what exactly size means in this context is not too important. What is important is
the fact that a bound on the size will yield a finite set of terms.

The procedure Conjecture(k, x,N) takes the arguments k, x, and N where k ∈ N is a term
size parameter, x is a tuple of typed variables, and N ∈ N is the number of counterexamples to
generate for trying to separate terms. The algorithm works as follows: for each i ∈ {1, . . . , n}
it maintains an equivalence relation Ei over a set Ti of small terms of type Di in the variables
x. The interpretation of t Ei t

′ is that we conjecture that ∀x t = t′ is true in the standard
model. In the beginning it (optimistically) conjectures all equations between terms of Ti to be
true. In order to arrive at a more realistic picture it generates N random tuples a matching
the types of x. Each random tuple a is used to compute the value of both terms t and t′ of a
conjectured equality. If t[x\a] ̸= t′[x\a] in the standard model, we have found a counterexample
and do no longer conjecture ∀x t = t′. If t[x\a] = t′[x\a] in the standard model, we continue to
conjecture ∀x t = t′. The equivalence relation is updated to reflect these changes. At the end

Algorithm 2.1 Forming equational conjectures

procedure Conjecture(k, x,N)
for all i ∈ {1, . . . , n} do

Ti := {t term of sort Di | |t| ≤ k,Var(t) ⊆ {x}}
Ei := {(t1, t2) | t1, t2 ∈ Ti}

end for
loop N times

a := GenerateRandomTuple(x)
for each equivalence class C of each Ei do

E′ := {(t1, t2) ∈ C | Value(t1[x\a]) = Value(t2[x\a])}
Replace C by E′ in Ei

end for
end loop
return {t1 = t2 | (t1, t2) ∈ Ei, 1 ≤ i ≤ n}

end procedure

of this algorithm, for all i ∈ {1, . . . , n}, (Ti, Ei) is an equivalence relation where two terms are
in the same equivalence class iff they withstood N tests. So while t Ei t

′ does not imply that
∀x t = t′ is true in the standard model, it is considered a conjecture because it has withstood
N tests. In particular, t ̸Ei t

′ implies that ∀x t = t′ is false in the standard model because a
counterexample has been found among the N randomly generated tuples.

Example 2.1. Consider the sort Nat with the usual definition of addition D+ by primitive
recursion on the right argument. Let x = x1 : Nat, x2 : Nat and k = 4, then |T1| = 48. While
this is easily in the scope of implementations, for applying the algorithm by hand we will here
work with the following subset T of T1.

T = {x1, x2, s(x1), s(x2), 0 + x1, x1 + x2, x2 + x1, s(x1) + x2, s(x1 + x2)}.

In the beginning everyhing is conjectured to be equal, so we have one equivalence class C = T .
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The algorithm now picks a first tuple a of values, say a = (0, 1), and evalutes the terms in T on
these values.

t Value(t[x\a])
x1 0
x2 1
s(x1) 1
s(x2) 2
0 + x1 0
x1 + x2 1
x2 + x1 1
s(x1) + x2 2
s(x1 + x2) 2

This leads to a separation of C into the three classes

C0 = {x1, 0+x1}, C1 = {x2, s(x1), x1+x2, x2+x1}, and C2 = {s(x2), s(x1)+x2, s(x1+x2)}.

Now the algorithm picks another tuple at random, say a = (1, 0), and evalutes the members of
each equivalence class seperately yielding:

t Value(t[x\a])
x1 1

0 + x1 1

t Value(t[x\a])
x2 0
s(x1) 2
x1 + x2 1
x2 + x1 1

t Value(t[x\a])
s(x2) 1

s(x1) + x2 2
s(x1 + x2) 2

At this point the only equivalence classes of size strictly greater than one are {x1, 0 + x1},
{s(x1) + x2, s(x1 + x2)}, and {x1 + x2, x2 + x1}. Thus the remaining conjectures are ∀x1 x1 =
0 + x1, ∀x1∀x2 s(x1) + x2 = s(x1 + x2), and ∀x1∀x2 x1 + x2 = x2 + x1. These three equations
are indeed true.

2.2 Proving conjectures

The second phase consists in trying to prove the conjectures obtained from the first phase. This
will involve checking whether certain formulas are provable in first-order logic with equality.
Since provability is undecidable, we introduce a timeout parameter t ∈ N to interrupt a proof
search if it is running for too long. That way we loose completeness, but for practical purposes,
which are the focus of this chapter, this is justifiable.

Definition 2.2. We fix an algorithm A for proof search in first-order logic with equality. Then,
for a theory T , a sentence σ, and a timeout parameter t ∈ N we write T ⊢t σ to state that A
finds a proof of σ in T within time t.

In this notation, A is not referenced explicitly anymore. This is justified because we will only
use the relation ⊢t in a way that does not depend on A. Moreover, it is not relevant for our
purposes wether t measures wall-clock time, CPU time, or the number of steps in the execution
of A. Therefore we do not specify it any further. Also note that T ⊬t σ means that within
time t no proof of T ⊢ σ is found (by A). For any t ∈ N: T ⊢t σ implies T ⊢ σ and thus, by
contraposition, T ⊬ σ implies T ⊬t σ.
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The procedure Explore(k, x,N,A, t) takes the arguments k, x, N , A, and t where, as above, k
is a term size parameter, x is a tuple of typed variables, andN is the number of counterexamples.
Moreover, A is a set of axioms consisting of the primitive recursive definitions of all function
symbols which are not constructors, and t is a timeout parameter to limit the prover. The
algorithm works as follows: it obtains a set of conjectures C from calling Conjecture(k, x,N).
It goes through this set of conjectures and tries to prove each one of them. For each particular
conjecture ∀xφ(x) it first checks whether ∀xφ(x) is already provable from the current lemmas
and A in pure first-order logic. In order to avoid undecidability issues, this check is done
with the timeout t. If A,L ⊢t ∀xφ(x), it proceeds to the next conjecture and does not add
∀xφ(x) to the set of lemmas. In this case, ∀xφ(x) is not considered interesting enough since
it follows from other lemmas by pure first-order logic. This filters out trivial modifications
like equality up to variable renamings, equations modulo symmetry, etc. If A,L ⊬t ∀xφ(x),
the algorithm checks whether ∀xφ(x) has a uniform straightforward induction proof from A
and the already proven set of lemmas L. Again, to avoid undecidability issues, this is done
with timeout t and is a check in pure first-order logic that can be done with any FOL theorem
prover. If a straightforward induction proof is found, this conjecture is added to the lemma set.
If no straightforward induction proof is found, it is discarded. In the end the set L of lemmas

Algorithm 2.2 Equational theory exploration

1: procedure Explore(k, x,N,A, t)
2: C := Conjecture(k, x,N)
3: L := ∅
4: while C ̸= ∅ do
5: Select φ(x) ∈ C
6: C := C \ {φ(x)}
7: if A,L ⊬t ∀xφ(x) then
8: if ∃i ∈ {1, . . . ,m} s.t. φ(c1, . . . , ci−1, xi, ci+1, . . . , cm) is A,L-inductive then
9: L := L ∪ {∀xφ(x)}

10: end if
11: end if
12: end while
13: return L
14: end procedure

contains enough lemmas so that all conjectures that could be proved can be proved from the
lemmas in L by pure first-order logic, i.e., without induction.

Example 2.3. Continuing Example 2.1 we have A = {∀xx+ 0 = x, ∀x∀y x + s(y) = s(x + y)}.
The call to Conjecture(k, x,N) will fill C with a set of conjectures including 0 + x1 = x1,
s(x1) + x2 = s(x1 + x2), and x1 + x2 = x2 + x1.

We assume that the algorithm selects 0 + x1 = x1 first. Then A ⊬ ∀x1 0 + x1 = x1, so the
algorithm tries a straightforward induction proof next. This succeeds since 0 + x1 = x1 is
inductive. So L = {∀x1 0 + x1 = x1} after this step.

