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Vorwort

Dieses Skriptum begleitet die an der TU Wien gehaltene Lehrveranstaltung Mathematisches Arbei-
ten fiir Informatik und Wirtschaftsinformatik, in der elementare mathematische Methodik vermittelt
wird. Nach einer Einfiihrung in die Aussagen- und Pradikatenlogik werden die fiir die Mathematik
zentralen Begriffe der Definition und des Beweises besprochen. In weiterer Folge werden elementare
Aspekte des mathematischen Arbeitens durchgenommen, wie z.B. die Mengennotation, der Um-
gang mit Gleichungen und Ungleichungen, Induktionsbeweise, Abstraktionen und das Arbeiten mit
Vermutungen.

Der mathematische Inhalt dieses Skriptums beschrankt sich auf einige wenige grundlegende Begriffe
der elementaren Zahlentheorie sowie einzelne wichtige Klassen binarer Relationen. Der intendierte
Zweck dieser inhaltlichen Sparsamkeit ist es, die Konzentration auf die Methodik zu erleichtern.

Die folgende Literatur kann als Ergdnzung zu diesem Skriptum bzw. zu dieser Lehrveranstaltung emp-
fohlen werden: [4] mit der zugehdrigen Webseite auf der auch einige gut gestaltete Videos zu finden
sind sowie das Skriptum [6] werden fiir Einfiihrungen in das mathematische Arbeiten fiir Studenten
der Mathematik verwendet. Ein empfehlenswertes englischsprachiges Lehrbuch zum Ubergang von
der Schulmathematik zur Universitditsmathematik ist [5]. [1] bietet niitzliche Erklarungen zu vielen
Aspekten der mathematischen Sprache und Notation. Ein Klassiker zum mathematischen Arbeiten
ist [3], ein deutschsprachiges und aktuelleres Buch mit dhnlicher Zielsetzung wie [3] ist [2].


https://www.mat.univie.ac.at/~einfbuch/
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Kapitel 1

Aussagen

Eine Aussage ist ein Satz, dem man einen objektiven Wahrheitswert zuweisen kann, der entweder
wahr oder falsch ist. Wir identifizieren den Wahrheitswert wahr mit der Zahl 1 und falsch mit 0.
Einige Beispiele von Aussagen und ihren Wahrheitswerten sind:

Aussage Wahrheitswert
Wale sind Saugetiere. 1
2+2=4 1
10 ist eine Primzahl. 0
4 ist gréBer als 3. 1

Bei einer Aussage muss es sich also um einen ganzen Satz, z.B. der deutschen Sprache, handeln. So
ist etwa “Zwei plus zwei ist fiinf." eine Aussage, “zwei plus zwei' aber nicht.

“Hoffentlich regnet es bald." oder "Lesen Sie das Skriptum.” sind zwar S&tze der deutschen Sprache,
aber keine Aussagen in unserem Sinn da ihnen kein Wahrheitswert zugewiesen werden kann.

Ein weiteres wichtiges Element dieser Definition ist die Objektivitat. Es gibt zwar viele interessante
Aussagen denen kein objektiver Wahrheitswert zugewiesen werden kann, wie z.B. “Avocado schmeckt
gut.”, aber solche Aussagen sind nicht Gegenstand der Mathematik und deshalb schlieBen wir sie
hier aus.

Weiters ist es fiir die Frage ob ein Satz eine Aussage ist unerheblich ob der Wahrheitswert bekannt
ist. So ist z.B. auch der folgende Satz eine Aussage

“Jede gerade Zahl die gréBer gleich 4 ist kann als Summe zweier Primzahlen geschrieben werden.”

Diese Aussage ist auch als Goldbachsche Vermutung bekannt. Es ist in der Mathematik nicht be-
kannt ob diese Aussage wahr oder falsch ist. Eine Aussage ist es trotzdem weil ihr ein objektiver
Wahrheitswert zugewiesen werden kann, auch wenn niemand weiB welcher es ist.

Es gibt eine Reihe von Mdglichkeiten um Aussagen zu verkniipfen und daraus neue Aussagen zu
erhalten.

