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Introduction

In the year 1934, Gerhard Gentzen introduced his sequent calculus LK, a refinement of his
earlier calculus of natural deduction (cf. [Gen34]). His aim was to prove the consistency
of arithmetic, and to this end he formulated and proved the cut elimination theorem
(“Gentzen’s Hauptsatz”). Briefly, the cut elimination theorem shows that any sequent
proof can be algorithmically transformed into a proof that does not use the cut rule; proofs
with this property are called cut-free or analytic. The only formulas that can occur in a
cut-free proof are instances of subformulas of the end sequent. This so-called subformula
property significantly simplifies the structure of possible proofs of a given sequent, making
cut-free proofs very convenient as theoretical objects. Gentzen himself did not originally
intend cut elimination to be applied to actual mathematical proofs; it was Georg Kreisel
who advocated using it to extract constructive content from nonconstructive proofs, cf.
[Kreb1], [Kreb2]. Luckhardt used Kreisel’s method to obtain a polynomial bound on the
number of exceptionally good rational approximations in the Thue-Siegel-Roth theorem
(see [Luc89]); a similar bound was found independently by Bombieri and van der Poorten
using number-theoretical methods, see [Bom88]. Kohlenbach carries on Kreisel’s ideas
under the name “Applied Proof Theory”, cf. [Koh08].

One way to formalize the “constructive content” of a proof is Herbrand’s Theorem:
In a simple formulation, a formula 3z A where A is quantifier-free is valid iff there is a
tautological disjunction \/}"_; A[Z\{;] of instances of A, a so-called Herbrand disjunction.
Given a cut-free proof 7* of 3z A, we can obtain this disjunction by collecting all the
quantifier inferences in 7*. Essentially, the Herbrand disjunction contains all the witness
terms that we use to prove an existential formula valid. We can also write this disjunction
over instances as a set of instances and call it an Herbrand set.

In formalizing actual mathematical proofs, one will inevitably have to use the cut rule.
How should we treat such formalized proofs that contain cuts? By the cut elimination
theorem, we could certainly transform a given proof into a cut-free one and proceed
from there. But cut elimination is a tedious process, and as shown (independently) by
Statman and Orevkov, cut-free proofs can be nonelementarily large compared to their
counterparts with cuts (see [Sta79], [Ore79], [Pud98]), so one would prefer a method
that circumvents cut elimination and extracts an Herbrand set directly from the original
proof. The approach that we discuss in this thesis is to extract from a proof 7 a tree
grammar G(m) such that the language of G() is a tautological set of instances. This is
accomplished by carrying out cut elimination on 7 according to a certain strategy. Stefan
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Hetzl proved this result in [Het12a] for proofs whose end sequents consist of a single
prenex formula and which only contain cuts with at most one quantifier using totally
rigid tree grammars, as defined in [Jacl1]; in this sense, this thesis generalizes [Het12a].

In [Het12b], Hetzl and Straburger presented the stronger result that if 7 can be
transformed by cut elimination into a cut-free proof 7*, then the language of G(x) is an
upper bound for the Herbrand set we would obtain from 7*.

The notion of a Herbrand disjunction can be extended to more complicated formulas:
it is well-known that an arbitrary formula is valid iff it has an expansion proof, which is
a tree that combines constructive information of an Herbrand disjunction with a more
complex propositional structure. Expansion trees were first proposed by Dale Miller in
[Mil87]. In analogy to the simple prenex case, we can extract an expansion proof of a
valid formula from a given cut-free sequent proof of that formula. Moreover, the tree can
then be “flattened” in order to obtain a set of instances that is tautological.

The principal result of this thesis is the development of a new type of tree grammar,
the so-called constrained grammars. A constrained grammar is a tree grammar together
with a propositional formula that determines which combinations of productions can and
cannot occur in derivations, which is an essential feature if one is dealing with nested
quantifiers and logical connectives. It turns out that constrained grammars generalize
totally rigid tree grammars, and in fact the constrained grammar G(7) associated with a
proof 7 is always totally rigid.

Using constrained grammars, we have managed to extend the results of [Het12a] to
proofs whose end sequent consists of arbitrarily many Boolean combinations of prenex
formulas and whose cut formulas may not contain quantifier alternations, but are not
otherwise restricted. The proof strategy is inspired by [Het12b] in that we work with a
local cut reduction procedure.



CHAPTER 1

Proofs

1.1 Basic definitions

Definition 1.1 (Sequent). A sequent is an ordered pair of finite multisets of formulas
({A1,..., An}{B1,...,By}), written as Ay,..., A, F By,...,B,. The first component
of a sequent is called the antecedent, the second is called the succedent and both are
referred to as cedents. Note that while cedents are usually written as lists, they are
actually multisets and hence the order in which their elements appear is irrelevant.

The natural interpretation of the sequent Aq,...,A,, - By,...,B, is “if all of the A;
hold, then one of the B; holds” (or, more formally, this sequent can be interpreted as the
formula =A; V...V =24,V By V...V B,). As a consequence, concepts such as models,
satisfiability and validity of sequents are well-defined. The special cases A1, ...,A, F and
F are interpreted as “Aj,...,A,, lead to a contradiction” and “there is a contradiction”,
respectively. I is called the empty sequent and usually written as L.

We generally use uppercase Greek letters I 1I,A,A, ... to denote cedents. If we want to
emphasize one or more formulas in either cedent, we will use the notation I"A,B,C, .. ..

The logical calculus we use in this thesis is a variant of the system that Gentzen
introduced in [Gen34| under the name LK, for “Logistikkalkiil klassisch”. LK is a
sequent calculus, which means that it describes a method of deriving sequents from other
sequents via certain inference rules. Before we can list the inference rules of LK, we
need to define the substitution of terms in formulas.

Definition 1.2 (Substitution operator). Let s1,...,8,,%1,...,t, be terms. The substitu-
tion operator [s1\t1,...,S,\ts] acts on a formula A by replacing every occurrence of each
s; in A with ¢;. The result is written as A[s1\t1,...,S,\tn], i.e. the operator is written
as a postfix. Note that A[si\t1,...,s,\tyn] is only defined if the ¢; do not contain any
variables that would become bound in A.

e
I'-A
r, where r is the name of the rule. The inference rules of LK are:

Definition 1.3 (Inference rules). An inference rule is an expression of the form
FI '_ A/ F// '_ A//
o TrrA

r

O
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1. Contraction:

AATEA rEAAA
ATFA rFAA
2. Weakening:
rEA I'A
ATHFA r'tAA "
3. Propositional rules:
AlFA BIIFA r-AAB
AVBILIIFAA ! I'FAAVB 7
ABTIEA F-AA IIEAB
ANB,TFA TIIFAAAANB 7
I'-AA ATEA
“ATFA ! TFA-A "
4. Quantifier rules:
Alz\t], ' A v I'+ A, Alz\o]
VeA, TFA 't AVzA "
Alz\a], '+ A . '+ A Alz\t]
JzA, THA I'FANzA "

Here, t is any term, while « is a variable that does not occur in I', A or A, called
an eigenvariable. The inferences that use eigenvariables are called strong quantifier
inferences, the others weak quantifier inferences.

5. The cut rule:

I'FAA ATIFA
TIT-AA

cut

The formula A is called the cut formula of the inference.

In all of these cases, the sequents above the line are called premises and the sequent
below the line is called the conclusion. An inference is called unary or binary if it has
one or two premises, respectively. Moreover, in all of these cases except cut, the formula
that is emphasized in the conclusion is called the main formula, while those that are
emphasized in the premises are called auziliary formulas.

It is easy to verify that all of these rules are sound, i.e. if their premises are valid, then
so are their conclusions.

Strictly speaking, there is a difference between inference rules and inferences: An
inference rule is a template for generating inferences; an inference is a concrete instance
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of an inference rule. In practice we will mostly use the term “inference” and trust that
the meaning can be derived from context.

If ¢ is a cut in a proof 7, i.e. a concrete instance of the cut rule, then we may assign
various attributes to ¢ according to the form of its cut formula A.. For example, if A. is
quantifier-free, we call ¢ an unquantified cut.

Definition 1.4 (LK-proof). Let I' - A be a sequent. An LK-proof of I' b A is a finite
tree 7 of sequents such that

1. The root of mis I' F A.

2. The leaves of 7 are sequents of the form A F A with A atomic; such sequents are
called azxioms.

3. Every inner node IT - A of 7 has one or two children IT' - A" (and IT” - A”) such
that
i+ A m=A n0e A

or

I+ A II+=A

is an inference of LK.

I' = A is called provable if there is an LK-proof of I' = A. A subtree of 7 that is itself a
proof is called a subproof of .

A proof in which no two strong quantifier inferences use the same eigenvariable is said to
be regular; from this point on we will always assume regularity without explicitly stating
it.

Proofs are visualized with the root at the bottom and the leaves at the top; as such,
the notions of “upward” and “downward” are well-defined. Note that any formula may
occur multiple times within a proof and even within a single inference, but it is often
necessary to refer to a concrete occurrence of a formula. Consequently, we use letters
1V, . . ., possibly with subscripts, to refer to individual occurrences of formulas in a proof
or inference. We will denote such formulas by Ay, etc. The same method will be used to
refer to concrete inferences within a proof.

Theorem 1.5. LK is sound, i.e. if ' = A is LK-provable, it is valid.

Proof. By induction on the depth of proofs. Proofs of depth 1 consist of a single axiom,
which is certainly valid. If 7 is a proof of depth n + 1, then its final inference ¢ is either
unary or binary and the premises of ¢ have proofs of length at most n. It follows that
these premises are valid and because ¢ preserves validity, so is I F A. O

All inference rules of LK apart from cut obey the so-called subformula property: The
only formulas that appear in the premises of these inferences are subformulas (or instances,
in the case of quantifier inferences) of formulas in the conclusion. By extension, if a proof
does not contain cuts, the only formulas that occur anywhere within it are instances
of subformulas of the end sequent. In other words, cut is the only rule that completely
erases a formula (when reading top-down) or introduces it from nowhere (when reading
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bottom-up). For this reason, cut-free proofs, i.e. proofs that do not contain any cuts, are
of particular interest. The question naturally arises whether LK loses any of its strength
when the cut rule is removed. It turns out that LK is complete even without cut.

Theorem 1.6. LK without cut is complete, i.e. if ' = A is valid, then there is a cut-free
LK-proof of ' = A. As a consequence, LK is complete as well.

Sketch of proof. We show the following equivalent theorem: If I' = A is any sequent,
then either I' = A has a countermodel or it is provable without cut. The proof proceeds
by taking I" = A as the root of a tree and then iteratively enumerating all inferences that
could have led to the current top level of the tree. If this process terminates, then the
resulting tree can be converted to a cut-free proof of I' F A; if it does not terminate, we
can use it to construct a countermodel. For a rigorous proof, see [Tak87]. O

1.2 Eliminating cuts

If a sequent I' = A has a proof 7, then it is valid by Theorem 1.5 and we can construct
a cut-free proof ' of I' = A by Theorem 1.6. This shows that provability and cut-free
provability of sequents are equivalent. The problem with this approach is that the cut-free
proof 7 is constructed from scratch and has no relation to the original proof 7. This
raises the question of whether we can obtain a cut-free proof of I' = A by transforming 7.

In this section we will define a relation ™ ~» 7’ between proofs 7, 7’ of the same end
sequent signifying that 7’ is obtained from m either by reducing a cut or by applying a
transformation that makes reduction of a cut more convenient. All of these operations
are sound, i.e. they transform correct proofs into correct proofs.