We assume that the algorithm now selects s(x1)+x2 = s(x1+x2) from C. Since A,∀x1 0+x1 =
x1 ⊬ ∀x1∀x2 s(x1) + x2 = s(x1 + x2), the algorithm tries to find a straightforward induction
proof and succeeds. This yields L = {∀x1 0 + x1 = x1,∀x1∀x2 x1 + s(x2) = s(x1 + x2)}
Finally, when the algorithm selects x1 + x2 = x2 + x1, the same repeats and it returns a set L
containing, among other lemmas, the commutativity of plus.

Note that the result of this algorithm is sensitive to the order in which conjectures are selected
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from C for processing. In practice this is dealt with by heuristics which select simple equations
first. Moreover, in principle it is possible to modify the algorithm in such a way that, after
the first pass through C it reexamines the conjecutres it could not prove and iterates this
re-examination until no more new conjectures can be proved in an interation.

This algorithm has several advantages which make it very useful in practice: the search space
for induction formulas is quite limited, essentially by the number of conjectures. Moreover, the
number of conjectures is limited, which is due to the fact that the counterexamples from the
first phase filter out many wrong equations very quickly. This leads to a limited number of
provability checks with timeout in pure first-order logic. Moreover, these provability checks are
in a logical context (equational reasoning for primitive recursive functions over inductive data
types) where first-order theorem provers are quite efficient.

2.3 Analysis

What can we prove with this method? We have seen that we can prove, e.g., the commuta-
tivity of addition, so it goes beyond straightforward induction. The central observation is: the
proofs this methods allows us to generate are either straightforward induction proofs in the
original theory A or straightforward induction proofs in a theory A + L′ where L′ are lemmas
which have in turn been proved by this method. This naturally leads to the notion of iterated
straightforward induction proof.

Definition 2.4. Let L be a first-order language, let T be an L theory. A finite sequence
π = φ1(c1, . . . , xi1 , . . . , ck1), . . . , φn(c1, . . . , xin , . . . , ckn) is called iterated uniform straightfor-
ward induction proof of ∀xφn(x) in T if φ1(x1, . . . , xk1), . . . , φn(x1, . . . , xkn) are L formulas and,
for j = 1, . . . , n, the formula φj(c1, . . . , xij , . . . , ckn) is T +{∀xφ1(x), . . . ,∀xφj−1(x)}-inductive.
If φ1(x), . . . , φn(x) are equations, we call π an equational iterated uniform straighforward in-
duction proof (e.i.u.s.i. proof) in T .

Theorem 2.5. Let k, x,N,A, t be arguments of Explore, let L = Explore(k, x,N,A, t), and
let ∀xφ(x) ∈ L. Then ∀xφ(x) has an e.i.u.s.i. proof in A.

Proof. During the execution of the main loop of Explore(k, x,N,A, t) we maintain an e.i.u.s.i.
proof φ1(c1, . . . , xi1 , . . . , cm), . . . , φj(c1, . . . , xij , . . . , cm) s.t. L = {∀xφ1(x), . . . ,∀xφj(x)}. In
the beginning it is initialised as empty list. Whenever Explore adds a new sentence ∀xφ(x)
to L in line 9 that was proved by uniform straightforward induction on xi in line 8, we set
ij+1 := i and φj+1 :≡ φ, and add φj+1(c1, . . . , xij+1 , . . . , cm) to our e.i.u.s.i. proof. Then
φj+1(c1, . . . , xij+1 , . . . , cm) is A,∀xφ1(x), . . . ,∀xφj(x)-inductive and, after execution of line 9,
L = {∀xφ1(x), . . . ,∀xφj+1(x)}.

At this point it is not clear how to prove negative results of the form: the sentence σ does not
have an e.i.u.s.i. proof in the theory T . Model-theoretic techniques do not seem to apply in
a straightforward way. The strategy we employ for obtaining negative results is to work with
an over-approximation of the sentences provable by e.i.u.s.i. proofs. The central observation is:
we only prove equations and we only carry out induction on equations. This motivates us to
study, with methods from mathematical logic, what can be proved when induction is restricted
to induction on equations, or, more generally, on atoms in Chapter 3.
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Chapter notes

Theory exploration is a large subject. The methods described in this chapter are mostly ab-
stractions of algorithms used in the HipSpec system. Algorithm 2.2 is a simplified version of
the algorithm underlying HipSpec [3]. Algorithm 2.1 is a simplified version of the algorithm un-
derlying QuickSpec [5]. These algorithms work quite well on many problems concerning simple
primitive reursive functions over inductive data types, such as those found, e.g., in [16, 2, 4].
There are also extensions of these algorithms that go beyond equational lemmas [23].
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Chapter 3

Atomic induction

In this chapter we will consider atomic induction, i.e., the induction scheme restricted to atoms
as induction formulas. The induction scheme for a set of formulas Φ is defined as Φ-IND =
{∀z Ixφ(x, z) | φ(x, z) ∈ Φ}. Atomic induction is IAtomL = AL-IND where AL is the set of
atoms in the first-order language L. Often, when the language L is clear from the context or
irrelevant, we will simply write IAtom for IAtomL. Restricting the induction scheme to a certain
set of induction formulas is the most important way of defining subsystems of Peano arithmetic
and related theories in mathematical logic. The restriction considered here, to atoms, results in
one of the weakest classes of theories with induction axioms that have been considered in the
literature.

3.1 E.i.u.s.i. proofs and atomic induction

The first observation of this chapter will be that every sentence that has an e.i.u.s.i. proof also
has a proof by atomic induction, as hinted at in the end of Chapter 2.

Theorem 3.1. Let T be a theory and let σ be a sentence that has an e.i.u.s.i. proof in T . Then
T + IAtom ⊢ σ.

Proof. Let φ1(c1, . . . , xi1 , . . . , ck1), . . . , φn(c1, . . . , xin , . . . , ckn) be an e.i.u.s.i. proof. We show,
by induction on j ∈ {1, . . . , n}, that T + IAtom ⊢ ∀xφj(x). To that aim let Tj = T +
{∀xφ1(x), . . . ,∀xφj−1(x)}. Then, by induction hypothesis, T + IAtom ⊢ Tj . For j = 1, . . . , n
the formula φj(c1, . . . , xij , . . . , ckj ) is Tj-inductive, i.e.,

Tj ⊢ φj(c1, . . . , 0, . . . , ckj ) and

Tj ⊢ ∀xi (φj(c1, . . . , xi, . . . , ckj ) → φj(c1, . . . , s(xi), . . . , ckj )).

Since φj(x) is an equation, we have

Tj + IAtom ⊢ ∀xi φj(c1, . . . , xi, . . . , ckj )

and thus

Tj + IAtom ⊢ ∀xφj(x).

So, by induction hypothesis, T + IAtom ⊢ ∀xφj(x).
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Corollary 3.2. Let k, x,N,A, t be arguments of Explore, let L = Explore(k, x,N,A, t), and
let ∀xφ(x) ∈ L. Then A+ IAtom ⊢ ∀xφ(x).

At this point we can stop and observe that we already know several sentences that are provable
by atomic induction, for example: the associativity and the commutativity of plus are provable
in B + IAtomLLA

, the first has a straighforward induction proof, the second does not. The
formula ∀xφ(x) from Example 1.4 is provable in Tg + IAtomLg . Moreover, the formula ∀xψ(x)
from Challenge Problem 1.1, which does not have a straightforward induction proof, is provable
in Tf +IAtomLf

. On the other hand, we will later see that there are also statements which have
straightforward induction proofs but are not provable with open induction, see Corollary 3.8.

3.2 The simplest nonstandard model of induction

In order to show that a certain sentence σ is not provable from atomic induction, we need a
model of atomic induction that does not satisfy σ. So far, the nonstandard models we have
constructed were either for very weak theories without induction, such as B from Section 1.3, or
they were constructed by strong tools such as the compactness theorem. In this section we will
consider a simple nonstandard model of B + IAtomLLA

. Showing that a certain (handcrafted)
structure satisfies an induction scheme, even if it is for a very restricted set of formulas, is
usually more difficult than showing that it satisfies a finitely axiomatised base theory like B
because there are infinitely many induction formulas to consider. Our model will essentially
look like the standard model N to which we add a single nonstandard element, which we call
∞, that behaves like infinity.