Konjunktion (und-Verkniipfung). Falls A und B Aussagen® sind, so ist auch A A B (ausgespro-
chen als “A und B") eine Aussage. Wir sagen auch dass AA B die Konjunktion von A und B ist und
dass die Aussagen A und B die Konjunkte von A A B sind. Die Aussage A A B ist wahr genau dann

In der Mathematik verwendet man gerne Buchstaben die daran erinnern wofiir sie stehen, z.B. A, B, ... fiir Aussagen
weil das Wort “Aussage” mit einem A beginnt.



wenn sowohl A wahr ist als auch B wahr ist. Die Bedeutung der Konjunktion kann durch die folgen-
de Wabhrheitstafel definiert werden. Auf der linken Seite werden alle (vier) Mdéglichkeiten fiir die
Wahrheitswerte von A und B eingetragen. Auf der rechten Seite wird, fiir jede dieser Mdglichkeiten,
der Wahrheitswert von A A B eingetragen.

Warnung 1.1. Das Symbol A darf nicht auf naive Weise als Abkiirzung des Wortes “und” benutzt
werden. So kann z.B. die Aussage “x und y sind gréBer als 0" nicht geschrieben werden als x Ay > 0
da x A y keine Zahl ist. Richtig ist stattdessen: x > 0 A y > 0. Ahnliches gilt fiir die im Weiteren
vorgestellten Verkniipfungen auch.

Disjunktion (oder-Verkniipfung). Falls A und B Aussagen sind, so ist auch AV B (ausgesprochen
als “A oder B") eine Aussage?. Die Aussage AV B heiBt Disjunktion von A und B und die Aussagen
A und B heiBen Disjunkte von AV B. Die Aussage AV B ist wahr genau dann wenn A wahr, wenn
B wahr ist oder wenn sowohl A als auch B wahr sind. Durch eine Wahrheitstafel kann das wie folgt
dargestellt werden:

Es handelt sich dabei also um eine inklusive Disjunktion, d.h. falls beide Disjunkte wahr sind ist auch
die Disjunktion wahr. Bei einer exklusive Disjunktion ware in diesem Fall die Disjunktion falsch. In
der Alltagssprache wird das Wort “oder” sowohl fiir inklusive als auch fiir exklusive Disjunktion
verwendet wie der folgende Dialog veranschaulicht:

Kellner: Wollen Sie Kaffee oder Tee? (exklusives oder)

Gast: Kaffee bitte.

Kellner: Wollen Sie Zucker oder Milch dazu? (inklusives oder)
Gast: Beides, danke.

In der Mathematik werden wir mit “oder” immer das inklusive oder meinen.

Negation (Verneinung). Falls A eine Aussage ist, dann ist auch —A (ausgesprochen als “nicht
A") eine Aussage. Die Aussage —A heiBt auch Negation oder Verneinung von A und ist wahr wenn
A falsch ist und umgekehrt, siehe folgende Wahrheitstafel:

Al -A
0 1
1 0

?Das Symbol VV kommt vom lateinischen Wort vel (oder).
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Die Verneinung wird dabei in einem streng logischen Sinn verstanden. Sei z.B. A die Aussage “Die
Wand ist wei8’. Dann ist die Verneinung —A von A die Aussage “Die Wand ist nicht wei8’, nicht
aber die Aussage "Die Wand ist schwarz'. Die Verneinung ist also nicht dasselbe wie das Gegenteil.

Implikation. Sind A und B Aussagen, dann ist auch A = B (ausgesprochen als "“A impliziert B",
“wenn A dann B, “aus A folgt B", ...) eine Aussage. Ein Beispiel fiir eine Implikation ist die Aussage
“Falls es regnet, dann ist die StraBe nass." Man beachte dass die Implikation (anders als Konjunktion
und Disjunktion) nicht kommutativ ist, d.h. A = B hat eine andere Bedeutung als B = A. Falls die
StraBe nass ist, bedeutet das nicht dass es regnet; sie kdnnte auch gerade gewaschen worden sein.
Die Interpretation von Implikationen wird durch die folgende Wahrheitstafel definiert.