Definition 1.7 (Cut reduction). Let ¢ be a cut in a proof 7 and let A, be the cut
formula of ¢. We define the following methods of cut reduction according to the inferences
immediately above the cut:

1. On one side of ¢, there is a unary or binary inference r whose active formula is not A.:

(¢2) (¢n1) (¢2)
(7!)1) M rr A’AC AC’H/ -A cut

rEAA, AdFA 7T LI AN “
TIFAA e TIFAA "
(¥2) (v2) (v1) (v2)

(¢1) A A I+ Ay _— I'-AA. ALl E Ay cut (1/}3)
' AA, A4 T - AA, Iy - Ay L
TITF AA e TIFAA

The case where ¢ is on the left side of ¢ works entirely symmetrically.
2. A, is introduced by an axiom on one side of ¢:

(1)
A - A, ALTHA

ATFA

. @)
culty A, l'H A
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3. A, is introduced by a weakening on one side of c¢:

L ()

T A 4 T ~ I'FA

' A A, AT+ A —_—= %
) ) t
TIFAA cutl  INITE AA

The case where the weakening is on the right side is symmetrical.

4. A. is the main formula of a contraction on one side of c:

(1) (¥2)

(¥1) 't AALA, AL A i
s4dey4de Cs tin (77/}2)
TEAALA (1) w TIFAALA, A TR A
I'+AA, A=A DT = AAA el
T FAA “ TaoraAL ¢

Here, 14, and ¢} each arise from 1 by replacing all eigenvariables occurring in 1y with
fresh copies. The case where the contraction is on the right is treated analogously.

5. A. = dxB and A, is introduced by F-inferences immediately above the cut:

(1) (¢2)
I'FAB\l] . Bla\al I+ A (1) (¢alo\t])
I'FA3B hBﬂ+ACiMWFFAB%gkiﬂﬂﬂkAcmm

TITFAA

6. A. =VxB: Analogous to the previous case, but with switched sides.
7. Ac = BAC and A, is introduced by A-inferences immediately above the cut:

(¢1) (¥2) (v3)
LEALB Dok 285,0 , BCIIEA
' ABAC " BACITF A Q s
TIFAA e
(¢2) (v3)
(w1> FQ F AQ,C C,B,H FA cutin
N ALB RBﬂFAW“m/[”
TITF AA [’

8. A. = BV C: Analogous to the previous case.

9. A. = =B and both —-inferences introducing A. are immediately above the cut:

(¢1) (12)
BI'F A I+ AB (42) (t1)
I'+-A-B o -BJIIH+A o WUF/LB B’FFA cut[cz]
: : cuty) I+ AA

T AA
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If 7/ arises from 7 by finitely many applications of these rules, then we write m ~* «/. If

*. 7 (for non-erasing).

no instances of rule 3 are used, we write 7~

Theorem 1.8 (Gentzen). Let m be a proof of I' = A. Then there is a cut-free proof ©*
of I' b A such that m ~~* w*.

A system of reducing objects to certain normal forms is called weakly normalizing if a
normal form can always be reached in a finite number of steps for any initial object. Thus,
Gentzen’s theorem can be reformulated as “Cut reduction is weakly normalizing”. On
the other hand, cut reduction is not strongly normalizing, i.e. there are transformation
sequences that do not terminate. Moreover, cut reduction is not confluent, which means
that given a proof 7, it is possible to end up with different cut-free proofs 7/, 7”.

Example 1.9. Consider the proof

(Y1) (2)
reA ,  HEA

T'FAA " A A
IT-AA

wi

cut

and assume that ¢; and 1 are cut-free. Since the cut formula is introduced by a
weakening on both sides, this proof can be reduced to two different cut-free proofs

(¢1) (¢2)
I'FA w InIrF A W
TIIFAA TIFAA

This shows the non-confluence of cut reduction.

Definition 1.10 (Pruning). Let m and 7’ be proofs of the same end sequent. We say

that «’ is the result of “pruning” w, written as 7 Y , if 7’ is obtained from 7 by the
following subproof transformation:

(¥[8\a])
@) Aj\al, " |- A7

Alz\B], I = A"
E[Ia?>1 ]F” o EIxA,A[x\q],F” VA

wy

Alz\q] o wr Alz\a], Alz\o], " - A/
AT E A Alz\o],I" = A
- JzAT'F A 7!

C[3zA],C[AzA], T + A

COzAl - A C[3zA],C[3zA], '+ A

C[EzA], T+ A

We say that a proof is “pruned” if it cannot be pruned further.
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Expansion Trees

Expansion trees were originally presented by Miller in [Mil87] as a generalization of
Herbrand disjunctions for higher-order logic. For our purposes, it will be sufficient to
develop them only with respect to first-order logic.

Expansion trees are conceptually very similar to formulas in that they are constructed
as trees from atomic formulas and logical connectives. The connectives used in expansion
trees are =, V, A V.3, as in first-order formulas, and additionally a new symbol +! where
any term may be inserted for t.

Definition 2.1 (Expansion tree, dual expansion tree, deep formula). Let A be a formula.
Ezpansion trees and dual expansion trees of A are trees recursively defined by the rules
below. Each (dual) expansion tree also has an associated deep formula, denoted by Dp,
that is constructed along with it.

1. L is an expansion tree of any formula and Dp(L) := L. T is a dual expansion tree
of any formula and Dp(T) :=T.

2. If A is atomic, then A is an expansion tree and a dual expansion tree of itself and

Dp(A) := A.

3. If E is an expansion tree of A, then = F is a dual expansion tree of —=A. If E is
a dual expansion tree of A, then —F is an expansion tree of —=A. In both cases,
Dp(~E) = ~Dp(E).

4. Let o € {V,A}. If E and F are (dual) expansion trees of A and B respectively, then
E o F is a (dual) expansion tree of Ao B and Dp(E ¢ F') := Dp(FE) ¢ Dp(F).

5. If Alx\a| has an expansion tree E, then V2 A+ E is an expansion tree of VoA and
Dp(VxA+“ E) := Dp(E).
If Alx\a] has a dual expansion tree E, then 3z A +* E is a dual expansion tree of
dxA and Dp(3zA +* E) := Dp(E).

6. Ifty,... t, are distinct terms such that Fy, ... E, are expansion trees of A[z\t1],...,
Alz\ty], then IxA+41 By, ... +!n E, is an expansion tree of 3xA and Dp(JzA +
Eq, ..., +tn En) = V?:l Dp(EZ)
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If By, ...,E, are dual expansion trees of A[z\t1],...,A[z\t,], then Vz A+ Ey, ... +in
E, is a dual expansion tree of VoA and Dp(VzA+" Ey, ...+ E,) = A", Dp(E;)

+% (in 5.) and +% (in 6.) are called strong and weak expansions, respectively. They are
typically visualized as labeled arcs connecting the node Qx A with the (dual) expansion
trees immediately following them. We say that +“ dominates every expansion in F and
+! dominates every expansion in Fj;. « is referred to as an eigenvariable; we stipulate
that each strong expansion in a (dual) expansion tree use a unique eigenvariable.

The concept of expansion trees can be generalized to sequents.

Definition 2.2 (Expansion sequent). Let I' - A = A;,... A, F By, ... ,B, be a sequent.
A formal sequent &€ W F = Fy,... B, b Fi,... F, is called an expansion sequent of
I' = A if it fulfills the following two conditions:

1. Each F; is a dual expansion tree of A; and each F; is an expansion tree of B;.

2. No eigenvariable occurs more than once in the whole sequent.

If €+ F is an expansion sequent, then

is its deep sequent.

Definition 2.3 (Dependency relation). Let E be a (dual) expansion tree and +%, +?
weak expansions in E. The relation +° <% +! is defined by

+* <% 41 if +° dominates a strong expansion +“ such that a occurs in t.

The transitive closure of <0E is written as <g and called the dependency relation of E.
We will omit the subscript if the meaning is clear from the context. E is called acyclic if
< is acyclic.

If &€+ F is an expansion sequent, the relations <2|_3' and <grg are defined in an
analogous manner between all weak expansions of (dual) expansion trees in € - F.

Definition 2.1 requires the terms that are used to expand a weak quantifier to be unique.
This fact necessitates some thought on how we define the union of (dual) expansion trees
of the same formula. We will first expand the definition of (dual) expansion trees by a
new type of node that indicates that the node’s child trees need to be merged. Then
we will give a reduction procedure describing how these merge nodes can be shifted
further and further down until a (dual) expansion tree according to the original definition
remains. In order to define this reduction, we will need some terminology: If F and F'
are expansion trees (either or both might be dual), we write E[F] to indicate that E
contains F' as a subtree.

Definition 2.4 (Expansion tree with merge). Let A be any formula. A (dual) expansion
tree with merge is a tree together with an associated deep formula that is defined by the
following rules:
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1. If F is a (dual) expansion tree of A, then E is a (dual) expansion tree with merge
of A.

2. If E, F are expansion trees with merge of A, then so is FU F and Dp(EUF) =
Dp(E) v Dp(F).
If E F are dual expansion trees with merge of A, then so is EUF and Dp(EUF) =
Dp(E) A Dp(F).

Given this definition of expansion trees with merge, expansion sequents with merge
can be defined analogously to expansion sequents.

We can apply substitution operators to (dual) expansion trees. This operation is
less straightforward than one might imagine, due to the fact that the terms in weak
expansions of the same quantifier must be unique.

Definition 2.5 (Substitution for expansion trees). Let a,( be distinct variables and t a
term. We define the application of the substitution [«\¢] to (dual) expansion trees with
merge inductively:

1. L[a\t], T[a\t], A[a\t] are just substitutions of formulas.

2. (Eo F)[a\t] = Ela\t] o Fla\t] and (-E)[a\t] = = (Ela\t]).

3. (QrA +* E)[a\t] is not defined if ¢ is not a variable; otherwise it is equal to

QrA+! E[a\t].
4. (QrA 4P E)[a\t] = QzA +° Ela\t].
5. Let s1,...,s, be distinct terms and Jy, . ..,J,, the equivalence classes of the relation

i ~ j iff s;{0\t] = sj[a\t] for i,j € {1,...,n} and let Iy,... I, € {1,...,n} such
that [; € J;. Then

(QuA +1 By ...+ Eyp)[o\t] = QuA +0\ (| | Eja\t]). ..
JEN

V(|| Byla\).

J€JIm

Note that due to 3., E[a\t] is not defined if F' contains the strong expansion +¢ and ¢ is
not a variable.

Definition 2.6 (Merge reduction). We define a reduction relation 5 between expansion
sequents with merge. Note that in each case except strong expansion, only the expansion
tree that is being reduced needs to be taken into consideration, as the rest of the sequent
is unaffected. For this reason, we formulate these cases for expansion trees instead of
sequents:

1. E[FU 1]+~ E[F] and E[L U F] & E[F).
Likewise, E[F LU T] = E[F] and E[T U F] = E[F).
2. If A is atomic, then E[A L A] & E[A].
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3. E[(—E1) U (~E2)] & E[~(E1 U ).
4. If o € {V,A}, then E[(Ey ¢ E2) U (F} ¢ Fy)] = E[(E1UFy) o (By U Fy)].
5. (EFD(QeA+® B U (QeA+ By) = (EF F)[QuA+ (ByU E)]B\al]
6. If r1,. .., 71,81, -« ,Smst1, - - - otn are terms such that {s1,...,s;m} N {t1,...tn} =0
and
Ei=QrA+" Ei1...+"Ey +% Fr... 45" Fy,
Ey=QrA+" Eyy...+" Ey  +1 Gy ...+ Gy,
then

E[El LJ EQ] PE) E[Q:BA 4" (E171 LJ EQ’]_) 4T (El,l LJ Egyl)
S E 1 Gy 4 G

We write Y for the reflexive and transitive closure of +=.
Theorem 2.7.

1. For acyclic (dual) expansion sequents with merge, the reduction S s strongly
normalizing and confluent. Its normal forms are proper (dual) expansion sequents,
i.e. they do not contain any U-nodes.

2. Let E,F be acyclic expansion trees with merge. If E U F 5 G, then there are
variables o, ... ,0n,01, ... ,0, such that

Dp(G) > (Dp(E) v Dp(F)[B\as, .- ,Bu\own.

If E and F are dual expansion trees with merge, then
Dp(G) < (Dp(E) A Dp(F))[f1\a, - - - Bn\n].

Proof.