Definition 3.3. We define the LLA-structure N∞ as follows: The domain of N∞ is N ∪ {∞}.
On N the constant and function symbols 0, s, p, and + are defined in the standard way. If ∞ is
involved we define sN

∞
(∞) = pN

∞
(∞) = ∞ and a+N∞∞ = ∞+N∞

a = ∞ for any a ∈ N∪{∞}.

One way to think about this is that ∞ absorbes all finite numbers. So if ∞ occurs as an
argument to an LLA term, then, over N∞, the entire term will evaluate to ∞. We then have
the following theorem.

Theorem 3.4. N∞ |= B + IAtomLLA

For showing that N∞ |= B we have to check all the axioms. While this can be a little tedious
sometimes, it is usually not very difficult. The more interesting, and more difficult, part is to
show that N∞ |= IAtomLLA

. In order to prepare this second part, we need to prove two lemmas
first.

Lemma 3.5. Let t(x) be an LLA term. Then there is a kt ∈ N and a linear polynomial
Pt(X) ∈ {

∑n
i=0 aiX

i | a0 ∈ Z, a1, . . . , an ∈ N} s.t. tN(n) = Pt(n) for all n ≥ kt. Moreover, if
t(x) contains x, then P (X) is not constant.

Proof. We assign Pt(X) and kt to t by induction on the structure of t. If t ≡ 0 then Pt(X) = 0
and kt = 0. If t ≡ x then Pt(X) = X and kt = 0. If t ≡ s(t′) then Pt(X) = Pt′(X) + 1 and
kt = kt′ . If t ≡ t1 + t2 then Pt(X) = Pt1(X) + Pt2(X) and kt = max{kt1 , kt2}. If t contains
x, then so does one of the ti. Since Pti(X) is non-constant, so is Pt(X). Let t ≡ p(t′). If
Pt′(X) = 0 then Pt(X) = 0 and kt = kt′ . Otherwise Pt′(n) = t′N(n) ≥ 0 for all n ≥ kt′ by
induction hypothesis and thus Pt′(n) = t′N(n) ≥ 1 for all n ≥ kt′+1. Let Pt(X) = Pt′(X)−1 and
kt = kt′ +1. Then for n ≥ kt = kt′ +1: Pt(n) = Pt′(n)− 1 = t′N(n)− 1 = p(t′N(n)) = tN(n).
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Lemma 3.6. Let z = z1, . . . , zk, let t1(x, z) and t2(x, z) be LLA terms, and let a1, . . . , ak ∈
N ∪ {∞}. If N∞ |= t1(n, a) = t2(n, a) for all n ∈ N, then N∞ |= ∀x t1(x, a) = t2(x, a).

Proof. 1. If x does not occur in t1 nor in t2, then N∞ |= t1(a) = t2(a) ↔ ∀x t1(a) = t2(a). 2. If
x occurs in exactly one of the ti, say in t1, then our atom has the form t1(x, a) = t2(a) and we
make a further case distinction. 2a. If there is an i ∈ {1, . . . , k} s.t. zi occurs in t1 and ai = ∞,
then N∞ |= t1(b, a) = ∞ for all b ∈ N ∪ {∞}. So N∞ |= t1(0, a) = t2(a) → t1(∞, a) = t2(a).
2b. If there is no such i then, by Lemma 3.5, n 7→ tN

∞
1 (n, a) is a polynomial almost everywhere

in the standard part of N∞. Therefore it is not equal to the constant function n 7→ t2(a). 3. If
x occurs on both sides, then N∞ |= t1(∞, a) = ∞ = t2(∞, a) and we are done.

Proof of Theorem 3.4. We have N∞ |= s(x) ̸= 0 because 0 is not a successor in N∞. We
have N∞ |= p(0) = 0 by definition. We have N∞ |= p(s(a)) = a for standard a as in the
standard model. If a = ∞, then N∞ |= p(s(a)) = p(a) = a. We have N∞ |= a + 0 = a for
standard a as in the standard model. If a = ∞, then N∞ |= a + 0 = a by definition. We have
N∞ |= a + s(b) = s(a + b) if both, a and b are standard as in the standard model. If one of a
or b is ∞, then N∞ |= a+ s(b) = ∞ = s(a+ b).

For showing that N∞ |= IAtomLLA
, let z = z1, . . . , zk, let t1(x, z) = t2(x, z) be an atom, let

a ∈ (N ∪ {∞})k, and assume

1. N∞ |= t1(0, a) = t2(0, a) and

2. N∞ |= ∀x (t1(x, a) = t2(x, a) → t1(s(x), a) = t2(s(x), a).

Then N∞ |= t1(n, a) = t2(n, a) for all n ∈ N. Therefore, by Lemma 3.6, N∞ |= ∀x t1(x, a) =
t2(x, a) and we are done.

There are a number of simple properties of N which are not true in N∞.

Theorem 3.7. For all k ≥ 1: N∞ ̸|= ∀xx ̸= sk(x). Moreover, N∞ ̸|= ∀x∀y∀z (x+ y = x+ z →
y = z) and N∞ ̸|= ∀x∀y∀z (x+ z = y + z → x = y).

Proof. For acyclicity observe that N∞ |= sk(∞) = ∞. For left cancellation we have N∞ |=
0+∞ = ∞ = 1+∞ but N∞ ̸|= 0 = 1. For right cancellation we have N∞ |= ∞+0 = ∞ = ∞+1
but N∞ ̸|= 0 = 1.

Corollary 3.8. For all k ≥ 1: B+IAtomLLA
⊬ ∀xx ̸= sk(x). B+IAtomLLA

⊬ ∀x∀y∀z (x+y =
x+ z → y = z). B + IAtomLLA

⊬ ∀x∀y∀z (x+ z = y + z → x = y).

The formulas ∀xx ̸= sk(x) and ∀x∀y∀z (x+ z = y+ z → x = y) have straightforward induction
proofs but, by the above corollary, are not provable by atomic induction (with base theory B).
The formula ∀x∀y∀z (x + y = x + z → y = z) does neither have a straightforward induction
proof nor one by atomic induction with base theory B.

In order to relate these results to algorithms for automated inductive theorem proving, we
formulate the following challenge problems.

Challenge Problem 3.1 (Additive Left Cancellation).

� Language: LLA (see Definition 1.13)

� Axioms: B (see Definition 1.13)
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� Goal: ∀x∀y∀z (x+ y = x+ z → y = z)

Challenge Problem 3.2 (Additive Right Cancellation).

� Language: LLA (see Definition 1.13)

� Axioms: B (see Definition 1.13)

� Goal: ∀x∀y∀z (x+ z = y + z → x = y)

Challenge Problem 3.3 (Acyclicity).

� Language: LLA (see Definition 1.13)

� Axioms: B (see Definition 1.13)

� Goal: x ̸= sk(x) for k ≥ 1

Corollary 3.9. Let k, x,N and t be arguments for the theory exploration method Explore
defined in Algorithm 2.2, let L = Explore(k, x,N,B, t). Then B + L does not prove any of
the challenge problems 3.1, 3.2, or 3.3.

3.3 A general methodology

The relationship between Theorem 2.5, Theorem 3.1, Corollary 3.2, Corollary 3.8, and Corol-
lary 3.9 is an instance of a methodology that we will apply repeatedly throughout this course:
in order to understand the limits of a practical method M for inductive theorem proving, such
as the algorithm Explore, we overapproximate M by a theory TM , such as atomic induction,
possibly via some intermediate proof structure, such as e.i.u.s.i. proofs (as in Corollary 3.2 via
Theorems 2.5 and 3.1). In this context, overapproximation means that everything provably
in M is provable in TM (but not necessarily vice versa). The methods for obtaining such a
relationship are typically of a proof-theoretical nature. Usually, some form of proof translation
from the method M to the theory TM is carried out.