AlB|A=B
oo 1
0|1 1
1[0 o
11| 1

Falls also A wahr ist, dann hat A = B den Wahrheitswert von B. Falls A falsch ist dann ist es egal
was rechts steht, A = B hat immer den Wahrheitswert wahr. Die Definition der Implikation, insb.
fiir falsches A, lasst sich auch dadurch erkliren, dass die Implikation Wahrheit erhalten soll: A= B
bedeutet dass B “mindestens so wahr” wie A ist. Falls A nun falsch ist, d.h. den Wahrheitswert 0
hat, dann gilt das unabhiangig von B.

Man beachte, dass dadurch A = B auch wahr ist wenn sowohl A als auch B falsch sind, und
zwar unabhangig davon, ob zwischen A und B iiberhaupt ein Zusammenhang besteht. Z.B. ist die
Aussage “Falls der Mond aus Kise ist, dann ist 24+ 2 = 5." wahr. In der Mathematik spielt dieses
Phanomen aber praktisch keine Rolle, da man typischerweise solche Implikationen betrachtet wo
1. ein Zusammenhang zwischen Voraussetzung und Folgerung besteht und 2. die Voraussetzung
wahr ist.

Aquivalenz. Die letzte Verkniipfung von Aussagen die wir betrachten wollen ist die logische
Aquivalenz. Sind A und B Aussagen so ist auch A < B (ausgesprochen als “A genau dann wenn
B" oder “A dann und nur dann wenn B") eine Aussage. Die Wahrheitstafel fiir die Aquivalenz ist:

AlB|AsB
oo 1
o|1| o
1[0 o
11| 1

Formeln. Eine Aussage kann also durch die Konnektive A, V, =, = und < aus einfacheren
Aussagen zusammengesetzt werden. Diese bezeichnet man auch als atomare Aussagen der zu-
sammengesetzten Aussage. So sind z.B. A und B die atomaren Aussagen der zusammengesetzten
Aussage (—WAV B) < (A = B). Wie Sie es vom Rechnen mit Zahlen gewdhnt sind gibt es auch hier
Klammersetzungsregeln: am starksten bindet die Negation =, dann kommen die “Punktrechnungen”
A und V vor den “Strichrechnungen” = und <. Damit kann die obige Aussage auch geschrieben
werden als “AV B < (A = B) oder als ((-A) V B) & (A= B).

Ist der Wahrheitswert der atomaren Aussagen bekannt so kann daraus der Wahrheitswert der zu-
sammengesetzten Aussage berechnet werden. Damit kdnnen auch fiir komplexere zusammengesetzte
Aussagen Wahrheitstafeln erstellt werden. Ein Beispiel fiir eine Wahrheitstafel ist:
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A|B|-A|-AVB|A=B | (-AVB)& (A= B)
ofof 1 1 1 1
o1 1 1 1 1
10| 0 0 0 1
11 0 1 1 1

Beim Erstellen einer Wahrheitstafel ist es oft praktisch auch die Wahrheitswerte von Teilaussagen
als Zwischenergebnisse zu berechnen (wie das hier z.B. fiir =A vV B gemacht wurde).

Eine Aussage heiBt erfiillbar, wenn es eine Wahrheitswertbelegung ihrer atomaren Aussagen gibt,
die sie wahr macht, d.h., wenn es eine Zeile in der Wahrheitstafel gibt, die 1 ergibt. Eine Aussage
heiBt unerfillbar wenn das nicht der Fall ist, d.h., wenn alle Zeilen der Wahrheitstafel 0 ergeben.
Eine Aussage heiBt giiltig, wenn sie unter allen Wahrheitswertbelegungen ihrer atomaren Aussagen
wahr ist, d.h., wenn alle Zeilen ihrer Wahrheitstafel 1 ergeben. So ist etwa im obigen Beispiel die
Aussage A = B erfiillbar und die Aussage (—AV B) < (A = B) giiltig.

Das Teilgebiet der Logik, das sich mit Aussagen beschiftigt die aus atomaren Aussagen durch
Operationen wie diesen zusammengesetzt sind, bezeichnet man als Aussagenlogik. Eine zusam-
mengesetzte Aussage bezeichnet man auch als aussagenlogische Formel.