1. If m is a merge node in any (dual) expansion tree E in € F F, then let |m| be the
number of nodes below m. By extension we define the weight |€ = F| of € F F to be
the sum of |m| over all merge nodes anywhere in the sequent. Now observe that all
reduction steps except 5. reduce |€ = F| by shifting merge nodes downward. Step
5. may introduce new merge nodes anywhere in the sequent, thereby increasing
the weight, but the resulting sequent has one eigenvariable fewer. It follows that
R A= F', then &+ JF' <. € F, where <y, is the order on expansion
sequents induced by the lexicographic order on (|EV (€ F F)|,|€ - F|). Since this
order is clearly well-founded, it follows that every reduction sequence terminates.

2. We show that each of the reduction steps in Definition 2.6 preserves the equivalence.
The cases of E = L or E atomic are trivial. If E = —=E/, F = ~F' and ELF = G,
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then

Dp(G) = Dp(—~(E' U F")) = =Dp(E' U F') = ~(Dp(E') A Dp(F"))
= -Dp(E’) V ~Dp(F') = Dp(E) V Dp(F).

The other propositional cases are proved similarly. Now, let £ = VzA +% F’,
F =V2eA+P F and EUF = G. It follows that Dp(G) = Dp(E' U F') =
(Dp(E") v Dp(F"))[B\c].

The only case left to deal with is that of weak expansions. Let F1, F as in Definition
2.6, 6., and let By U E5 = F5. Then

Dp(E3) = Dp(E11 U E1) V...V Dp(E1 UEy)
V Dp(F1)V ...V Dp(Fy,,)V Dp(G1) V...V Dp(Gy,)
< Dp(E11)V ...V Dp(Ey;)V Dp(F1) V...V Dp(Fp,)
V Dp(Ez1)V ...V Dp(E2;)V Dp(G1) V...V Dp(Gy)
& Dp(E1) V Dp(E).

O]

Definition 2.8 (Union of expansion trees). By Theorem 2.7, if (€ F F)[E; U E»] is an

acyclic expansion sequent with merge, then it has a unique S -normal form. We define
the union (€ - F)[E1 U Es] to be this normal form.

Definition 2.9 (Expansion proof). Let I' = A be a sequent and € - F an expansion
sequent of I' H A. € F F is called an ezxpansion proof if < is acyclic and Dp(€ F &) is
tautological.

We shall now define a method for extracting an expansion sequent from a cut-free
proof. This expansion sequent will actually turn out to be an expansion proof.

Definition 2.10 (Expansion proof extraction). Let 7 be a proof of some sequent. Then
we can construct an expansion sequent Ex(m) of the same sequent by the following
inductive procedure:

1. If 7 is a one-line proof of A+ A, then we let Fz(r) = AF A.

2. If the bottommost inference of 7 is a contraction on the left, i.e.

(%)
r=AAITFA

Cl
ATFA

and Ex(¢) = E1, E},Es, ..., Ep - F1, ... ,F,, then
Em(ﬂ') = F UE{,EQ,...,Em FFy,..L B

Contractions on the right are treated symmetrically (also using U).
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3. If m ends with a weakening on the left, i.e.

(%)
= I'FA

— = _wy
ATF A

and Ex(y) = E1,Es, ... .E, - Fy,... F,, then
Eaj‘(’f(‘) = T,EI,EQ, e ,Em F Fl, e ,Fn,

and analogously for a weakening on the right, using bot.

4. Suppose that

(¥)
= I'FAA

SATFA !

and let Ex(¢) = En,...,Ey F Fy, ..., F,. Then
E(E(TF) = ﬁFn,El, e ,Em H Fl, e 7Fn71-

—.-inferences are treated analogously.

5. If m ends with a unary A-inference, i.e.

(¥)
m= ABIFA

ANB.TFEA M

and Ex(¢) = E1,Es, ..., E, F Fi, ... F,, then
Ex(r) = EiNEy, Es,....En - Fy, ... F,.

Unary V-inferences are treated in the same way.
6. Suppose that

(11) (12)
r=ATFA BIIA

AVB, I - AA

l

and

E$(¢1) = El, ‘e ,Em F Fl,. - ,Fn,
E:L'(’(/)Q) = Gl,. - ,Gk F Hl,. - ,Hl

Then

E.T(Tr) =F1 VG, Eo,....Epn,Go, ... .Gy Fy, ... F, Hy, ... H|.
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The case of a binary A-inference is treated analogously.

7. If m ends with a strong quantifier inference, say

(¥)
7= Alz\a|,[ F A .
AT FA 7!

and Ex(¢y) = Eq,...,E, F Fy, ... F,, then

Ex(r) :=32A+“E,Es,....E, F Fy, ... F,.

8. If m ends with a weak quantifier inference, say

(¥)
x=TF A Alz\{]
TFAJzA "

and Ex(¢v) = Eq,...,E, F Fy, ... F,, then

Ex(r):=FE,Es,....Ep b Fy,... . Fy_1,3cA+' F,.

9. If m ends with a cut, as in

(Y1) (¥2)
r=IFAA AIl+A ;
TIIFAA e
and
Ex(¢1) =Er,....EnF Fi,... Fy,
E:L’(lﬁg):Gl,...,le—Hl,...,Hl,
then

Ex(ﬂ') = El, ce ,Em,GQ, ce ,Gk F Fl, .. .anl,Hl, ce ,Hl.

Theorem 2.11. If w is a proof of I' = A in which all cuts are either unquantified or
have their cut formula introduced by a weakening, then Ex(m) is an expansion proof of

' A.

Proof. Clearly, Ex(m) is an expansion sequent of I = A. We need to show that Dp(Ex (7))
is a tautology and that < Ex(r) 18 acyclic. For acyclicity, observe that if +¢ <0E$(7r) +9,
then there is a strong expansion +¢ dominated by +! such that s contains .. But this
is only possible if the weak quantifier inference that gave rise to +* is above the strong
inference that produced +%, because 7 is regular. It follows that if 4! < Ex(x) 17, the
inference corresponding to s is above that corresponding to ¢t. Thus, a cycle would imply
that two inferences are each above the other, which is impossible.
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For the validity of Dp(Ez()), we use induction on the length of 7 to show that each
rule in Definition 2.10 preserves the validity of Dp(Ez()).

1. If 7 is a one-line proof of A+ A, then Dp(FExz(mw)) = AF A is tautological.

2. By Theorem 2.7,

Dp(EyUE,, Es,....Ept Fi, ... .F,)

< Dp(E1 U EY), Dp(Es),. .., Dp(Ey) & Dp(Fy),...,Dp(F,) <

< Dp(E1) A Dp(EY)[Bi\ev, . . . .Bu\an], Dp(Es), ..., Dp(Ewm) = Dp(F1), ... .Dp(Fy,) <
< Dp(E1[Bi\a1, - - .80 \aw], E1[B1\aa, - - .Bn\awn], B2y - . . \E & 1, .o F)

for some «;,53;. Note that applying a variable substitution to a quantifier-free
formula preserves validity and consequently, so does the contraction rule.

3. Ex(m) arises from Ex(¢) by adding the dual expansion tree T to the antecedent.
Since Dp(Ex(m)) = T,Dp(Ex(v)) <+ Dp(Ex()), Dp(Ex(m)) is a tautology.

4. This step transforms a deep sequent of the form I7 - A, B to the logically equivalent
=B, Il - A.

Dp(Ex(w)) = Dp(E1 AN Eg, Es, ..., Ep E Fy, ... JFy) =
= Dp(E1) A Dp(E2), Dp(E3), ..., Dp(Ey) & Dp(F1),...,.Dp(Fy)
< Dp(E1), Dp(Es), Dp(E3), . ..,Dp(Em) = Dp(Fy), ... ,Dp(F,) =
= Dp(Exz(¢))

It follows that if Dp(Ex(v)) is a tautology, then so is Dp(Ex(m)).
6. First, note that

Dp(EJ?(ﬂ')) = Dp(El) \% Dp(Gl)a Dp(EQ)a s 7Dp(Em)¢Dp(G2)7 e aDp(Gk) -
+ Dp(Fy),...,Dp(F,),Dp(Hy),...,Dp(H;).

Now assume that Dp(Exz (1)) and Dp(Ex()2)) are tautologies and let J be any
interpretation of Dp(Fz(m)). If the whole antecedent of either Dp(Ez(1))) or
Dp(Ex(12)) is true under J, then so is one of the F; or one of the H;, respectively,
and hence Dp(Fx(m)) is true under J. If neither antecedent is true under J, there
are two possibilites. First, if both Dp(E;) and Dp(G;) are false under J, then so
is Dp(Ex(E1)) V Dp(Ex(Gh1)). If either of them is true, then one of the E; or the
G; for i > 2 must be false. In both cases, Dp(Ex(n)) is true under J. Since J was
arbitrary, Dp(Fz(m)) is a tautology.

7. Since Dp(3xA +“ E1) = Dp(E1), the deep sequent is not changed by this rule.
8. Again, the deep sequent does not change in this step.

9. If A is quantifier-free, then each expansion tree of A is also dual and vice versa.
Thus, if F,, and G; are (dual) expansion trees of A, then there is a (dual) expansion
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tree M of A such that Dp(M) implies both Dp(F,,) and Dp(G1). Consequently, we
may assume that F,, = G1. Now it is straightforward to prove that if Dp(Ez (1))
and Dp(Ez(1¢9)) are tautological, so is Dp(Ex(7)).

If A is introduced by a weakening on the left side of the cut, then F;,, = L. It follows
that Dp(Ez(¢1)) <> Dp(En,...,Em F Fi,...,F,_1). But if the latter formula is
valid, then clearly so is Dp(Ex(r)). Note that in this case we do not actually use
any information about Fxz(13), which is reminiscent of the weakening case of cut
reduction. The case where A is introduced on the right-hand side of the cut is
treated analogously.

O]

Definition 2.12 (Deep set). Let E be a (dual) expansion tree of A. The deep set Dp*(E)
is defined as follows:

If E contains no weak expansions, then Dp*(E) = {Dp(E)}.
Dp*(~E) = ~Dp* (E).

If E = Ej o Ey, then Dp*(E) = Dp*(E1) ¢ Dp*(E»).

If E=QzA+" E; ...+ E,, then Dp*(E) = ., Dp*(E;).
Dp*(QxA+% E) = Dp*(E).

If € = 3J is an expansion sequent, then Dp*(€ = F) := Jgee ~Dp*(£) U Jpes Dp*(F).

Lemma 2.13. Let € = F be an expansion sequent. Then Dp(E + F) <> \/ Dp*(E - F).

Proof. First of all, it is clear that Dp(€ = F) <+ \/gee "Dp(E) V \/ peg Dp(F'). As a
consequence, we only need to show that Dp(FE) <> \/ Dp*(F) for any expansion tree E
and Dp(E) <> \ Dp*(E) for any dual expansion tree E. We prove this for expansion
trees by induction on the structure of E:

The case where E contains no weak expansions is trivial.

If E is an expansion tree, Dp(—F) = =Dp(FE) <> = \/ Dp*(E) <+ \-Dp*(E) =
A\ Dp*(—E). The case where E is a dual expansion tree is dealt with analogously.
If By, E are expansion trees, then Dp(E10Ey) = Dp(E1)eDp(E2) < (\/ Dp*(E1))e
(\V/ Dp*(E2)) <> \/(Dp*(E1) < Dp*(E3)). The case of dual expansion trees is treated
in the same way.

If By, ...,E, are expansion trees, then Dp(QzA+" Ey ...+ E,) = \/_; Dp(E;) +
Vie1 V Dp*(E;) = V UL, Dp*(E3).

Straightforward.
O

Definition 2.14 (Herbrand set). Let m be a proof of the form described in Theorem

2.11.

Then H(w) := Dp*(Ex(m)) is called the Herbrand set of .
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Corollary 2.15. If w is a proof of the form described in Theorem 2.11, then H(x) is a
tautological set, i.e. \| H(m) is a tautology.