Such a result allows to understand the power of M in terms of the theory TM . In particular, it
shows that independence results transfer from TM to M . An independence result for a theory
T is a result of the form: T ⊬ σ and T ⊬ ¬σ for some sentence σ. Typically this is formulated
for a sentence σ which is true (in a suitable sense). Now, if everything that is provable by M is
also provable by TM , then a (true) sentence σ that is unprovable by TM is also unprovable by
M . This has been exploited for obtaining Corollary 3.9 from Corollary 3.8. In the context of
this course, the proof of the indepence result itself (Corollary 3.8) is typically a construction of
a countermodel.

M

TM σ
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Now, in principle, this methodolgy would be applicable in a very generous way by, e.g., using
Peano arithmetic for TM and the consistency of Peano arithmetic for σ. However, such results
are not of great interest in computer science since such σ would be considered outside the scope
of automation anyway. Therefore we will mostly work with practically meaningful independence
results, i.e., such σ which would typically be considered to be within the scope of automation.
This emphasis entails the need of much tighter translations in the proof-theoretic translation
and a significant amount of specific additional work in the construction of the countermodel.

3.4 Simple nonstandard models for inductive data types

In this section we will prove a simple practically meaningful independence result that is appli-
cable to (most) inductive data types. To that aim we first define some properties of inductive
data types.

Definition 3.10. Let D be an inductive data type defined on top of the sorts s1, . . . , sn with
the constructors c1, . . . , ck. The language of D is LD = {c1, . . . , ck}. We define the following
LD formulas:

DISJDi,j ≡ ∀x∀y ci(x) ̸= cj(y) for 1 ≤ i < j ≤ k (disjointness)

INJDi ≡ ∀x∀y (ci(x) = ci(y) → x = y) for 1 ≤ i ≤ k (injectivity)

ACYD
t ≡ ∀x∀z x ̸= t(x, z) where t(x, z) contains x and is different from x (acyclicity)

SURD ≡ ∀x∃y
k∨

i=1

x = ci(y) (surjectivity)

The basic theory of the inductive data type D is the LD theory TD = {DISJDi,j | 1 ≤ i < j ≤
k} ∪ {INJDi | 1 ≤ i ≤ k}.

We also write DISJD for
∧

1≤i<j≤k DISJDi,j , INJD for
∧k

i=1 INJ
i
D, and ACYD for the set of

sentences {ACYD
t | t(x, z) contains x and is different from x}.

Definition 3.11. Let s1, . . . , sn be sorts and let D be an inductive data type defined on top of
s1, . . . , sn. Then the set TD(M,M1, . . . ,Mn) is defined as the smallest set X that satisfies

aj ∈ X ∪M if τ ji = D and aj ∈Ml if τ
j
i = sl for all j ∈ {1, . . . ,mi}

ci(a1, . . . , ami) ∈ X

for all i ∈ {1, . . . , k}.
We define the LD structure M′(D, s1, . . . , sn), abbreviated as M′, as follows. Every parameter
sort si is interpreted as a singleton set consisting of a new object ai

sM
′

i = {ai}

The sort D is the closure of {a}, where a is a new object, under the constructors.

DM′
= TD({a}, sM′

1 , . . . , sM
′

n )

The constructors are interpreted as themselves.

cM
′

i (b1, . . . , bmi) = ci(b1, . . . , bmi)
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This model adds a new element, a to DM′
that is not obtainable from any constructor. We

therefore have:

Lemma 3.12. Let D be an inductive data type defined on top of the sorts s1, . . . , sn. Then

M′(D, s1, . . . , sn) |= DISJD

M′(D, s1, . . . , sn) |= INJD

M′(D, s1, . . . , sn) |= ACYD

M′(D, s1, . . . , sn) ̸|= SURD

Proof. By construction via TD({a}, {a1}, . . . , {an}), M′(D, s1, . . . , sn) and the interpretation of
the constructors as themselves, M′(D, s1, . . . , sn) satisfies disjointness, injectivity, and acyclic-
ity. For surjectivity, note that M′(D, s1, . . . , sn) ̸|= ∃y

∨k
i=1 a = ci(y).

We now want to show the following

Theorem 3.13. Let D be an inductive data type with at least two constructors defined on top
of the sorts s1, . . . , sn. Then M′(D, s1, . . . , sn) |= TD + IAtomLD

.

This theorem, together with the observation that M′(D, s1, . . . , sn) ̸|= SURD, yields a practi-
cally meaningful indepence result: the basic theory TD of the inductive data type D, together
with atomic induction, does not prove surjectivity, see Corollary 3.16. In order to prove Theo-
rem 3.13, we need some preparatory lemmas.

Lemma 3.14. Let D be an inductive data type defined on top of the sorts s1, . . . , sn, and let
t(x, z) be an LD term that contains x. Then INJD ⊢ ∀x∀y∀z(t(x, z) = t(y, z) → x = y).

Proof. By induction on the structure of t.

Lemma 3.15. Let D be an inductive data type defined on top of the sorts s1, . . . , sn and let
A(x, z) be an equation of type D. Then

M′(D, s1, . . . , sn) |= ∀x∀y∀z (x ̸= y ∧A(x, z) ∧A(y, z) → ∀xA(x, z)).

Proof. Abbreviate M′(D, s1, . . . , sn) as M′, let A(x, z) ≡ t1(x, z) = t2(x, z). Then it suffices
to show M′ |= t1(b, d) = t2(b, d) ∧ t1(c, d) = t2(c, d) → ∀x t1(x, d) = t2(x, d) for all b, c, d
with b ̸= c. We make a case distinction. 1. If x does not occur in t1 nor in t2, then M′ |=
t1(d) = t2(d) → ∀x t1(x, d) = t2(x, d). 2. If x occurs in exactly one of the ti, say in t1, then
A(x, z) is of the form t1(x, z) = t2(z). By Lemma 3.14, M′ |= t1(b, d) ̸= t1(c, d) and therefore
M′ ̸|= t1(b, d) = t2(d) ∧ t1(c, d) = t2(d). 3. If x occurs in both t1 and t2, we proceed by
induction on t1. The base case is t1(x, z) = x. Since M′ |= ACYD

t2 we have t2 ≡ x and thus

M′ |= ∀x t1(x, d) = t2(x, d). For the induction step let t1(x, z) ≡ cl1(t1,1, . . . , t1,ml1
). Then t2 ≡

x is impossible since M′ |= ACYD
t1 . So t2 ≡ cl2(t2,1, . . . , t2,ml2

). Since M′ |= DISJDl1,l2 we have

l1 = l2. Since M′ |= INJDl1 we have M′ |= t1,i(b, d) = t2,i(b, d) and M′ |= t1,i(c, d) = t2,i(c, d) for

i = 1, . . . , l1. So, by induction hypothesis, M′ |= ∀x t1,i(x, d) = t2,i(x, d) for i = 1, . . . , l1. Thus
M′ |= ∀x t1(x, d) = t2(x, d).

Proof of Theorem 3.13. Write M′ for M′(D, s1, . . . , sn). We have already observed that M′ |=
TD in Lemma 3.12. In order to show that M′ |= IAtom let A(x, z) be an equation of type
D. Since D contains at least two constructors, there are LD terms u(y) and v(y) that start
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with constructors and elements c of the domains of M′ s.t. u(c)M
′ ̸= v(c)M

′
. So if M′ |=∧k

i=1 αi,kA(x, d) for some d, then M′ |= A(u(c), d) and M′ |= A(v(c), d). So, by Lemma 3.15,
M′ |= ∀xφ(x, d).

Corollary 3.16. Let D be an inductive data type with at least two constructors. Then TD +
IAtom ⊬ SURD

Proof. LetD be defined on top of the sorts s1, . . . , sn. Then, by Theorem 3.13,M′(D, s1, . . . , sn) |=
TD + IAtom and, by Lemma 3.12, M′(D, s1, . . . , sn) ̸|= SURD.