Rechenregeln. Innerhalb einer zusammengesetzten Aussage kann man, wie beim Rechnen mit
Gleichungen, eine Teilaussage durch eine andere dquivalente Teilaussage ersetzen ohne ihre Bedeu-
tung zu verandern. Z.B. wissen wir aufgrund obiger Wahrheitstafel dass =AV B und A = B fiir alle
Aussagen A und B &dquivalent sind. Daraus folgt z.B. dass die Aussagen

F=(CAD)=E) und F= (~(CAD)VE)

ebenfalls dquivalent sind. Fiir Aussagen gelten die folgenden Rechenregeln:

Kommutativitat: ANB & BAA AVB & BVA
Assoziativitit: (AAB)AC < AN(BAC) (AvB)VC < Av(BV ()
Idempotenz: ANAS A AVAs A
Distributivitit: AA(BV C) < (AAB)V(AANC) AV(BAC)< (AVB)A(AVC)
Regeln von de Morgan: -(AVB)& -AA-B -(AAB) < -AV-B
Zur Implikation: “~AVB& A= B (A B)s (A= B)A(B=A)
Doppelnegation: —A&S A

All diese Rechenregeln kdnnen durch Wahrheitstafeln bewiesen werden.

Das Wichtigste in Kiirze.

e Eine Aussage ist ein Satz, dem man einen objektiven Wahrheitswert zuweisen kann, der entweder
wahr oder falsch ist.

e Aussagen werden durch Verkniipfungen, wie z.B. A, V, =, =, <, zu neuen Aussagen zusammen-
gesetzt.

e Mit einer Wahrheitstafel kann festgestellt werden, ob eine gegebenen Aussage (un)erfiillbar oder
(un)giiltig ist.

e Giiltige Aquivalenzen kénnen wie Rechenregeln verwendet werden.



Kapitel 2

Quantoren

Ein Pradikat ist ein Satz, der Variablen enthilt und der fiir jede Festlegung der Werte dieser Variablen
zu einer Aussage wird. Beispiele fiir Pradikate sind:

n>5

n ist gerade.

a ist GroBmutter von b.
n<k=n<k+1

Hier sind n, a und b, bzw. n und k die Variablen dieser Priadikate. Je nachdem wie die Werte der
Variablen gewidhlt werden, kann die entstehende Aussage wahr oder falsch werden. Sei P(n) das
Pradikat n > 5. Dann ist z.B. die Aussage P(2), also 2 > 5, falsch, die Aussage P(7), also 7 > 5,
aber wahr.

Pradikate konnen, genauso wie Aussagen, mit Hilfe von aussagenlogischen Verkniipfungen wie A,
V, =, ... zu neuen Pradikaten zusammengesetzt werden. So ist z.B.

n>5A nist gerade

ein Pradikat das fiir alle geraden Zahlen groBer gleich 5 wahr ist.

Ein Quantor erlaubt die Bildung eines neuen Pradikats oder einer neuen Aussage aus einem bereits
bestehenden Pradikat, indem er angibt wie mit einer der Variablen zu verfahren ist. Pradikate und
Quantoren sind fiir die Sprache der Mathematik von zentraler Bedeutung, da sie die Bildung allge-
meiner Aussagen ermoglichen. Erst dadurch lassen sich viele Zusammenhange iiberhaupt erst auf
angemessene Weise ausdriicken. Es gibt zwei (fiir uns wichtige) Quantoren: den Allquantor und den
Existenzquantor.

Allquantor. Der Allquantor bedeutet, dass das betrachtete Pradikat fiir alle Werte der betreffenden
Variable gelten soll. So kdnnen wir mit Hilfe des Allquantors z.B. die folgende Aussage bilden:

Fiir alle n gilt n > 5.

Eine Kurznotation fiir den Allquantor ist V, ein gespiegeltes A. Mit dieser kann diese Aussage als
Ynn>5

geschrieben werden. Eine Aussage, die mit einem Allquantor beginnt, bezeichnen wir auch als All-
aussage.