Proof. By combining Theorem 2.11 and Lemma 2.13. 0



CHAPTER 3

Grammars

In this chapter we will develop the theory of regular tree grammars as applicable to this
thesis. We will need the notion of a ranked alphabet, i.e. a set X of symbols together with
their respective arities. We write T5; for the set of terms that can be constructed from X’
and Ty (X) for the set of terms that can be constructed from X' together with a set X of
variables. For any symbol x and term ¢, we write x € ¢ to express that x occurs in t.

Definition 3.1 (Regular tree grammar). A regular tree grammar is a tuple G =
(p,N,X,P), where

1. X is a finite ranked alphabet; its elements are called terminal symbols (or terminals
for short);

2. N is a finite set, disjoint from X; its elements are called nonterminals;
3. ¢ € N is the starting symbol;

4. P C N x Tx(N), is the finite set of production rules (productions). Its elements
are usually written as o — ¢ instead of (o).

A production of the form o — t is said to begin with . The set of productions
beginning with « will be denoted by P,. If P, = {a — t1,...,& — t,}, we can concisely
denote these productions by a — t1] ... |tn.

Remark 3.2. We can and frequently will apply the substitution operator defined in
Definition 1.2 to productions; the substitution is always understood as being applied to
the second term, i.e. a — t[B\r] = a — (¢[B\r]). If Q is any set of productions, Q[F\r]

is defined as {p[B\r]|p € Q}.

Now we shall define the derivability relation of a grammar G. Let r,s € Tx(N). We
say that s is derivable from r—written as r — s—if there is a production § —t € P
such that s can be obtained by replacing one occurence of 8 in r by t. The reflexive and
transitive closure of this relation will be denoted by r —7, s. If the grammar is clear
from the context, the subscript will be omitted.

19
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It is clear from the above that every step in a derivation can be viewed as an applica-
tion of a specific production rule to one term in order to receive a new term; we shall
occasionally write r 2 s %o express that s arose from r through application of the rule
p. Consequently, the notion of a production rule that is used in a derivation is well-defined.

Definition 3.3 (Language of a grammar). Let G be a tree grammar of any type. Since
every class of grammar carries with it a notion of what a valid derivation is, the language
of G, denoted by L(G), is always definable as the set of all t € Ty such that ¢ =, t.

In the sequel we shall need types of grammars that arise from regular tree grammars
by restricting the productions—or, more precisely, the combinations of productions—that
can be used in derivations. The first of these types is that of rigid grammars. The notion
of rigidity was first introduced in the form of automata in [Jacl1].

Definition 3.4 (Rigid tree grammar). A rigid tree grammar is a tuple G = (¢,N,R, X, P)
such that (p,N,X P) is a regular tree grammar (called the underlying regular grammar
of G) and R C N is the set of rigid nonterminals. In the case of R = N, G is called
totally rigid; when talking about totally rigid grammars, we shall leave the set R out of
the definition.

The important difference between rigid and nonrigid grammars lies in the derivation
relation. A derivation ¢ — t; — ... — t, — t of the underlying regular grammar is a
valid derivation of G if the following rigidity condition holds: If 3 is a rigid nonterminal
and ¢,q’ are positions such that t;|, = t;|, = (3 for some i,j, then ¢|, = t|,. This condition
ensures that if an occurence of a rigid nonterminal is replaced by a certain term in the
end product, all other occurences of the same nonterminal are replaced by the same term
there.

Lemma 3.5.

1. If G is a rigid grammar and t € L(G), then there is a derivation of t that uses at
most one production beginning with each rigid nonterminal.

2. If G is a grammar and every term t € L(G) can be derived using at most one
production beginning with each nonterminal, then G can be interpreted as a totally
rigid grammar.

Proof.

1. Suppose that ¢ — t; — ... = t, — t is a derivation of G and § € R such that
two different productions § — r, 5 — 1’ are used in steps t; — t;41 and t; — tj41
respectively. We know that in the end term t, every occurrence of 5 has been
replaced by the same term s, so obviously we can replace either of the subderivations
B—r—*s, B— 1" —*s with the other and end up with a valid derivation of ¢.

2. If a derivation of a term ¢ only includes one rule for each terminal, then it clearly
satisfies the rigidity condition for all terminals.
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O]

Example 3.6. Let ¥ = {f/2,¢9/1,a/0} and L = {f(¢"(a),g"(a))|n > 0}. Using the
pumping lemma for tree grammars found, for instance, in [Com07], it is easy to show
that L is not generated by a regular tree grammar. On the other hand, the following
rigid grammar generates L:

e N={pa,3}

. R={o}

e Productions:
B s f(aaa)
—a—pf
— B — alg(B).

In a rigid grammar, the choice we make for one nonterminal has no influence on what
productions we can use for the others. It turns out that it is possible to define a class
of grammars that allows us to enforce any relationship between nonterminals (or their
productions, respectively) that we might want. We call this the class of constrained
grammars.

Definition 3.7 (Constrained tree grammar). A constrained tree grammar is a tuple
G = (p,N,X,P,C) consisting of a regular tree grammar (p,N,X P) together with a
constraint formula €, which is a propositional formula that uses productions as atoms.

As in the case of rigid grammars, the salient point of this definition lies in the derivation
relation. Every derivation d of the underlying regular tree grammar naturally induces a
partial truth assignment vy that assigns T to all productions used in d and leaves the
other atoms unassigned. We define the language of G to be the set of all terms ¢ € Tx(N)
such that there is a derivation d ending with ¢ and vy is a maximal interpretation of
C, i.e. if d' is the extension of v by a production that is not in v, then vy (C) is a
contradiction. Note that by this definition, the language of a constrained grammar may
contain nonterminals.

By Lemma 3.5, totally rigid grammars are characterized by the fact that derivations
may use at most one production for each nonterminal. It follows that if G = (¢, N, X, P)
is a totally rigid grammar, then the constrained grammar G’ = (o, N, X, P,TRp), where

TRp= N\ N\ -Ara).

a€N p,qeP,
p#q

generates the same language as G. By extension, if G = (¢, N, X, P,C) is a constrained
grammar, then G’ = (p, N, X, P,C A TRp) is a totally rigid constrained grammar that
enforces the same constraints as G.

From time to time we will need to substitute both sides of a production rule at the
same time. To this end, we define a variant substitution operator.
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Definition 3.8 (Variant substitution operator). If @« — t is a production rule of a
grammar, then o — ¢{#\r} is defined as the production that results from replacing all
occurences of 8 in both a and ¢ with r. Concatenation of this operator and its application
to a set of productions are defined as in Definition 1.2 and Remark 3.2, respectively.

Both substitution operators can be applied in a natural way to constraint formulas;
indeed, this is the primary use of the variant operator.

We shall now turn our attention to defining a certain relation on grammars that will
in practice turn out to be a partial order.

Definition 3.9 (Dependency relation). Let G be a tree grammar (of any kind) and N
its set of nonterminals. We define the relation <OG on N as

o <% B iff there is a term ¢ such that o —t € P and § € t.

The transitive closure of this relation is written as < and called the dependency relation
of G. Asin the case of the derivation relation, the subscript will be omitted if the grammar
is clear from the context. The dependency relation is transitive by definition. If it is also
acyclic, i.e. there are no a,~v1,...,7% € N,k > 0, such that « < v; < ... <y < «q, it is
called the dependency order and G is called an acyclic grammar.

If M is any nonempty subset of N, then a nonterminal o« € M is said to be minimal
with respect to M if there is no 5 € M with 8 < a.

Lemma 3.10. Let G be a totally rigid grammar and o« € N minimal with P, = o —
ti|...|tn. Define a new totally rigid grammar G' = (p,N' X' P’), where

L N'= N\ {a},

9 %' =¥,

3. P'=Ugenn jp) P8 U Uizy Pola\ti].
Then L(G) = L(G").

Proof. We need to show that any valid derivation of G' can be transformed into a valid
derivation of G’ and vice versa. Suppose that ¢ — r; — ... — rp — s is a derivation of
G that uses only one production for each terminal, cf. Lemma 3.5. If @ does not occur
in any r;, it is easy to see that this derivation is just as valid in G’. If, on the other hand,
the derivation uses «, then the first step ¢ — r1 must introduce all the occurences of «
since «v is minimal. Any two steps where « is replaced use the same production beginning
with o, say p := o — t;. Thus, we can replace the first step by ¢ — r1[a\t;] and remove
all steps that use p; the result will be a valid G’-derivation ending in s.

Conversely, assume that ¢ — r; — ... — rp — s is a G'-derivation. Then r = ¢1[a\¢;]
for some ¢1 € Tx(N) and 1 < i < n. There are two cases to consider, according to
whether or not ¢g; contains «. If it does not, then we already have a G-derivation. If it
does, then we replace the first step by ¢ — ¢1 (which is a G-production) and immediately
afterwards insert as many applications of & — t; as we need to arrive at r1. Again, the
result is a valid derivation of G. O
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Corollary 3.11. Let G be totally rigid and acyclic. Then there is an enumeration
at, ..., of N\ {p} such that

L(G) = {s[la1\t1,...,an\tn] | ¢ = s,a; = t; € P for 1 <i<n}. (3.1)

Proof. By induction on the number n of nonterminals, excluding ¢. The case n =0 is
trivial.

Now suppose that G has n nonterminals, not counting ¢, and that 3.1 holds up to n — 1.
Since G is acyclic, there is a minimal element oy € N \ {¢}. We can apply Lemma 3.10
to G and a1 to obtain a grammar G’ with fewer nonterminals that is again totally rigid
and acyclic and satisfies L(G) = L(G"). By the induction hypothesis,

L(G) = L(G") = {sla2\ta, ... .on\tn] | ¢ = s, = t; € P for 2< i < n};

note that a; — t; € P’ is obviously equivalent to o; — t; € P and ¢ — s € P’ is
equivalent to s = r[a;\t1] for some r,¢; such that ¢ — r,a; — t; € P. Substituting
these equivalent conditions in the above equation yields equation (3.1) and concludes the
proof. O

Remark. Equation (3.1) shows that totally rigid acyclic grammars—and by extension,
those constrained grammars that we are actually going to use—always generate finite
languages. Since any finite language can be trivially generated by a tree grammar without
resorting to rigidity, these grammars do not give us any additional expressive power.
The reason they are useful rather lies in the fact that constrained grammars allow us to
represent some languages in a more compact form than general tree grammars would; in
particular, the size of a grammar that corresponds to a proof is polynomially bounded
by the size of that proof.






CHAPTER 4

Proofs and Grammars

We impose some restrictions on the proofs we consider in this chapter:

1. In order to avoid having to deal with strong expansions in the end-sequent, we
only consider proofs of sequents that do not contain any strong quantifiers. This
is not a significant restriction, as we can always Skolemize a sequent with strong
quantifiers into an equivalid one that only contains weak quantifiers.

2. For every cut c of m, if the cut formula of ¢ contains quantifiers, then it is either
11, or Xy; we call ¢ a II1-cut or a X -cut accordingly.

A large part of this chapter will be devoted to constructing a constrained grammar
G(m) = (p, N(7),X,P(7),C(m)). The nonterminals of G(7) will belong to two distinct
types: those given by the end sequent and those arising from quantified cuts in 7.

We will denote the set of quantified cut inferences of m by QCuts(w). Let ¢ € QCuts(r),
A. be the cut formula of ¢ and 71, w5 be the left and right subproofs above ¢ respectively,
then exactly one of m; and my uses strong quantifier inferences to introduce the quantifiers
in A. We call this subproof the strong side and the other one the weak side of c¢. The
strong side is on the left for II1-cuts and on the right for X;-cuts.

The relation defined in the following paragraph bears a close relationship to the
dependency relation defined in 3.9, cf. Lemma 4.12.

Definition 4.1 (Scope relation). Let 7 be a simple proof. We define a relation <% on
QCuts() by

c <9r c if the weak side of ¢ and the strong side of ¢ have nonempty intersection.

The transitive closure of this relation is written as <, and called the scope relation of .
We will omit the subscript if the proof is clear from the context.

The one-step scope relation < of a proof 7 can easily be determined from the types
of cuts and their spatial relationship in the proof.