So in particular: equational theory exploration does not prove surjectivity in an inductive data
type with at least two constructors. We formulate this in terms of a challenge problem as a
corollary.

Challenge Problem 3.4 (Surjectivity).

� Language: LD for D being an inductive data type

� Axioms: TD, see Definition 3.10

� Goal: SURD, see Definition 3.10

Corollary 3.17. Equational theory exploration does not solve Challenge Problem 3.4 for any
inductive data type with at least two constructors.

Chapter notes

The methodology for analysing methods for inductive theorem proving described in Section 3.3
was pioneered and applied to several methods in [25], see also [12, 13, 14]. Theorem 3.13 was
proven in [26]. The simplest nonstandard model N∞, as well as more simple nonstandard models
for arithmetic and inductive data types can be found in [26].
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Chapter 4

Saturation theorem proving with
explicit induction axioms

4.1 The induction rule

The integration of induction axioms, or any other type of axioms, into a saturation system S
can, in principle, be achieved in the following way: we simply add a new inference rule without
premises that adds the clause normal form of an instance of the axiom scheme to the current
clause set, as in:

CNF(SK∃(Ixφ(x, z)))

There is a number of problems with such an inference rule, the first is purely formal: the first-
order language from which to take φ(x, z) is not specified. There are various ways of fixing this
problem. In our context, it is most useful to simply mention part of the context explicitly as in
the following definition.

Definition 4.1. The induction rule for saturation systems is given by

C1 · · · Cn

CNF(SK∃(Ixφ(x, z)))
Induction

where C1, . . . , Cn are clauses and φ(x, z) is an L(C1, . . . , Cn) formula.

Adding this rule to a sound saturation systems results in a system that is sound w.r.t. the
standard model in the following sense.

Definition 4.2. The second-order induction axiom is the second order sentence IND2:

∀X (X(0) ∧ ∀u (X(u) → X(s(u)))) → ∀v X(v))

The second-order induction axiom is very powerful. For example, up to isomorphism, the
standard model N is the only model of Q+ IND2.

Theorem 4.3. Let S be a sound saturation system, let L be a language that contains 0 and s, let
Γ be a set of L sentences, and let σ be an L sentence. If S+Induction refutes CNF(SK∃(Γ+¬σ)),
then Γ, IND2 |= σ.

Proof Sketch. The proof proceeds, essentially, by a proof translation and deskolemisation.
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This means that every rule that can be simulated by this rule can be added to an inductive
theorem prover and will result in a saturation system that is sound w.r.t. the standard model.
However, the following problems still remain with this rule:

1. A (serious) practical problem and, in a sense, again, the central problem of automated
inductive theorem proving: How does the automated theorem prover choose φ(x, z) ?

2. Another practical problem (that we will not deal with in this course): When, i.e., at
what times in the saturation process does the automated theorem prover choose to add
an induction axiom?

3. A (subtle) theoretical problem: this induction rule increases the langauge by adding new
Skolem symbols. By iterating this induction rule, this effect proliferates to create yet more
Skolem symbols coming form induction axioms with existing Skolem symbols.

4.2 Parameter-free literal induction with generalisation

One way to deal with the first problem is to strongly restrict the set of formulas φ(x, z) that
may be introduced as induction formulas. In this section we will consider an induction rule that
adds a clausified version of the induction axiom for literals.

Definition 4.4. The rule of parameter-free literal induction with generalisation for saturation
systems is

L(a) ∨ C
CNF(SK∃(IxL(x)))

LIND−
λ

where a is a constant symbol and L(x) is a literal.

As we will see soon, this rule also considerably simplifies dealing with the third problem.

First note that L(a) is variable-free. The clause L(a)∨C can be interpreted as the implication
L(a) → C. The clause normal form of the literal induction axiom for L(x) is computed as:

IxL(x) ≡ L(0) ∧ ∀x (L(x) → L(s(x))) → ∀xL(x)
SK∃(IxL(x)) ≡ L(0) ∧ (L(c) → L(s(c))) → ∀xL(x)

CNF(SK∃(IxL(x))) ≡ {{¬L(0), L(c), L(x)}, {¬L(0),¬L(s(c)), L(x)}}

Usually this rule is applied immediately followed by resolutions against the source literal L(a)
yielding the clauses ¬L(0) ∨ L(c) ∨ C and ¬L(0) ∨ ¬L(s(c)) ∨ C. This can be interpreted as
saying: in order to prove C it suffices to prove L(0) and the implication L(c) → L(s(c)). And
indeed, resolving against the clauses L(0) and {¬L(c), L(s(c))} then yields C.

Example 4.5. LIND−
λ is powerful enough to solve Challenge Problem 3.3, i.e.,R+LIND−

λ refutes
CNF(SK∃(B + ¬∀xx ̸= sk(x))) for all k ≥ 1. This is unsolvable by atomic induction. We start
the saturation process with the clause set

C0 = CNF(SK∃(B)) ∪ CNF(SK∃(¬∀xx ̸= sk(x)))

= {{s(x) ̸= 0}, {p(0) = 0}, {p(s(x)) = x}, {x+ 0 = x}, {x+ s(y) = s(x+ y)}} ∪ {{a = sk(a)}}.

for the new Skolem constant a = s(∀xx ̸= sk(x)). The application

a ̸= sk(a)

CNF(SK∃(Ixx ̸= sk(x)))
LIND−

λ
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of LIND−
λ , followed by resolution against the source literal a = sk(a), yields

C1 = C0 ∪ {{0 = sk(0), c ̸= sk(c)}, {0 = sk(0), s(c) = sk+1(c)}}.

Since k ≥ 1, resolution with s(x) ̸= 0 yields

C2 = C1 ∪ {{c ̸= sk(c)}, {s(c) = sk+1(c)}},

from which we can obtain the empty clause by:

p(s(c)) = p(s(c))
Ref

s(c) = sk+1(c)

p(s(x)) = x

p(s(x)) = x c ̸= sk(c)

p(s(c)) ̸= sk(c)
Paramod[x\c]

p(s(c)) ̸= p(sk+1(c))
Paramod[x\sk(c)]

p(s(c)) ̸= p(s(c))
Paramodid

∅ Resid

Example 4.6. Consider the sentence σ ≡ ∀xx+(x+ x) = (x+ x)+x. It is an instance of both,
associativity and commutativity and thus B + IAtom ⊢ σ. However, if we try to prove σ by a
straightforward induction proof in B, the proof attempt gets stuck at the induction step:

s(x) + (s(x) + s(x)) =(A5) s(x) + s(s(x) + x) = · · · = (s(x) + s(x)) + s(x).

The generalisation feature of the LIND−
λ rule allows to prove σ from B without finding a suitable

lemma, such as associativity or commutativity, explicitly (as theory exploration would do).

Let S be a sound and refutationally complete saturation system. We start with

C0 = CNF(SK∃(B)) ∪ CNF(SK∃(∀xx+ (x+ x) = (x+ x) + x))

= CNF(SK∃(B)) ∪ {{a+ (a+ a) ̸= (a+ a) + a}}

There are 26 = 64 possibilities for generalising the literal L(a) ≡ a+ (a+ a) = (a+ a) + a to a
literal L(x). The rule application

a+ (a+ a) ̸= (a+ a) + a

CNF(SK∃(Ixa+ (a+ x) = (a+ a) + x))
LIND−

λ

followed by resolution against the source literal yields

C1 = C0 ∪ {{a+ (a+ 0) ̸= (a+ a) + 0, a+ (a+ c) = (a+ a) + c},
{a+ (a+ 0) ̸= (a+ a) + 0, a+ (a+ s(c)) ̸= (a+ a) + s(c)}}.

Then we have
C1 |= a+ (a+ 0) =(A4) a+ a =(A4) (a+ a) + 0

and thus

C1 |= a+ (a+ c) = (a+ a) + c and (IH)

C1 |= a+ (a+ s(c)) ̸= (a+ a) + s(c).