Die Aussage Vn n > 5 ist wahr genau dann wenn n > 5 fiir alle méglichen Werte von n wahr ist.
Das ist nicht der Fall. Zwar ist z.B. 8 > 5 oder 9 > 5, nicht aber 3 > 5. Deshalb ist die Aussage
Vn n > 5 falsch. Der Allquantor ist mit der Konjunktion verwandt, da die Aussage Vn P(n), unter
der Voraussetzung dass wir fiir n nur natiirliche Zahlen einsetzen wollen, dquivalent zur “unendlichen
Aussage” P(0)AP(1)AP(2)A--- ist. Daran sehen wir auch, dass die Verwendung von Wahrheitstafeln
fiir die Bestimmung des Wahrheitswertes einer Allaussage nicht mehr zielfiihrend sein wird, da diese
Wabhrheitstafel unendlich groB sein miisste.

Existenzquantor. Der zweite wichtige Quantor ist der Existenzquantor. Wenn man auf ein Pradikat
einen Existenzquantor anwendet, driickt man dadurch aus, dass das betrachtete Pradikat fiir (min-
destens) einen Wert der betreffenden Variable gelten soll. So kénnen wir z.B. die folgenden Aussage
bilden:

Es gibt ein n so dass n > 5.

Die symbolische Kurznotation fiir den Existenzquantor ist 3, ein gespiegeltes E. Mit dieser kénnen
wir die obige Aussage als
dnn>5

schreiben. Eine Aussage die mit einem Existenzquantor beginnt bezeichnen wir auch als Existenz-
aussage.

Die Aussage dn n > 5 ist wahr, da es ein n gibt, so dass n > 5, z.B. ist 7 > 5. Dass es mehrere
solche n gibt stort hier nicht weiter. Auch wenn es viele n gibt mit n > 5, so dndert das nichts
daran, dass es ein n gibt mit n > 5. Wir konnen uns einen Existenzquantor wie eine “unendliche
Disjunktion” vorstellen. So ist die Aussage In P(n), wiederum unter der Voraussetzung, dass n eine
natiirliche Zahl sein soll, dquivalent zur “unendlichen Aussage” P(0)V P(1)V P(2)V---. Da V eine
inklusive Disjunktion ist bedeutet 3n P(n) dass es mindestens ein n gibt mit P(n).

Mehrere Quantoren. Mit dem Allquantor haben wir bereits oben aus dem Pradikat n > 5 die
Aussage Vn n > 5 gebildet. Der Allquantor hat also die Variable n quantifiziert und die so erhaltene
Aussage hangt also nicht mehr von der Variable n ab. Genau so kdnnen wir auch mit Pradikaten
verfahren, die von mehreren Variablen abhédngen. Ist z.B. P(n, k) das Pradikat

n<k=n<k+1
das von den Variablen n und k abhangt, dann kénnen wir das neue Pradikat Q(n)
Vk(n<k=n<k+1)
erzeugen, das jetzt nur noch von n abhiangig ist. In weiterer Folge erzeugen wir die Aussage A
VnVk(n< k=n<k+1)

durch eine zweite Anwendung eines Allquantors.

Die Quantoren V und 3 sind, genauso wie z.B. die Negation —, unire Operatoren und binden
dadurch stérker als binire Operatoren. So ist z.B. Vx A = B eine Abkiirzung fiir (¥x A) = B. Soll
sich der Quantor Vx auch auf B beziehen, miissen die Klammern wie in Vx (A = B) gesetzt werden.
Gelegentlich wird auch ein Doppelpunkt geschrieben, um auszudriicken dass der Quantor so schwach
wie moglich binden soll. Damit ist Vx : A =- B eine andere Schreibweise fiir Vx (A = B).
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Bei der Verwendung mehrerer Allquantoren ist die Reihenfolge irrelevant. So gilt die Aquivalenz
VnVk R(n, k) < Vk¥Yn R(n, k)

fiir jedes beliebige Pradikat R(n, k). Analog gilt fiir Existenzquantoren auch
dn3k R(n, k) < 3k3an R(n, k).

Diese Aquivalenzen konnen wir auch jederzeit als Rechenregeln anwenden.

Aber Achtung: zwei unterschiedliche Quantoren diirfen nicht vertauscht werden! So kann z.B. der
Satz “Fiir jeden Topf gibt es einen passenden Deckel." formalisiert werden als:

VT3D : D passt auf T.
Vertauscht man diese beiden Quantoren, erhdlt man die Aussage
dDVT : D passt auf T,

also: “Es gibt einen Deckel, der auf alle Tépfe passt.”, was klarerweise nicht dquivalent ist.