Lemma 4.2. Let ¢, € QCuts(7).

25
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1. ¢ £%¢, i.e. <O is irreflexive.
2. If c and ¢ are not on a common branch in 7, then neither ¢ <° ¢’ nor ¢ <° ¢ hold.

3. If ¢ and ¢ are on a common branch, then there are three cases, depending on their
respective types:

e cand ¢ are both X1: w.l.o.g. ¢ is above c; if ¢ is to the right, then ¢ < c,
otherwise ¢ <O ¢ (i.e. the cut “further right” is smaller).

e c and ¢ are both II\: The converse of the previous case holds, i.e. the cut
“further left” is smaller.

e cis I,  is X1: If either of them is above and to the right of the other,
c < ¢, otherwise ¢ <° c.

Proof.

1. It is clear that the strong and weak sides of a cut do not intersect.

2. If c and ¢ are not on a common branch, then their respective strong and weak
subproofs obviously cannot intersect.

3. All three cases are easily verified by using the fact that the strong side of I11-cuts
is left and the strong side of X;-cuts is right.

O
Lemma 4.3. < is acyclic.

Proof. By induction on the cardinality of QCuts(7). If QCuts(w) = ), then < is trivially
acyclic. Now let ¢ be the lowest inference in 7 such that either ¢ is itself a cut or both
its subproofs m; and w9 contain cuts. In either case, both m; and w9 contain fewer
cuts than 7 and consequently their scope relations are acyclic. In the second case,
<x=<m U <z, and hence < is clearly acyclic. In the first case, assume there is a cycle
c1 <¥...<%¢, <% ¢ in QCuts(7). Since both <., and <, are acyclic by the induction
hypothesis and < is irreflexive, there must be 7,j such that ¢ <° ¢; and ¢+ <° c; and
¢; € QCuts(m);¢; € QCuts(mz) (i.e. m and w2 must each contain a cut larger than ¢).
Now, we can apply Lemma 4.2 to see that either possibility for the type of ¢ leads to a
contradiction. Thus, <, is acyclic. O

Lemma 4.3 implies that <, is in fact a strict partial order; we will henceforth call it
the scope order of .

Before we proceed to constructing the grammar of a proof, we need to fix some
terminology. Let 7 be a proof and ¢ € QCuts(m) with cut formula A.. As we have noted
before, introducing the quantifiers of A, requires strong inferences on one side of ¢ (the
“strong side”). The eigenvariables of these inferences will be called the eigenvariables of
¢ and denoted by EV (c). Due to contractions, each quantifier might be introduced by
several inferences and because of regularity, the eigenvariables of these inferences are all
distinct.
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Moving on, on the weak side of ¢ each quantifier is introduced one or more times by
inferences of the form

I+ A A\ AR T A
TFAA " TNzATFA P

according to the type of c. If « € EV(c¢) is used to introduce 3z on the strong side of c,
then each such term ¢ is said to be associated with «. Likewise, if x is a bound variable
in the end sequent of m and the weak quantifier Qx is introduced by a term ¢ in 7, then
we call x and ¢ associated.

We can now work towards defining the grammar of a proof.

Definition 4.4 (Nonterminals of the end sequent). Let m be a proof of A;,..., A,
By, ...,By and let BV (A) be the set of bound variables in the formula A. Then

m n
Nes(m) = BV(4i) u| | BV(By).
i=1 i=1
Definition 4.5 (Nonterminals of cuts). Let 7 be a proof and EV (7) := U, .cqcuts(x) £V (©)-
Furthermore, let a,...,a, be an enumeration of EV (r) such that if ¢ <; ¢/, then all
elements of EV (c) have lower indices than all elements of EV'(¢/). We inductively define
sets Ni(m),...,Nyp(m) in the following manner:

Consider the set
B(aq) := {x € Ngg|z is associated with a term ¢(a;)}.

Now let x11,...,21% be those elements of B(a;) whose quantifiers are outermost. Then
Ny(m) == {agfl’l, .. ,afl’kl ,

.
where the o'’ are new symbols.

Now suppose that we have already defined B(a1),...,B(®;) and Ni(7),...,N;(m). Let

B(ajt1) := {z € Ngg|z is associated with a term t(a;41)}U

U U {B(a;) | a; is associated with a term ¢(o41),j < i}

and 111, ..., Tit1,k,,, those variables in B (cvi+1) whose quantifiers are outermost. Then
; L Tit+1,1 Tit1,k; 41
Niy1(m) = {O‘i+1 e 1,

Tit1,j
where the a; (7 are new symbols.

Finally, Neyes(m) == Ui, Ni(7).

Definition 4.6 (Productions of a proof). Let 7 be a proof and «aq, ... ,a, and the B(«;)
as in the previous definition. We define a family (0;);eq1,....ny of functions such that
0; : B(aj) — B(a;) maps each variable x € B(q;) to the unique outermost variable
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y € B(«;) above or equal to z.

1. For x € Ngg(n), let

0@ oy (@)

Py(m) := {:c —t (ail NN ) ‘t(ail, ...,0y,) is associated with x} .

2. For 5% € Neys(m), let

Pga () := {ﬁx —t (a?jl (x), . ,a?ik(x)) ’ t(cy, - - .04, ) is associated with 6} .

1k

Definition 4.7 (Constraint formula of the end sequent). Let 7 be a proof of A;,..., A, F
Bi,...,B,. We construct a constraint formula for the end sequent by traversing the
ancestor trees of the A; and B;. To this end, let i be an occurrence of any formula in 7.

o If y is quantifier-free, then
Cps(p,m):=T.

o If p is introduced by a weakening, then let z1,...,2; be the bound variables in p

and
k
eES(,U'ﬂT) = /\ A_'PZj (77)
j=1

e If p is introduced by a A,-rule, as in

Ik Al,A[,}ﬂ Ih + AQ,B[V2]
' A(AAB)

(1] ’

then
Crs(p,m) := Crs(v1,m) A Cps(va,m).

The same holds in the case of a V;-inference.
o If p is introduced by a A;-rule, as in
A[Vﬂ?B[VQ]?F l_ A /\l
(AANB), I'A

(1]

then
eES(/.LJT) = GES(V177T) A GES(V277T)7

and analogously for V,.
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o If y arises from a contraction on the right, i.e.

F|_A7A[V1]7A[l/2} c
I'EAA "

then

GES(,UJT) = GES(V177T) \ CES(V277T>7

and analogously for a contraction on the left.
e If p is introduced by a —, rule, as in
Ay EA
I'=AGEA)y

then

GES(M’T(-) = GES(V77T>'
The same is true for a —;-inference.

e If p is introduced by a quantifier rule, i.e.

Ik A, (A[x\t(aip cee 7041'1@)])[1’}
'+ A,(3zA)

3,
(1] )

then

Cps(p,m) =z —t (O&Zl(x), .. aOik(I)> A Cps(v,m).

"
The case of a Vj-inference is analogous.

o We skip over all inferences whose active formula is not pu.

Now we let p1, ... tm,V1,---,Vn be the occurrences of Ay, ... ,A,,,B1,... By, in the end
sequent. Then

Cos(m) == /\ Cas(uim) A\ Crs(viym).
i=1 i=1

4.1 The case of simple end sequents

For the remainder of this section, we only consider proofs whose end sequents are of
the form F Jz1...32, AV y1 ...y, B with A,B quantifier-free. For such a proof m
it follows that Ngg(m) = {x1,...,Zm,y1,-..,yn} and each o € EV(x) has at most two
copies in Neyys(), one originating from the x; and one from the y;. Thus, Neys(m) =
{af,...,af } U {a?l, . ,a?l .
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If ¢ is any term, then let

t* = tlag \og,, . .. ,aik\afk],

tY .= [%’1\%‘17 .. ,ozjl\oz?l]

The productions of 7w are now easy to compute:

P,.(m) = {z; — t* |t is associated with x;},
Py, (m) = {y; — tY|t is associated with y;},
Poz(m) = {af — t¥ | is associated with «;},
By (m) = {a? — 1Y ’ t is associated with ai} :

In the sequel, we will use “z;” to denote “x; or y;’

"and “z” to denote “x or y”.

Definition 4.8 (Constraint formula of a cut). Let ¢ € QCuts(7) and A, be the cut
formula of c. We construct a new formula of productions by induction on the ancestor
tree of A.. If p is an occurrence of a formula on the weak side of ¢, we define C*(u,r) in

the following manner:

o If p is quantifier-free , then Cf(u,m) = T.

e If 14 is introduced by a weakening, then let 21, ...

and
C(m,m) = /\/\—\sz

e If p is introduced by a A,-rule, as in

Ik AL By ok A5, Cpy,
't A(BAC)

) ",

,2, be the bound variables in u

then C*(u,m) = CZ(v1,m) A CZ(v2,m). The same holds in the case of a V;-inference.

o If p is introduced by a Aj-rule, as in

B[Vﬂ,C[VQ] I+ A
(BAC)[M],FFA

then C¥(u,m) = C%(v1,m) A C%(12,m), and analogously for V,.

o If y arises from a contraction on the right, i.e.

Fl— A,B[Vﬂ,B[VQ] c
I'F ABy, "

then C¥(u,m) = C%(vy,m) V CZ(v2,m), and analogously for a contraction on the left.
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e If p is introduced by a —, rule, as in

I'By A
I'FA(=B)y

then CF (u,m) = CZ(v,m). The same is true for a —-inference.
o If p is introduced by a quantifier rule, i.e.

'+ A, (B[Z\t])[,,]
'+ A,(32B)

W
then
Co(um) = (B = 15V ...V B — %) A C2(u,7),

where (1,...,8;r € EV(c) are the eigenvariables associated with the quantifier 3z
that have z-copies in Ngys(7), if such eigenvariables exist. If there is no such
eigenvariable, then CZ(u,m) = C¥(v,m). The case of a Vj-inference is analogous.

o We skip over all unary inferences whose active formula is not p, i.e. inferences that
only operate on the context.

A formula C¥(p,) is defined analogously. Finally, we set C.(m) := C%(pg,m) A C¥(po,m),
where pg is the active occurence of A. in the weak premise of c.

Definition 4.9 (Grammar of a proof). Let m be a proof of Aj,... Ay F Bi,...,B,.
The constrained grammar G(7) = (p,N(7),X,P(7),C(m)), where

© is a new symbol;

N(m) = Nps(m) U Nous(m) U {p};

X is the language of m;

Pm)= |J Pmu |J Pum)U{p—AVB}
xENEs(ﬂ') OéENcuts(ﬂ‘)

C(r)=C€rs(m)A N Cc(m) ATRp(r),
c€QCuts(m)

is called the grammar of «.

Note that the definition of C(7) implies the total rigidity of G(m).

From this definition, it is immediately clear that the first step of any valid derivation
instantiates ¢ as the single formula in the end sequent. It follows that L(Ggs(m)) consists
of partial instances of that formula; as we noted in the definition of the language of a
constrained grammar, it is possible that there are nonterminals remaining at the end
of a derivation. Nonterminals that no productions can be applied to may result from
weakenings in the proof.
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Let A, B be formulas. We write A < B to express that B arises from A by substituting
positive instances of | and negative instances of T by other formulas. If M,N are sets of
formulas, then M < N means that for every A € M, there is a B € N such that A < B
(i.e. M is bounded above by N).

Lemma 4.10. Let 7 be a proof and C(w) the constraint formula of its grammar G(r).

1. d is a valid derivation of G(m) iff d uses at most one production for each nonterminal
and each of the formulas v4(Cpg(m)) and v4(Cc(m)),c € QCuts(w) is satisfiable.

2. Cps(m) and each C.(m) are satisfiable.
Proof.

1. First, note that the formula vq(Cps(m) A Accqeutsr) Ce(m) A TRp(r)) is satisfiable
iff v4(Crs(m) A Aceqeuts(r) Ce(m)) is satisfiable and d obeys total rigidity. Since the
constraint formulas of the end sequent and those of cuts have pairwise disjoint sets
of atoms, the satisfiability of va(Crs(m) A A cqcuts(r) Ce(m)) is equivalent to the
individual satisfiability of v4(Cgg (7)) and all vg(Ce(m)).