Moreover, we have

C1 |= a+(a+s(c)) =(A5) a+s(a+ c) =(A5) s(a+(a+ c)) =(IH) s((a+a)+ c) =(A5) (a+a)+s(c)

and thus C1 |= ⊥. A refutationally complete saturation system will hence prove ∅ from C1.
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4.3 Analysis of LIND−
λ

We now set out to analyse the power of the LIND−
λ rule. To this aim we introduce the ground

induction rule and observe that every instance of LIND−
λ is also an instance of ground induction.

Definition 4.7. For a set of formulas Φ we define the ground induction rule Φ-GIND by

C1 · · · Cn

CNF(SK∃(Ixφ(x, t)))
Φ-GIND

where φ(x, z) ∈ Φ and t is a vector of ground L(C1, . . . , Cn) terms.

Lemma 4.8. For any saturation system S and any clause set C: if S +LIND−
λ refutes C, then

S + Literal(L(C))-GIND refutes C.

Proof. If a clause D occurs in an S + LIND−
λ derivation, then L(D) ⊆ L(C) ∪ L′ where L′ is a

set of constants, the Skolem constants introduced by LIND−
λ -inferences. Therefore, given

L(a) ∨ C
CNF(SK∃(IxL(x)))

LIND−
λ

there is an L(C) literal L′(x,w) and constants c ∈ L′ s.t. L(x) ≡ L′(x, c), so IxL(x) ≡ IxL
′(x, c)

and we can write this inference as

L′(a, c) ∨ C
CNF(SK∃(IxL

′(x, c)))
Literal(L(C)))

This lemma allows to replace the cascade of growing languages of LIND−
λ applications by in-

duction in one global language that is known from the very beginning.

Lemma 4.9. Let S be a sound saturation system, let C be a clause set, and let Φ be a set of
formulas. If S +Φ-GIND refutes C, then the theory

skω(L(C) ∪ L(Φ) ∪ {0, s})-SA + C +Φ-IND

is inconsistent.

Proof. Let L′ = skω(L(C)∪L(Φ)∪{0, s}), and let C = C0, C1, . . . , Cn be an S+Φ-GIND deduction.
We show that L(Cn) ⊆ L′ and L′-SA + C + Φ-IND |= Cn by induction on n. For the base case
we have C |= C0. For the induction step we assume L(Cn) ⊆ L′ and L′-SA + C + Φ-IND |= Cn.
If Cn+1 is obtained by S, then the claim follows from the soundness of S. If Cn+1 is obtained
by Φ-GIND, then Cn+1 = Cn ∪ CNF(SK∃(Ixφ(x, t))) where φ(x, z) ∈ Φ and t is a vector of
ground L(Cn) terms. Since Φ-IND ⊢ ∀z Ixφ(x, z), we also have Φ-IND ⊢ Ixφ(x, t). By the
induction hypothesis L(Ixφ(x, t)) ⊆ L′, so, by Lemma 0.17, L′-SA + Φ-IND ⊢ SK∃(Ixφ(x, t)),
so L′-SA+Φ-IND ⊢ CNF(SK∃(Ixφ(x, t))) and thus L′-SA+C+Φ-IND |= Cn+1 and L(Cn+1) ⊆ L′.

Theorem 4.10. Let S be a sound saturation system and let C be a clause set. If S + LIND−
λ

refutes C, then C + ILiteralL(C) is inconsistent.
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Proof. Since S + LIND−
λ refutes C, by Lemma 4.8, also S + Literal(L(C))-GIND refutes C. So,

by Lemma 4.9,
skω(L(C) ∪ {0, s})-SA + C + Literal(L(C))-IND

is inconsistent. So, by Theorem 0.18/1, also

C + ILiteralL(C)

is inconsistent.

This result is another example for an embedding of a method for automated inductive theorem
proving into a theory in the sense of mathematical logic, cf. Section 3.3. In this case we see
that the growing languages of Skolem symbols in S + LIND−

λ refutations are absorbed by the
parameters of the ILiteral induction axioms. We will later use Theorem 4.10 to show that the
following Challenge Problem 4.1 is not provable using LIND−

λ by showing that it is not provable
by literal induction.

Challenge Problem 4.1 (Every number is even or odd).

� Language: {0/0, s/1, E/1, O/1}

� Axioms: {E(0),∀x (E(x) → O(s(x))), ∀x (O(x) → E(s(x)))}

� Goal: ∀x (E(x) ∨O(x))

4.4 Multi-clause induction

Definition 4.11. Let φ(x, z) be a formula. Then the diagonal induction axiom IDiag
x φ(x, z) is |x|∧

i=1

∀x<i∀x>i φ(x<i, 0, x>i, z) ∧ ∀x (φ(x, z) → φ(s(x), z)

 → ∀xφ(x, z)

Let m ∈ N and let Φ be a set of formulas. Then Φ-DiagmIND is the set of universal closures
of the formulas IDiag

x φ where x is a tuple of m variables and φ ∈ Φ. Moreover, we define
Φ-DiagωIND =

⋃
m∈NΦ-DiagmIND.

Definition 4.12. The multi-clause induction rule for saturation systems is

L1(t) ∨ C1 · · · Ln(t) ∨ Cn

CNF(SK∃(IDiag
x

∨n
i=1 Li(x)))

MCIND−
λ

where L1(x), . . . , Ln(x) are literals, t is a tuple of ground terms, and C1, . . . , Cn are clauses.

Example 4.13. Let S be a sound and refutationally complete saturation system. Then S +
MCIND−

λ solves Challenge Problem 4.1. Challenge Problem 4.1, written as a clause set, is

C = {{E(0)}, {¬E(x), O(s(x))}, {¬O(x), E(s(x))}, {¬E(a)}, {¬O(a)}}

where a = s(∀x (E(x) ∨O(x))) The application

E(a) O(a)

CNF(SK∃(IDiag
x E(x) ∨O(x)))

MCIND−
λ
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of MCIND−
λ gives C1 = C ∪ CNF(SK∃(IDiag

x E(x) ∨ O(x))). Now observe that Challenge Prob-
lem 4.1 has a straightforward induction proof, i.e.,

E(0), ∀x (E(x) → O(s(x))),∀x (O(x) → E(s(x))), Ix(E(x) ∨O(x)) ⊢ ∀x (E(x) ∨O(x)).

So, by Skolemisation,

E(0), ∀x (E(x) → O(s(x))),∀x (O(x) → E(s(x))), SK∃(Ix(E(x) ∨O(x))) ⊢ E(a) ∨O(a).

and, since CNF preserves logical equivalence and Ix(E(x) ∨ O(x)) ≡ IDiag
x (E(x) ∨ O(x)), we

have

E(0), ∀x (E(x) → O(s(x))),∀x (O(x) → E(s(x))),CNF(SK∃(IDiag
x (E(x)∨O(x)))),¬E(a),¬O(a) ⊢ ⊥.

which, when expressed as a clause set, is exactly C1.

4.5 Analysis of multi-clause induction

Lemma 4.14. Let S be a sound saturation system, let C be a clause set. If S + MCIND−
λ

refutes C, then the theory

skω(L(C) ∪ {0, s})-SA + C +Clause(L(C))-DiagωIND

is inconsistent.