Freie und gebundene Variablen. Wir haben gesehen, dass der Wahrheitswert eines Pradikats von
gewissen Variablen bestimmt wird. Diese werden auch als freie Variablen des Pradikats bezeichnet.
So sind z.B. im Pradikat k < n die beiden Variablen k und n frei. Wir driicken das aus, indem wir fiir
dieses Pradikat eine Kurznotation wie P(k, n) verwenden, in dem die beiden freien Variablen explizit
angegeben sind. Der Wahrheitswert dieses Pradikat wird also durch k und n bestimmt. Quantoren
sind Operatoren, die Variablen binden. In dem aus P(k, n) gebildeten Pradikat Ink < n ist k
frei, aber n (durch den Quantor 3n) gebunden. Die Variable n wird dann als gebundene Variable
bezeichnet. Wir verwenden dann fiir 3n k < n eine Kurznotation wie z.B. Q(k) um auszudriicken,
dass der Wahrheitswert nur noch von k abhangt.

Es gibt viele andere Operatoren in der Mathematik und der Informatik, die Variablen binden, z.B.
den Summenoperator. Im arithmetischen Ausdruck i(i + 1) ist die Variable i frei, im Ausdruck
Sor1i(i+1)ist i durch > gebunden. Das ist analog zum Verhiltnis zwischen globalen und lokalen
Variablen bzw. zum Geltungsbereich (scope) einer Deklaration in Programmiersprachen. So sind
etwa im Code

X :=x + i
die beiden Variablen x und i frei, in

for i :=1 ton {
X :=x + 1
}
ist nur noch x frei, i ist durch den Schleifenkopf gebunden.

Im Prinzip kann eine Variable auch frei und gebunden auftreten. Z.B. kommt im Pradikat
R(x,y) & x<yA3dxx’=y.

die Variable x sowohl frei als auch gebunden vor!. Gebundene Variablen diirfen immer umbenannt
werden. Damit ist
R(x,y) & x<yA3Jzz’=y.

eine dquivalente Definition von R(x, y). In der Praxis bemiiht man sich auch darum, solche Doppel-
verwendungen zu vermeiden, da sie oft verwirrend sind.

'R(x, y) ist genau dann erfiillt, falls y eine Quadratzahl ist, die gréBer oder gleich x ist.

7



Die Grundmenge eines Quantors. Damit die Bedeutung eines Quantors eindeutig festgelegt ist,
muss klar sein, iiber welche Menge von Objekten er quantifiziert. Diese Menge nennt man auch
Grundmenge eines Quantors. So ist zum Beispiel die Aussage 3x (1 < x A x < 2) wahr, wenn die
Grundmenge von dx die Menge der rationalen Zahlen ist und falsch, wenn die Grundmenge von dx
die Menge der ganzen Zahlen ist. Falls die Grundmenge nicht aus dem Kontext heraus ersichtlich ist,
dann wird sie explizit angegeben wie z.B. in 3x € Q(1 < x A x <2) bzw. Ix € Z(1 < x A x < 2).

Ein weiteres gebrauchliches Mittel zur Angabe der Grundmenge eines Quantors ist die Verwendung
gewisser Buchstaben fiir gewisse Arten von Objekten, z.B. steht n oft fiir eine natiirliche Zahl, x
fiir eine reelle Zahl und z fiir eine komplexe Zahl. Damit ist dann z.B. Vn P(n) eine Abkiirzung fiir
Vn € N P(n). Fiir diese Abkiirzung gilt, so wie fiir Abkiirzungen im Allgemeinen: driicken Sie sich
so knapp wie moglich aus aber nicht knapper. Wenn die Gefahr von Missverstandnissen besteht,
schreiben Sie lieber ausfiihrlicher und verzichten Sie auf Abkiirzungen.

Formeln, die sich dieser Notationen bedienen, konnen auch ohne sie geschrieben werden:

Vm e Z P(m) steht fir Vm(m e Z = P(m))
dm e Z P(m) steht fir Im(m e Z A P(m))
Vn>1 P(n) stehtfir Vn(n>1= P(n))

wobei die Grundmenge der Quantoren auf der rechten Seite alle erwdhnten Mengen inkludieren muss.
Analoges gilt natiirlich auch fiir Notationen wie z.B. 3x € R P(x) oder Vx > 0 P(x), ....