2. Let us first consider Cgg(m). By the same argument as above, it is sufficient to
show that each Cgg(u,m), where u is a formula occurrence in the end sequent,
is satisfiable. We show this by induction on the complexity of Cpg(u,m). In the
cases of p quantifier-free or p introduced by weakening, Cpg(u,m) is satisfied by the
empty interpretation or by interpreting each atom occurring in it as L, respectively.

If p is introduced from vy and vy by a V- or A-inference and Cpg(v1,7), Cps(va,m)
are satisfied by interpretations Iy, Is respectively, then Cgg(u,m) is satisfied by
I, U I, since I; and I3 do not share any atoms.

If u is introduced by a quantifier inference from v and Cgg(v,7) is satisfied by
I, Cgs(u,m) is of the form p A Cgg(v,m) and can be satified by the interpretation
I U{p}. Note that this is an actual interpretation because p does not occur in
Crs(v,m) and hence is not assigned in 1.

In the case of a contraction, Cgg(u,m) is of the form Crs(vi,m) V Crs(v2,m) and
Cps(v1,m), Cps(ve,m) are satisfiable by the induction hypothesis. It follows that
any satisfying interpretation of either also satisfies Cpg(u,m).

The remaining cases are trivial. The argument for the constraint formulas of cuts
proceeds analogously.

O]

Theorem 4.11. Let w be a proof of b 3x1 ...z, AV Jy1 ...y, B in which all cuts are
unquantified or have their cut formulas introduced by weakening. Then H(mw) < L(G(r)).

Proof. First, let us consider Ex(m) = F E. Since - Dp(E) = Dp(F E) must be
tautological by Theorem 2.11, E cannot be of the form 1 or 1V 1;in fact, if £ = F1V Es,
then either F or Es must expand all quantifiers in 3z A or dyB, respectively, as the only
alternative would be Dp(FE) <> L.
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Next, suppose that ¢ is a cut whose cut formula is introduced by a weakening on
the weak side. The consequence is that none of the nonterminals of ¢ will have any
productions and hence cannot be eliminated once they are introduced in a derivation of
G(7). If the cut formula of ¢ is introduced by weakening on the strong side, ¢ will simply
not contribute anything to the grammar of 7.

Now let C' be an element of H(w). Due to the above considerations, C' is certainly
of the form A’V B’. Moreover, there are numbers mg < m and ng < n and terms
S1y---sSmgst1s - - - stn, such that for each i € {1,...,mp}, z; is replaced by s; in C, and
analogously for yi,...,yn,. Clearly, z; — s; and y; — t; are productions of G(7).
Therefore, let d be a derivation that begins with ¢ — AV B and then uses the productions
r; — s; and y; — t; in any order and as many times as necessary to eliminate all
1y Tmg a0d Y1,. .. Yn, from C.

The result is a formula A* V B*. Note that due to the above considerations about
cuts, the terms s; and t;, as well as A* V B* itself, may contain nonterminals of cuts that
cannot be eliminated. We need to show that A* vV B* € L(G(w))—i.e., that d is a valid
derivation of G(m)—and that C' < A* V B*. Concerning the first point, we observe that
Ces(m) is certainly equivalent to a formula of the form C, A €, with €, only containing
zi-productions and €, only y;-productions. The fact that in A’ the variables x1, ... ,Zm,
are assigned terms sy, . ..,8,,, while all z; with ¢ > m( remain unassigned implies that
there is a branch in 7 that contains inferences

I'E A, Ai[zi\si]
I+ A, E|£L'2A1 "

for each i € {1,...,mo} and on which the formula 3z, 41 ... 3z, A is introduced by
a weakening. It follows that there is a clause in €, that contains exactly the literals
T1 = Slye vy Tmg — Smg and —x; — s for any ¢ > mg and z; — s € Py, (7). An analogous
result holds for the structure of €,. From this observation, it is clear that v, is both a
partial interpretation of € and maximal, as extending d would necessitate the use of a
production x; — s or y; — t with ¢ > mg or ¢ > ng, respectively.

Now suppose that C' contains L as a subformula. This implies that L is an expansion
tree of some formula D in F, which in turn means that D is introduced by a weakening
somewhere in 7. If D is a quantifier-free formula, then D is a subformula of A* v B*
and occupies the same position there as 1 in C. If D contains any quantifiers, then the
corresponding variables have not been used in the production d and hence D is again a
subformula of A* v B*. All in all, we obtain C < A* Vv B*.

O

We can now investigate the relationship between the scope order of  and the depen-
dency relation of G(7) that was alluded to earlier.

Lemma 4.12. Let ¢, € QCuts(r) and a € EV(c), o’ € EV ().
1. Ifa <0G(7r) o, then ¢ <2 ¢.

2. If a <g(m) &, then ¢ <. c.
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3. G(m) is acyclic.

4. If ¢ is minimal in <;, then a is minimal with respect to Noyts in =<G(m)-
Proof.

l. o -<0G(7r) a means that there is a production a — ¢(5) in G(m). This can only be
the case if ¢(3) is associated with a. Since ¢(/3) is associated with an eigenvariable
of ¢ and contains an eigenvariable of ¢, it is in both the weak side of ¢ and the
strong side of ¢/, which entails ¢ <Y ¢

2. Follows immediately from (1).
3. Follows immediately from (2) and Lemma 4.3.

4. Follows immediately from (2).
O

Remark 4.13. For the remainder of this chapter, we will simply call those cut nonter-
minals that are minimal with respect to Ngouts minimal.

Lemma 4.14. Let  and 7' be proofs such that S 7', ¢f. Definition 1.10. If o, 3 are
as depicted there, then L(G(x")) C L(G(m)).

Proof. Let d = ¢ —* s be a valid derivation of G(x’). Suppose that there is a term
t(«,f) in ¢ such that the production 6% — (¢[5\a])* is used in d’. Tt follows that % — t*
is a production of G(). Since a and [ are associated with the same terms, the o and
(% must have the same productions in G(7). We can thus obtain a derivation d of G(m)
by first replacing o* — (¢[\«])? with % — t*. If no production for o is used in d’, we
are done; if a production a® — r* is used, we add * — r? at any point after ¢* — ¢*.
The validity of d is easy to verify; in the case where a production 5% — r? is added, vy
does not invalidate the constraint formula of G(7) because vg = vy U {* — t*} and
whenever (') contains a positive instance of o — t*, C(7) must contain a positive
instance of o® — t* V 8% — t* in the same position.

O

Theorem 4.15. Let w, 7’ be proofs of 3TAV IyB and w ~ 7' by one of the cut reduction
steps defined in 1.7, except contraction and weakening. Then L(G(w)) = L(G(7)).

Proof. First of all, observe that no cut reduction step changes the end sequent part of
G () and consequently, we only need to consider what happens to the parts of G(7) that
originate from cuts. We shall consider each of the steps in 1.7 in turn. In each case,
we will assume that A, is 21 and note the changes that need to be made in case of a
II;-formula.

1. Rule permutations obviously have no effect on the grammar, regardless of the type

of Ae.

2. If A; is an axiom, then ¢ ¢ QCuts(m) and eliminating ¢ has no effect on the
grammar.



4.1 The case of simple end sequents 35

5. Obviously, there is only a single production for o* in G(7), namely a* — ¢* | and
CZ has the form a® — t* A B*. In G(7’), o and its single production are deleted
and any production 8% — s* € P(m) is replaced by % — s*[a®\t*]. Of course,
analogous statements hold for a?. Moreover, the constraint formula of G(n’) is
obtained by replacing €% and €Y in € with B* and BY, respectively. Now it is easy
to see that both grammars generate the same language, cf. the proof of Lemma
3.10. If A, is I, this case cannot occur.

6. A. = VxB is impossible for a X;-formula. The case where A. is II; is treated
analogously to 5.

7. Let EV(c) = {B1,---Bn;V1,---,¥Ym} such that the §; and v; occur in B and C
respectively. Clearly, C%(mw) = B*' A B*”. In 7/, ¢ is replaced by two new cuts ¢, ¢’
with cut formulas B and C' respectively; this replacement leaves all nonterminals
and their productions unchanged. It follows that C% (7") = B* and CZ,(n") = B*”,
which implies €(7")* = €(7)®. The same argument can be made for y and hence
G(7') = G(r). This proof also works in the case of a II;-cut.

8. Disjunction is handled analogously to conjunction, in either case of the type of A..

9. It is straightforward to see that removing —-inferences does not change the grammar
at all.

O]

The following lemma is the main technical result of this thesis.

Lemma 4.16. Let m be a pruned proof of AxAV IyB and ¢ a minimal cut in w. If
7w~ 7' by reducing ¢ according to a contraction rule, then L(G(w)) = L(G(n)).

Proof. We assume that ¢ is X1; the case of a II;-cut can be treated by switching the
strong and weak sides. Let G(7') = (p, N', X, P', ©').

First, suppose that the contraction that is reduced is on the left-hand side of ¢; This
situation is pictured in Definition 1.7. The first thing we note is that the only nonterminals
that are affected by the proof transformation are those introduced in 5. Due to the
minimality of ¢, there are no quantified cuts in 19 and hence the only eigenvariables
therein are those of cuts below ¢ and those of ¢ itself. Let EV(c) = {a,...,an}. In
G(n'), each q; is replaced by two new copies o and of. Moreover, if ¢ is a cut in 7
such that ¢ is on the strong side of ¢, then there might be eigenvariables of ¢ that are
introduced within 1. Let 31,...,3,, be all such eigenvariables; it follows that 7’ contains
two new copies (3.,3/ for each of them.

Let us now consider the effects of the reduction on the end sequent part of the
grammar. The nonterminals are obviously unchanged, but the productions and the
constraint formula are not. If z; — t* is a production of the end sequent, then it is
replaced in G(7’) by two new productions

zj = Plaf\a)?, .., ai\a) % BI\BY, - - .5\ B ] and
zj = tlaf\af %, . \anf BE\BY S, B \ B
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By the same token, if v is any formula occurrence in the conclusion of ¢, then

GES’(VJ[J) = GES(%W)[O‘T\O‘&Z? s ,afl\a;f,ﬂf\ﬂiz, s 7/651\/81/712]\/
V Cps(v,m)ai\ai?, ... ,ap\a® B\ 7, B\ B -

Now we consider the rest of the grammar. If p/ and " are the two occurrences of A,
on the weak side of ¢, then one of them is arbitrarily designated as the cut formula of
¢ and the other as the cut formula of ¢’; w.l.o.g we assume that p’ is the cut formula
of ¢ and p” the cut formula of ¢”. The productions of «; are split between o and o
accordingly, that is, if of — ¢# is a production of G(7) and ¢ introduces a quantifier in 1/,
then a)* — t* is a production of G(7') and analogously if ¢ introduces a quantifier in p”.

As for the ;, each of them originates from a cut below ¢ whose weak side is entirely
unaffected by the duplication of 12, so 8% and /* simply inherit the productions of S7.

The constraint formula of ¢ is necessarily of the form (B’ v B"*) A (B'Y v B"Y); it
follows that the constraint formulas of ¢ and ¢’ are B'* A B'Y and B"* A B"Y, respectively,
up to replacement of nonterminals by their fresh copies:

L= B "o\ ", . ar\al T A B\, .. e\l VY,

ey = B""{af\af", ... af\al"} A BV al\aY, ... a¥\alV}.

If ¢ is above the strong side of ¢, then eigenvariables of ¢ might be duplicated, as noted
above. In that case, we obtain the new constraint formula of ¢ by replacing each 37 — t*
in Cz(m) with B/ — ¢* Vv BI'* — t*.