Proof. Let L′ = skω(L(C)∪{0, s}) and let C = C0, C1, . . . , Cn be an S+MCIND−
λ deduction. We

show that there is a set Ln of constant symbols s.t. L(Cn) = L(C) ∪ Ln ⊆ L′ and L′-SA + C +
Clause(L(C))-DiagωIND |= Cn by induction on n. For the base case we have C |= C0. For the
induction step we assume L(Cn) = L(C) ∪Ln ⊆ L′ and L′-SA+ C +Clause(L(C))-DiagωIND |=
Cn. If Cn+1 is obtained from Cn by an inference from S, then the claim follows from the
soundness of S. If Cn+1 is obtained from Cn by an application of MCIND−

λ , then Cn+1 = Cn ∪
CNF(SK∃(IDiag

x

∨n
i=1 Li(x))) for some literals L1(x), . . . , Ln(x) in L(Cn) = L(C) ∪ Ln. So there

are L(C) literals L′
1(x, y), . . . , L

′
n(x, y) and constant symbols c in L′ s.t. Li(x) ≡ L′

i(x, c) for i =

1, . . . , n. So we have Clause(L(C))-DiagωIND ⊢ IDiag
x

∨n
i=1 L

′
i(x, c) and, by Lemma 0.17, L′-SA+

Clause(L(C0))-DiagωIND ⊢ SK∃(IDiag
x

∨n
i=1 L

′
i(x, c)). Since IDiag

x

∨n
i=1 Li(x) is parameter-free,

we have L(Cn+1) = L(Cn) ∪ {d1, . . . , dk} for some new Skolem constants d1, . . . , dk. Moreover,
L′-SA + C +Clause(L(C0))-DiagωIND |= Cn+1.

Theorem 4.15. Let S be a sound saturation system and let C be a clause set. If S +MCIND−
λ

refutes C, then C +Clause(L(C))-DiagωIND is inconsistent.

Proof. Since S +MCIND−
λ refutes C, by Lemma 4.14,

skω(L(C) ∪ {0, s})-SA + C +Clause(L(C))-DiagωIND

is inconsistent. So, by Theorem 0.18/1,

C +Clause(L(C))-DiagωIND

is inconsistent.

Challenge Problem 4.2 (Cross-Conjunction).
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� Language: Lcc = {0, s, P/1, Q/1}

� Axioms: Γcc = {DISJNat, INJNat, P (0), Q(0),∀x (P (x) → Q(s(x))), ∀x (Q(x) → P (s(x)))}

� Goal: ∀xP (x)

It is easy to see that ∀x (P (x)∧Q(x)) has a straightforward induction proof in Γcc. An alternative
solution of this challenge problem is based on using two-step induction as follows: since Γcc ⊢
P (s(0)) and Γcc ⊢ ∀x (P (x) → P (s(s(x)))), we have

Γcc, P (0) ∧ P (s(0)) ∧ ∀x (P (x) → P (s(s(x)))) → ∀xP (x) ⊢ ∀xP (x)

On the other hand:

Theorem 4.16. Γcc +Clause(Lcc)-DiagωIND ⊬ ∀xP (x).

Without Proof.

Corollary 4.17. Let S be a sound saturation system. Then S + MCIND−
λ does not solve

Challenge Problem 4.2 (Cross-Conjunction).

Chapter notes

The approach of adding (clausifications of) induction axioms to a resolution-based theorem
prover dates back to, at least, [6]. The rule for parameter-free literal induction with generali-
sation has been described in [21, 9]. The rule for multi-clause induction has been introduced
in [8, 10]. Much of this chapter is based on Chapters 3 and 4 of [25]. A proof of Theorem 4.3
can be found in [25, Corollary 3.1.11]. The proof of Theorem 4.10 follows that of [25, Corollary
4.1.6]. The proof of Theorem 4.15 follows that of [25, Corollary 4.2.8]. A proof of Theorem 4.16
can be found in [25, Proposition 4.2.15].
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Chapter 5

Literal induction

There are a number of problems that are solvable by literal induction, but not by atomic
induction.

Proposition 5.1.

1. B + ILiteral ⊢ ∀xx ̸= sk(x) (Acyclicity)

2. B + ILiteral ⊢ ∀x∀y∀z (x+ y = x+ z → y = z) (Additive Left Cancellation)

3. B + ILiteral ⊢ ∀x∀y∀z (x+ z = y + z → x = y) (Additive Right Cancellation)

4. ILiteral ⊢ SURD for an inductive data type D

Proof. For 1, note that ∀xx ̸= sk(x) has a straightforward induction proof inB, cf. exercise sheet
3, exercise 2. For 4 cf. exercise sheet 6, exercise 5. Since B+ ILiteral proves the commutativity
of +, 2 and 3 are equivalent. For 3 first note that (*) B ⊢ s(u) = s(v) → u = v. Work in
B + ILiteral. Assume x ̸= y and consider the literal L(x, y, z) ≡ x + z ̸= y + z. We have
L(x, y, 0) by x + 0 =(A4) x ̸= y =(A4) y + 0. For the induction step assume L(x, y, z). Then
x+ s(z) =(A5) s(x+ z) ̸=(*),IH s(y + z) =(A5) y + s(z), i.e., L(x, y, s(z)).

5.1 Unsolvability of the even/odd challenge problem

In this section we will show that literal induction does not solve Challenge Problem 4.1 (Even/Odd).
For the rest of this section fix the language LEO = {0, s, E,O} and define the set of sentences
ΓEO = {E(0), ∀x (E(x) → O(s(x))),∀x (O(x) → E(s(x)))}.

Definition 5.2. We define an LEO-structure M1 as follows. The domain of M1 is ({0}×N)∪
({1} × Z). The language is interpreted as follows:

0M1 = (0, 0)

sM1(k, n) = (k, n+ 1)

EM1 = {(0, n) | n is even}
OM1 = {(0, n) | n is odd}

For an inductive data type we have already defined the theory TD = DISJD + INJD. We define
T ∗
D = TD+ACYD+SURD. We start with a simple observations concerning the structure M1.
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Lemma 5.3. M1 |= T ∗
Nat + ΓEO

Proof Sketch. By a straightforward verification.

A useful result from the literature is the following:

Theorem 5.4. T ∗
Nat is complete.

Proof Sketch. Completeness of T ∗
Nat is essentially shown by quantifier-elimination.

Corollary 5.5. T ∗
Nat |= {0, s}-IND.

Proof. Since T ∗
Nat is complete and true in the standard model we have Th(N) = T ∗

Nat and hence
T ∗
Nat |= {0, s}-IND.

Lemma 5.6. Let L(x) be a non-equational LEO literal containing x. Then M1 ̸|= L(0) or
M1 ̸|= ∀x (L(x) → L(s(x))).

Proof. Suppose that M1 |= L(0) and M1 |= ∀x (L(x) → L(s(x))). Then M1 |= L(n) for all n ∈
N. If L(x) is of the form E(sk(x)) for some k ∈ N, then M1 |= E((0, k)) and M1 |= E((0, k+1))
which contradicts the definition of M1. If L(x) is of the form ¬E(sk(x)) for some k ∈ N, then
M1 |= ¬E((0, k)) and M1 |= ¬E((0, k + 1)) which contradicts the definition of M1. The cases
O(sk(x)) and ¬O(sk(x)) are analogous.

Lemma 5.7. M1 |= Literal(LEO)-IND.

Proof. Let L(x, z) be a literal. If L(x, z) is an equation, then, by Lemma 5.3 and Corollary 5.5,
we have M1 |= ∀z IxL(x, z). If L(x, z) does not contain x, then ∀z IxL(z) is valid. If L(x, z)
contains x and is not an equation, we are done by Lemma 5.6.

Theorem 5.8. ΓEO + Literal(LEO)-IND ⊬ ∀x (E(x) ∨O(x)).

Proof. M1 |= ΓEO by Lemma 5.3 and M1 |= Literal(L)-IND by Lemma 5.7. However, M1 ̸|=
∀x (E(x) ∨O(x)) since every nonstandard number is neither even nor odd.

Corollary 5.9. Let S be a sound refutation system. Then S+LIND−
λ does not solve Challenge

Problem 4.1 (Even/Odd).
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Chapter 6

Clause set cycles

In this chapter we will study clause set cycles, a form of reasoning by infinite descent.

6.1 Definition and variants

Definition 6.1. Let L be a first-order language and let η be a new constant symbol. A finite
L ∪ {η} clause set C(η) is called L clause set cycle it it satisfies

C(s(η)) |= C(η) and
C(0) |= ⊥.