A Warnung 2.1. Verwechseln Sie nicht YVm(m € Z = P(m)) mit YVm(m € Z A P(m)). Ersteres
bedeutet “Alle ganzen Zahlen erfiillen P.”. Zweiteres bedeutet “Fiir alle m gilt: m € Z und m erfiillt
P." und ist in dieser Form fast nie sinnvoll. Eine analoge Warnung gilt fiir 3m(m € Z A P(m)) und
dm(m € Z = P(m)). Die erste Form kommt haufig vor und bedeutet “Es gibt eine ganze Zahl, die
P erfiillt.”. Zweiteres ist dquivalent zu 3m (m ¢ Z Vv P(m)) und bedeutet also: “Es gibt ein m, das
keine ganze Zahl ist oder P erfiillt.”. Das ist ebenfalls fast nie sinnvoll.

Pradikatenlogik und natiirliche Sprache. Das Teilgebiet der Logik, das sich mit Aussagen
beschéftigt, die aus den aussagenlogischen Operationen und den Quantoren aufgebaut sind, be-
zeichnet man als Pradikatenlogik. Einen aus diesen Operationen bestehenden Ausdruck bezeichnet
man als pradikatenlogische Formel. Dabei miissen die Quantoren nicht immer am Anfang stehen.
Wir diirfen, wie z.B. in

VxJy (x <y A3zzZ% =)

aussagenlogische Operationen und Quantoren beliebig ineinander verschachteln. Im Prinzip lassen
sich alle mathematischen Aussagen als pradikatenlogische Formeln ausdriicken. In der Praxis ver-
wendet man aber aus Griinden der Lesbarkeit hiufig die natiirliche Sprache. Bei der Ubertragung
von Aussagen aus der natiirlichen Sprache in die Pridikatenlogik muss man sorgfiltig vorgehen. Wir
wollen dazu ein Beispiel betrachten. Es seien die folgenden atomaren Pradikate gegeben:

G(x,y) x und y sind Geschwister
W(x) x ist weiblich
L(x,y) xlebtiny

Damit kénnen wir z.B. die folgenden Ubersetzungen deutscher Sitze in die Pridikatenlogik vorneh-
men. Die Grundmenge der Quantoren soll dabei die Menge aller Menschen sein.

Anna hat eine Schwester in Graz. 3x (G(Anna, x) A W(x) A L(x, Graz))
Die Geschwister von Bernhard leben in Wien. Vx (G(Bernhard, x) = L(x, Wien))
Caro hat keine Geschwister. —3x G(Caro, x)



A Warnung 2.2. Pradikate kénnen nicht verschachtelt werden. Ausdriicke wie etwa G(W(x), y) erge-
ben keinen Sinn, da W(x) ja entweder wahr oder falsch ist und damit G(W/(x), y) etwas bedeuten
wiirde wie “falsch und y sind Geschwister” oder “wahr und y sind Geschwister”.

Verneinung. Fiir die Verneinung von quantifizierten Aussagen gelten Rechenregeln, die zu den
Regeln von de Morgan analog sind. So gilt fiir die Verneinung des Allquantors:

=Vn P(n) < 3n—P(n).

Die Giiltigkeit dieser Aquivalenz kénnen wir so einsehen: wenn es nicht so ist, dass fiir alle n die
Aussage P(n) gilt, dann muss es ein n geben, fiir das P(n) nicht gilt. Und umgekehrt: wenn es ein
n gibt, fiir das P(n) nicht gilt, dann ist es nicht so, dass P(n) fiir alle n gilt.

Symmetrisch dazu gilt auch
—3n Q(n) & Vn—-Q(n)

was wir genauso wie oben begriinden kénnen, oder, alternativ, durch die folgende Kette von Aquivalenzen
—3n Q(n) & —3In—--Q(n) & ==Yn=Q(n) < Vn=Q(n)

in der wir im 1. und 3. Schritt die Rechenregel =—A <« A der Aussagenlogik benutzen und im 2.
Schritt die obige Aquivalenz =Vn P(n) < 3n—P(n).