Summing up, G(7’) has the following components:

o Nonterminals:
N' = (N\ {aiﬂ”'vafwﬁfa'”wﬁﬁ@})u

U{a?, ...l 2617, ....B07 U

UL, a2 B, B
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e Productions:

P =P\ U gp[ﬁ@uﬁ&;u
=1 =1

zi€Ngg(m)

U U Pzi [O‘f\allzﬂ cee 70‘721\04127 f\ﬁizv cee ngrzn\B;nZ]U

zi€Ngs(m)
U |J  Pauloi\ef® .02\ B0\BE, B0 \B U
2;€Ngs(m)

n
U U {agz — t* ‘ t is associated with a; and introduces a quantifier in i/, 2 € {x,y}} U
i=1

n
U U {af* — t7 |t is associated with a; and introduces a quantifier in u”,z € {z,y}} U

=1

Ul B dBING, - B0\ B
i=1

Ul PaABI\BY, .85 \B "}
=1

e Constraint formula:
¢ = Cgs (m /)/\
A /\ (‘35(71-)/\

¢eQCuts()
c#c
A BT\ ", ..o\l "} A BY{af\a}Y, ... .ol \al YA
AB" o\, op\ai "} AB o\, . o\ A
ATRpr

Now let d = ¢ —* s be a valid derivation of G (). If no nonterminals belonging to ¢
are used in d then all we have to do to obtain a valid derivation of G(n’) is replace each
Bi that occurs in d with .. If, on the other hand, such nonterminals are used, then all
of them must be produced from nonterminals of the end sequent due to the minimality
of c. Let of ... ,ai,a%ﬂ, e ,a%’r be those nonterminals of ¢ that occur in d. If any of
the afj are later replaced by terms, then either all of these terms are above y’ or all of
them are above p”. To see this, assume w.l.o.g. that af is later replaced by a term
t{ that introduces a quantifier in g/, but not in p” and of, by a term ¢§ for which the
converse is true. Since d is valid, the atom af-; — t7 in Cc(m) is assigned the value T

by vg and no other atoms beginning with affj can have that value, due to total rigidity.

@Z(7) is certainly of the form B’V B” with o — 7 only occurring in BU) because of
our stipulations about the terms ¢7. It follows that on the one hand, no positive literal
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beginning with af, within B’ can be assigned the value T, while on the other hand the
literal ~af, — t§ certainly evaluates to L (if it occurs at all) in B’. As a consequence, B’
is unsatisfiable under vg. An analogous argument shows the unsatisfiability of B” under
vg, which leads to a contradiction with the validity of d.

We now consider the case where all terms produced from the of i and a _introduce
quantifiers in g/, In this case, replacing all a in d with a * yields productlons of G(r').
An analogous substitution applied to the a glves a new derlvatlon d'. The derivation d
might also contain some of the 87. Since the Bi* and the B!* have the same productions
in P’ as the 57 do in P, we can simply replace all 37 with 3;* and analogously for the 7.
In the case where the terms produced from the a or ay (or both) introduce quantifiers
in u”, we replace the corresponding a ~and 7 by thelr respective ”-versions instead.

Thus, we obtain a derivation d” that certainly consists of productions of G(7'); we
now need to show that it is in fact valid. By Lemma 4.10, it is sufficient to show the
satisfiability of the separate conjuncts of vgr(C(n’)). First of all, note that d” does
not invalidate TRp:. It is easy to see that vy (Cpg(n’) is satisfiable. If ¢ is any cut
with an eigenvariable among the 3;, say 3;,, and 3;, has an associated term ¢, then the
production 3 — t* in Cz has been replaced with 3; * — t*V 3’ # — t* in G(7') and since
va(Cz(m)) is satisfiable, so is vy (Cs(n’)). The formulas B'*{af\a}?, ... ,af\al,*} and
BY{ad\a}?, ... ,ah\al Y} are clearly satisfiable under d” because they contain exactly
the same substitutions relative to B’® and B’Y, respectively, as d” does relative to d.
B {af\af*, ... ,af\al*} and B"Y{a¥\a/Y,.. . ,ah\a/V} are trivially satisfiable under
d"” because none of their literals are assigned. The maximality of d” follows immediately
from the maximality of d.

Conversely, suppose that we have a derivation d’ of G(n’). The first thing we need to
establish is that if nonterminals a; ** and o, *? of c are used in d’, then 21 # z»; that is
to say, any subderivation that uses only the x; or the y; from the end-sequent cannot
contain nonterminals of both ¢ and ¢”. This is the case because on the one hand, no
production of G(7’) contains nonterminals of both ¢’ and ¢” and on the other hand, once
a production resulting in nonterminals of either cut is used for some nonterminal of
the end sequent, Cpg(n’) prevents productions of the other kind from being used. An
analogous result holds for the 7.

We thus obtain a derivation d of G(m) by replacing all o}?, 5%, a//%, 8/'* with their
original versions. This d does not violate total rigidity because due to the considerations
above, d’ cannot contain both «/* and «}* for any given ¢, and analogously for the /7.
As in the argument for the other direction, the satisfiability under d of the various parts
of @ follows readily from the satisfiability of the corresponding parts of €.

Now suppose that the contraction happens on the strong side of ¢. Reducing the
contraction leaves us with two new cuts ¢, ¢” whose cut formulas are both A.. Let u/ and

" be the occurrences of A. that serve as cut formulas for ¢ and ¢” respectively. Each
eigenvariable « of ¢ introduces a quantifier in either p/ or p” and consequently belongs
to either ¢’ or ¢ accordingly. Consequently, EV (¢) = EV (¢')UEV (¢"), where either set
on the right might be empty. Thus, let EV (c) = {aq,...,a,} and assume for the sake
of simplicity that EV(¢/) = {a1,...,ax} and EV(¢") = {ag+1,...,an}. Each o; has a
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duplicate belonging to x or y in G(n’) iff it has one in G().

The duplication of the left subproof ¢; has extensive effects on the grammar. We will
discuss these effects separately for each ¢ € QCuts(r). First, if ¢ is below ¢, then ¢ must
be on the strong side of ¢ due to ¢’s minimality. As a consequence, it is possible that
there are eigenvariables of ¢ that are introduced within ;. If 7 is such an eigenvariable,
then ~y is duplicated, giving rise to eigenvariables ' and ~”. This duplication naturally
carries over to 7’s z- and y-versions. Each such 4’ and +”# inherits the productions
of v* in G(m). The constraint formula of ¢ changes in a straightforward manner, by
replacing v* — t* with ' — t* vV 4//* — t* for each ~ that is duplicated. In the sequel,

let {71,...,71} be all eigenvariables of the original proof duplicated in this manner.
Next, assume that ¢ is located in 1. In this case, ¢ is replaced with two new cuts
d and . If {B1,...,Bm} are all eigenvariables that belong to such cuts, then clearly

each of them is replaced by two new copies ] and /. The productions of the z- and
y-versions of these duplicates work out to

Py= = Pg:{A"\F"* 7°\7"*},
Pé”f = PBE{BZ\B//,Z’,—}/Z\,?/Z}

for each i € {1,...,m}. Similarly, ¢ and & have the constraint formulas Cz =

CeABF\BI%, .. ,BENLL} and Car = Co{BF\BY?, ... .02 \B.7} respectively.
The final case to consider is that of ¢ itself: The productions of the «; in G(7’) work
out to

Pz = Poz [BI\BY®, - B \Br I\, -+ e\ 7] for i < &,
Pz;f = Paf [Bf\ﬁilzv s >ﬁfn\ﬁgzzvryf\7¥za s a7§\7{lz] for i > k.

The constraint formula of ¢ can be obtained from €, by replacing each literal af — ¢* that
occurs in it with a;® — t*[B7\B1%, ... .BE\Bn T\ 1% - - - i\ ] (for @ < k) removing it
(for i > k). An analogous transformation yields C.». If ¢ is any other cut with quantifiers,
then ¢ is either within the strong side of ¢ or on a different branch of the proof from c.
The first case is impossible due to minimality of ¢ and in the second case, ¢ is unaffected
by the proof transformation.

The last thing that needs to be taken care of are the productions and constraint formula
of the end sequent. Each production z; — t* is replaced by

zi = E[BI\B12, - B \Br T\ - 7\ 7] and
z = E[BINBT 2, BB T\ R\

If ¢ does not contain any [; or «y;, then both of these duplicates obviously coincide with
the original production and it simply carries over to G(n’). As for Cgg(n’), there are
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formulas Bq,...,B, such that

eEs(ﬂ') = G[’Bl, N fBr] and
Cps(n') = C[B1[BT\B12, - B \Br i\ 7, -\ IV
V B1BINB 25 - B \B Y\

‘Br[ﬁf\ﬁiz, . ’ﬁ:;l\ﬁénzfyf\')/iz, o 77]?\7]/9z]v
V BBz, B\ i\ T

As in the previous case, we can now sum up the contents of the new grammar:

+ Nonterminals:

N’ = N\ {B?| 8 is introduced in 1, } U
u{p’*,pB"* ’ A is introduced in ¢ }

e Productions:

n
P=P\( |J P.uJPsu |J Psu]|U

2z, ENgg(m) =1 BEEV (1)
U U le [ﬁf\ﬁiz7 T 7/6m\ﬂ;nz]u
2 E€Ngg(m)
U U PaBE . B\
2 €Ngs(m)

k
U U Paf [BZ\B/;:?,?Z\,—}/Z]U
=1

U U Pzl A0

i=k+1

U U Pﬁf{Bz\B,zﬁ/z\ﬁ/z}U
=1

m
U U Pﬁf{BZ\B/lZ’,—YZ\;)///Z}U
i=1
l
o P\ U
i=1

l
Ul P {7\7"7}

i=1
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o Constraint formula:
€ = Cprg(r)
A A (Cef{7*\¥7} A C{7\Y*})

¢eQCuts(m)
¢ below or parallel to ¢

P NRCH T AY: AT A

¢eQCuts(v1)

A /\ eE{Bl\B?a cee 7Bk’\BIZ}/\
¢eQCuts(¢1)

A Cu A Cu A

ANTRp:.

Let d be a valid derivation of G (). If nonterminals of ¢ occur in d, then due to the
minimality of ¢ they can only be introduced from nonterminals of the end sequent. Let
ag s .-.,af be those nonterminals of ¢ that are used in d and are later replaced by terms

i,....t7. For each i;, we replace the production of — 5 with of — ¢ [B7\B"%,7*\¥'?]

if i; <korof — t;[BZ\B”Z,’_yZ\f_y”Z] if i; > k. Also, if z; — t* is a production of the end
sequent in d, we replace it with z; — t*[3%\3'%,7%\¥'?], obtaining a new derivation d'.
This can lead to d’ containing both ] and 3/ for some 4, and similarly for the ;. Due to
total rigidity, d uses at most one production for each 3; and ; and we can simply replace
any such production by one or both of its two variants in the new grammar, according
to whether one or both copies of the respective nonterminal occur in d’. We call the
derivation obtained by this process d”.

As before, it is sufficient to show that d” is totally rigid and does not invalidate the
conjuncts of C(7’). vy (Cy) is satisfiable because up to renaming, the literals of €. are a
subset of those of C. and v4(C,) is satisfiable. The satisfiability of vy (C.r) is shown in
an analogous manner. The constraint formulas of all other cuts are similarly easy to deal
with because they contain the same substitutions relative to their original counterparts
as d” does to d. The satisfiability of vg/(Cpg(n’)) is immediately obvious.

Now suppose that we have a valid derivation d’ of G(n’). First of all, there are
some important conclusions to be drawn from the form of Cgg(n’): If some production
z; — t*(a”) is used in d’, no production of a nonterminal x; with j > 4 that is used in
d' can contain any of the §/* or 4/* (or their "-versions), and vice versa. Moreover, if
there is a production x; — t¥(3'*,4'%) in d’, then productions z; — tf(ﬁ_”m,:y”x) with
j > 1 cannot occur in d’, and analogously with the '- and ”-nonterminals changed around.
Since 7 is pruned, no term in ¥ contains two eigenvariables that introduce the same
quantifier. These facts imply that the xz-part of d’ only uses ’- or “-nonterminals, but
not both; the same is naturally true for the y-part. It follows that we can simply replace
all - and ”-nonterminals by their original versions without violating total rigidity. The
argument that the resulting derivation d is valid then goes through just as in the previous
cases. O
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Corollary 4.17. Let w be a proof of = 3z AV 3yB. Then L(G(w)) is tautological.