An L ∪ {η} clause set D(η) is refuted by an L clause set cycle C(η) if

D(η) |= C(η).

Example 6.2. Clause set cycles solve Challenge Problem 4.1 (Even/Odd). Let

C(η) = {{E(0)}, {¬E(x), O(s(x))}, {¬O(x), E(s(x))}, {¬E(η)}, {¬O(η)}}

Then C(0) |= E(0) ∧ ¬E(0), so C(0) |= ⊥. For the descent step let M |= C(s(η)). Then
M |= ¬E(s(η)) and M |= ¬O(s(η)), so, by one resolution step each, we have M |= ¬O(η) and
M |= ¬E(η). Thus M |= C(η). Therefore C(η) is refuted by the clause set cycle C(η).

The notion of refutation by a clause set cycle can be made considerably more flexible by allowing
parameters for the external and internal offset and the descent step size. All of these notions
coincide.

6.2 Logical characterisation

Definition 6.3. Let Φ be a set of formulas. Then the parameter-free induction rule with the
η-restriction is

φ(0) ∀x (φ(x) → φ(s(x)))

φ(η)
Φ-INDR−

η

where φ(x) ∈ Φ.

Definition 6.4. For a theory T and a rule R we define [T,R] = T + {φ | T ⊢ Γ,Γ/φ ∈ R}.
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Theorem 6.5. Let L be a language not containing η, let D(η) be an L ∪ {η} clause set. Then
D is refuted by an L clause set cycle iff [∅,∃1(L)-INDR−

η ] ∪ D(η) is inconsistent.

There are a number “cheap” ways to exploit weaknesses of clause set cycles, e.g., by the eta
restriction, by rule vs. axiom. In the next section we develop an independence result based on
parameter-freeness of ∃1(L)-INDR−

η .

6.3 A practically relevant independence result

Definition 6.6. For k, n,m ∈ N with 0 < n < m we define the LLA formula

n · x+ (m− n)k = m · x→ x = k (Ek,n,m(x))

An superficial intuition on how one might go about proving Ek,n,m(x) is the following: bring
n · x to the right-hand side to obtain “(m − n) · k = (m − n) · x” and then divide by m − n.
This proof sketch generously disregards the difference between variables and numerals, as well
as the fact that there is no multiplication in LLA and hence no multiplicative cancellation. A
simple instance is E0,1,2(x) ≡ x+ 0 = x+ x→ x = 0.

The main result is the following theorem:

Theorem 6.7. Let k, n,m ∈ N with 0 < n < m. Write A for the associativity of + and C for
the commutativity of +. Then B +A+ C + ∃1(LLA)-IND

− ⊬ ∀xEk,n,m(x).

Proof Sketch. The proof is rather lengthy. The model M which plays a central role is defined as
follows: the domain of M is {(i, n) ∈ N×Z | i = 0 implies n ∈ N}. The language is interpreted
as:

0M = (0, 0) pM((0, n)) = (0, n .− 1)

sM(i, n) = (i, n+ 1) pM((i, n)) = (i, n− 1) if i > 0

(i, n) +M (j,m) = (max(i, j), n+m)

Then M |= A+B + C which is a straightforward verification. Moreover, M |= ∃1(LLA)-IND
−

which is the difficult part. And finally M ̸|= Ek,n,m because we have

n · (1, k) +M ((m− n)k)M = (1, nk) +M (0, (m− n)k) = (1,mk) = m · (1, k)

but (1, k) ̸= (0, k).

On the other hand, open induction (with parameters) suffices in the sense thatB+Open(LLA)-IND ⊢
∀xEk,n,m(x). This example shows how powerful parameters can be in induction axioms.

Challenge Problem 6.1 (Ek,n,m).

� Language: LLA

� Axioms: A+B + C (see Theorem 6.7)

� Goal: Ek,n,m for k, n,m ∈ N with 0 < n < m (see Definition 6.6)

Corollary 6.8. Clause set cycles do not solve Challenge Problem 6.1 (Ek,n,m).

Proof. Let k, n,m ∈ N with 0 < n < m and let Ek,n,m(η) = CNF(A∧B∧C ∧¬Ek,n,m(η)). Sup-
pose that Ek,n,m(η) is refuted by a clause set cycle. Then, by Theorem 6.5, [∅,∃1(LLA)-IND

R−
η ∪

Ek,n,m(η) is inconsistent. So A+B + C + ∃1(LLA)-IND ⊢ ∀xEk,n,m(x) which contradicts The-
orem 6.7.
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Chapter notes

The notion of clause set cycle was introduced in [12] to capture methods for automated inductive
theorem proving such as the n-clause calculus [19, 18]. Theorem 6.7 has been shown in [13].
Much of this chapter is based on [25, Chapter 6]
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Chapter 7

First-order induction

The results we have seen so far may lead to the impression that overcoming a practically
relevant independence result is always possible by using a sufficiently strong class of formulas in
the language of the original problem as induction formulas. For example, Challenge Problem 3.4
(Surjectivity) is unsolvable by atomic induction, but it is solvable by literal induction (in the
same language LD). Moreover, Challenge Problem 4.1 (Even/Odd) is unsolvable by literal
induction, but it is solvable by open induction (in the same language LEO). Furthermore,
Challenge Problem 6.1 (Ek,n,m) is unsolvable by parameter-free ∃1 induction but is solvable by
open induction with parameters (in the same language LLA).

The mere existence of statements which are true but not provable by induction on any first-
order formula in the language of the statement is not surprising. Indeed, it is a corollary of the
second icompleteness theorem that PA ⊬ ConPA which is an statement of this form since ConPA
is an LA sentence and PA is Q + LA-IND. However, ConPA is a formal statement that would
generally be regarded to be outside the scope of automation anyway. In this chapter we will
present such a result for a much simpler statement.

Definition 7.1. We define the first-order language LDH = {0/0, s/1, p/1, d/1,
⌊ ·
2

⌋
/1}.

The intended interpretation of the symbols in LDH are, respectively, zero, the successor function,
the truncated predecessor function, the function n 7→ 2 · n, and the function n 7→

⌊
n
2

⌋
.

Definition 7.2. We define the LDH theory TDH by the following axioms:

0 ̸= s(x)

p(0) = 0

p(s(x)) = x

d(0) = 0

d(s(x)) = s(s(d(x)))⌊
0

2

⌋
= 0⌊

1

2

⌋
= 0⌊

s(s(x))

2

⌋
= s

(⌊x
2

⌋)
Challenge Problem 7.1 (Double/Half).
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� Language: LDH (see Definition 7.1)

� Axioms: TDH (see Definition 7.2)

� Goal: ∀xx ̸= s(d(x))

The main theorem of this chapter is:

Theorem 7.3. TDH + LDH-IND ⊬ ∀xx ̸= s(d(x)).

The consequence of this theorem for automated inductive theorem proving is that any method
that generates only induction formulas in the language of the original problem will fail to solve
Challenge Problem 7.1 (Double/Half).

The following structure plays the central role in the proof of Theorem 7.3.

Definition 7.4. We define the LDH structure M as follows: the domain of M is ({0} × N) ∪
({1} × Z). All symbols are defined in the natural way, i.e.,

0M = (0, 0)

sM(i, n) = (i, n+ 1)

pM(i, n) =

{
(0, 0) if (i, n) = (0, 0)

(i, n− 1) otherwise

dM((i, n)) = (i, 2 · n)⌊
(i, n)

2

⌋M
= (i,

⌊n
2

⌋
)

It is then straightforward to check that M |= TDH and it is easy to observe that M ̸|= ∀xx ̸=
s(d(x)) because M |= s(d(1,−1)) = s(1,−2) = (1,−1). The difficult part is to show that
M |= LDH-IND. This is done based on the following two lemmas.

Lemma 7.5. Th(M) has quantifier elimination, i.e., for every LDH formula φ(x) there is a
quantifier-free LDH formula ψ(x) s.t. M |= φ(x) ↔ ψ(x).

Lemma 7.6. M |= Open(LDH)-IND.
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