Proof. The result is obtained as a combination of Theorem 4.15, Lemma 4.14, Theorem
4.16 and Theorem 4.11. O

4.2 The general case

Theorem 4.18. Let C' be a formula such that C' is a Boolean combination of prenex
formulas and all quantifiers in C are weak. If mw is a proof of & C, then L(G(w)) is
tautological.

Sketch of proof. First, it is clear that Lemmas 4.14 and 4.16 and Theorems 4.15 and
4.11 still hold if the disjunction in 32 A V yB is replaced with a conjunction or if either
block of existential quantifiers is replaced with negated universal quantifiers. Second,
each additional block of quantifiers simply induces (at most) another copy for each cut
nonterminal; all the proofs still proceed in exactly the same manner. O

Let I' = A be a sequent where every formula is of the form described in Theorem 4.18.
If 7 is a proof of I' F A, the only amendment we need to make to the definition of G()
is

Py(m)={p—>-A"|AeT'}U{p - B"|Bc A}
instead of the single production we had for ¢ in the simple case.

Theorem 4.19. Let m be a proof of an end sequent consisting only of formulas of the
form described in Theorem 4.18. Then L(G(w)) is tautological.

Sketch of proof. The proofs of Lemmas 4.14 and 4.16 and Theorems 4.15 and 4.11 still
work in exactly the same manner. O

The previous two theorems enable us to present an example of a proof with cuts and
its grammar.

Example 4.20. Let £ be the language consisting of six constant symbols a,b,c,d,e, f and
a binary relation symbol ~. Let A be the set of axioms expressing that the constants are
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all distinct and that ~ is irreflexive and symmetric. We define a few abbreviations:

N{$1,x2,$3} = x1~To N\ Xo~x3 N\ T1~T3

Axr,xe,03} 4 w1gbwa A xabas A w1obTs3

ko k
A{x1,... 21} /\ /\ T Fx;

=1 j=it+1
K(z1,29,23) > #{x1,20,23} A ~{x1,29,23}
N(l’l,ZL'Q,Ilfg) 4 #{xlvl?)l‘?)} A 76{1‘173:2’1"3}

3
Ka(21,20,23) > #{a,21,20,283 A \a~ 2
i=1

3
Na(z1,22,23) ¢+ Aaz1,20,23) A adtz
i=1

Then the sequent A + 3z K(Z)V 3y N(y) can be interpreted as “in a group of six people
there are always three who all know each other or three who don’t know each other”. We
shall give a proof 7 containing a cut with the cut formula 3z (K,(2) V N4(2)), or “there
are three distinct people who know a or three distinct people who don’t know a”. This is
a well-known special case of Ramsey’s Theorem.

In order to construct the grammar of 7, we need to discuss the structure of the subproofs
Yo, . . . 32 and g, . .. o3, defined at the end of the example. First, 1g contributes nothing
to the grammar. Note that there are 32 distinct possibilities for which of b,c,d,e, f know
a. In each of these cases, there either are three who know a or three who don’t; this is
easy to see using a pigeonhole argument. In each of the subproofs v, ... ,932, we prove
the cut formula 3z (K, V N,) under the assumption of one of these constellations. We
choose to always instantiate the variables z1, zo, z3 in K, V N, as the first three elements
that do or don’t know a in alphabetical order. We also choose to enumerate the 32
constellations by converting them into binary numbers m ymemgmemy;, where m; = 1 if
1 knows a and 0 otherwise. For instance, the constellation where b, ¢ and e know a is
converted to 01011, so this is constellation number 11. See the table at the end of the
example for how z1,z9,23 are instantiated in each case.

In @1, we prove that if 3,7,0 are distinct and know a and two of them also know each
other, there are three people who know each other. We always instantiate x; as a and
x9,x3 alphabetically as the first two elements of {3,7,0} who also know each other. In
2, we instantiate (y1,y2,y3) as (8,7,0). The proof ¢3 is entirely analogous to the part
above the left side of 7, but with ~ and ¢ switched.

Now we have enough information to compute the grammar of 7, restricting ourselves
to the formula in the succedent:

 Nonterminals: N(T{') = {8071‘17$2a1'37y1ay27y37ﬁxvﬁy77xa’7y76xv5y}
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e Productions:

x1 — al|f” y1 — alBY

xa — By" y2 — BY[Y
x3 — 7"]6" ys — 7Y[6"

¥ — blc|d BY — blc|d

v* — c|d|e v — cldle

0% — dle|f 0Y — dle|f
p—>KVN

e Constraint formula:

Crs(m) = [(z1 = a A ((m2 — B* Nag = 7") V (x2 — B* Aag — 6°) V (z2 = +* Aag — §7)))

Ayt = BY ANya — Y Ayz — 6Y)]

VI —=an((y2—= B Nys =)V (ya = BY Ays = 6Y) V (g2 = 7Y Aysz — 6Y)))

A(z1 = B ANwg = " Aag — 67)]

CZ(m) is a disjunction of 32 formulas of the form % — t; Ay* — ta A 6% — t3,
where (t1,t2,t3) ranges over the columns in the table. CZ(7) is identical up to the
superscripts of the nonterminals.

TRp is straightforward.

We claim that
=U
L(G(m)) = {K(a,s2,53) V N(t1,ta,t3) | si,ti € {b,c,de,f}, sa < s3, 11 <ta <tz}U
U {K(s1,52,83) V N(a,ta,ts)]|sit; € {bc,d,e,f}, s1 < s2 < s3, ta < t3}
=V

(“<” refers to alphabetical order in the above). For the “O” direction, consider U and
let so < s3, t1 < ta < t3. We first use the production x; — a. Now Cgg(7) allows us to
produce (8% ,~%), (6%,0%) or (y*,0%) from (x2,r3). We choose one of the three based on
what sy and s3 are. We also have to produce (Y,~Y,dY) from (y1,y2,y3) and can then
use those nonterminals to produce (¢1,t2,t3). V is treated analogously.

For the “C” direction, let d : ¢ —* K(s1,52,83) V N(t1,t2,t3) be a valid derivation of
G(7). Due to Cgg(m), either s; or t; must be a; assume s; w.l.o.g. It follows that one of
the pairs of productions (xg — %, 3 — %), (x2 — B, x5 — 0%) or (xg3 — %, x3 — §7)
must occur in d and due to C%(w), s2 < s3, as can easily be seen from the table. The
derivation d also certainly contains the productions y; — Y,y — +¥ and y3 — ¢Y and
hence t; < ty < t3 by the same argument for C% (7).

Note that L(G(7)) is not strictly speaking a tautology, as we neglected the axiom
set and hence did not compute the entire language. As a consequence, we obtain the
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result A F\/ L(G(7)). Why is this the case? We know that in every model of A, there
are three people that know each other or three that don’t. If a knows two other people
s9 and s3 who also know each other, all formulas K(a,s2,53) V N(t1,t2,t3) in U will be
true for any ti,to,t3. If s1,s9,s3 all know each other and none of them is a, then all
K(s1,82,83) V N (t1,ta,t3) in V will be true. The case where three people don’t know each
other is treated analogously.

This example illustrates a useful property of G(7): It is possible to restrict oneself to
computing the part of the grammar (and the language) that is actually interesting and
consider the other parts of the end sequent only implicitly. Working out the complete
grammar of m and verifying that its language is a proper tautology is left as an exercise
for the reader.



(1) (¥32)
C1 32 (Ku(2) V Nu(2)) Cso 32 (Ku(2) V Ny(2))

\/;“-21 Ci F (32 (Ku(2) V Nu(2)))32
V21 Ci k- 32 (Ku(2) V Na(2))
AF 3z (Kq(2) V Nu(2))

Vi x 31

cr X 31

cut

(1) (2)
'AvKa(ﬁvfy’é)’ ﬂN’Y \ ﬂ'\’(g \ ’YN(S Hdz Kz ‘AaKa(ﬁ”Yaé)) 76{577’5} + E@ Ny Vi

A (Ka(B,7,0))2, By V b V y~d V 4 B,y,6} 32 Kz Vv 3y N .
A Ko (B,7,0), B~y V B~V y~6 V A{B,y,6} A7 Kz vV Iy Ny
A, Ko(B,7,0) F 3z Kz Vv 3y Ny

l
(¢0)

Ak (ﬁwfy \Vi /8N5 \Vi ’yN(S) V 74{67775}

l

cut

(¢3)
A, No(B,7,6) 3z Kz V 3§ Njj v,

A, Ka(B:7,0) V No(B,7,0) F (3z Kz V 3y Ny)?

= = = = = = = E]l X 3
A, 3z (K4(2) V Nu(2)) F 3z Kz V 3y Ny)? .
A, 3z (K,(Z) VNu(2)F 3z Kzv 3y Ny
(m1) (m2)
AF 3z (Ku(2) VINg(2)) A,3z (Ku(2) V No(2)) F 3z Kz VvV 3y Ny cut
AF 3z Kzv3j Ny o

0111123456789 |10(11(12]13[14|15|16 |17 |18 19120212223 |24|25|26|27 |28 29|30/ 31
z1 |blelbld|ble|b|lb|b|lc|b |b |b |b |ec |b |b |c |b |b |b |b e |b |b |b|c |b |d|b |c |b
z9 lc|ld|d|elclelelcle|ld|d |¢ |¢ |d |d |c |c |d |d|c |e¢ |d|d|c |c |e |e |c |e |d|d|c
z3 |dlelel|flelflfld|ld|f|f e |f le |e|d|d|e |e |fle |f|f|d|d|f|fle |f |e |e |d
rel | n|{n|n{n|n|{n|n|lkininin |k |n |k |k |k |n|n|n|k|n |k |k |k |n |k |k |k |k |k |k |k

[7]
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CHAPTER b

Conclusion

This thesis generalizes the results of [Het12a] in two ways: First, we use the concept of
the constrained grammar to address cuts with more than one quantifier. It is clear that
even in the case of several quantifiers, the resulting grammar should be totally rigid, since
each eigenvariable of a cut is instantiated at most once in any given instance of the end
sequent. But totally rigid tree grammars are not sufficient to describe the relationships
between the terms of different eigenvariables: Choosing a term for some eigenvariable «
constrains our choices for eigenvariables that are used within the scope of a’s quantifier.
Constraint formulas are a natural way of expressing these restrictions.

The other generalization concerns Herbrand’s Theorem. A simple version of the
theorem states that if 3z A with A quantifier-free is a valid formula, there is a tautological
set {A[Z\t1],...,A[Z\tn]} of instances of A. If one wants to generalize this fact to non-
prenex formulas, a question naturally arises: What do we actually mean by “instance” in
that case? Given an expansion tree £ o F of a formula Ao B where ¢ € {V,A}, the natural
definition of an instance of E ¢ F would be “any formula C' ¢ D where C is an instance in
F and D is an instance in F'”; that is, we would essentially “multiply out” the tree every
time a binary connective is encountered. The problem with this approach is that if £V F
was obtained by extraction from a proof 7, then not all these combinations necessarily
occur in 7 itself—there may be dependencies between formulas that are parallel in the
expansion tree. To deal with this disparity, we essentially define separate copies of the
cut part of the grammar that do not interact, ensuring that all combinations of instances
of C'and D can be generated. In the case of a formula C'V D with C' and D prenex, this
is easy: There simply are two copies of the part of the grammar that is generated by
cuts. It is also easy to see that this fact can be generalized to any Boolean combination
of prenex formulas; the number of copies of the grammar will increase, but apart from
that everything stays the same.

Extending the result to arbitrary formulas seems to be possible, but significantly more
involved, since different cut nonterminals may vary in the number and of and relationships
between their duplicates. A part of the required work is already present in this thesis, as
the definitions of all parts of the grammar of a proof, apart from the constraint formula,
are already very general. Completing the generalization is left as future work.
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