Eindeutige Existenz. Manchmal will man auch ausdriicken, dass es genau ein Objekt gibt, das
ein gewisses Pradikat erfiillt. Dafiir kann man den eindeutigen Existenzquantor, dessen symbolische
Notation 3! ist, benutzen. Die Aussage 3!n P(n) bedeutet dann, dass es genau ein n gibt, so dass
P(n) wahr ist. So ist z.B. 3ln 2 4 n = 5 wahr, aber 3!'n n > 5 ist falsch (wiederum unter der
Voraussetzung dass n fiir eine natiirliche Zahl steht). Der eindeutige Existenzquantor 3! kann durch
V und 3 wie folgt definiert werden:

JxP(x) < 3x(P(x)AVy(P(y)=y=x))

Die Verneinung des eindeutigen Existenzquantors 3!n P(n) ist etwas komplizierter: —3!n P(n) ist
dquivalent zu: es gibt kein n mit P(n) oder es gibt zwei verschiedene n mit P(n). In symbolischer
Notation ist das:

—JxP(x) < (Vx-P(x))V (3xiIx 1 x1 # x2 A P(x1) A P(x2))

Das Wichtigste in Kiirze.

e Ein Pradikat ist ein Satz, der Variablen enthdlt und der fiir jede Festlegung der Werte dieser
Variablen zu einer Aussage wird.

e Pradikate kdnnen durch aussagenlogische Verkniipfungen sowie durch den Allquantor ¥ und den
Existenzquantor 3 zu neuen Pradikaten und Aussagen zusammengesetzt werden.

e Ein Quantor bindet eine vormals freie Variable. Ein durch Quantifizierung erhaltenes Pradikat hat
also eine freie Variable weniger als das Ausgangspradikat. Ein Pradikat ohne freie Variablen ist eine
Aussage.

e Fiir jeden Quantor ist, entweder aus dem Kontext oder durch die Verwendung entsprechender
Notation, eindeutig festgelegt, iiber welche Grundmenge er quantifiziert.
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Kapitel 3

Definitionen

Eine Definition etabliert die Bedeutung eines Ausdrucks, indem sie ihn zu anderen Ausdriicken,
deren Bedeutung bereits bekannt ist, in Beziehung setzt. Eine Definition hat also immer zwei Teile:
den Ausdruck den sie definiert (lat. Definiendum) und das wodurch sie ihn definiert, das Definierende
(lat. Definiens). Beispiele fiir Definitionen sind:

Ein Junggeselle ist ein unverheirateter Mann .
———

Definiendum Definiens

n teilt m falls' ein k existiert so dass n- k = m.
—

Definiendum Definiens

Wird eine Definition angegeben muss also die Bedeutung des Definiens bereits bekannt sein. Durch
die Definition wird iiblicherweise postuliert, dass das Definiendum synonym zum Definiens ist. Wir
diirfen also immer das eine durch das andere ersetzen. In konkreten Beweisen ist das auch sehr oft
notwendig. So kdnnen wir z.B. beweisen, dass die Zahl 3 die Zahl 15 teilt, indem wir ein k angeben,
so dass 3- k = 15 ist.

Oft schreiben wir in der Mathematik eine Definition in abgesetzter Notation wie z.B.:
Definition. Eine Zahl n heiBt gerade, falls ein k existiert so dass 2 - k = n.

Oft wird auch das Definiendum typographisch hervorgehoben wie in

Definition. Eine Zahl n heiBt gerade, falls ein k existiert so dass 2 - k = n.

In der Mathematik werden Definitionen auch oft durch logische Formeln angegeben. So kdnnen wir
Definitionen auch wie folgt schreiben:

Junggeselle(x) :<= Mann(x) A —Verheiratet(x)
n|lm:<3dkn-k=m (Teilbarkeit)
at+ib:=a—ib (Konjugation komplexer Zahlen)

Warnung 3.1. Verwechseln Sie nicht “:<"” und “:=". Die Notation “:<" wird fiir Pradikate ver-
wendet und bedeutet “wird definiert als dquivalent zu" . Die Notation “:=" wird fiir Terme verwendet
und bedeutet “wird definiert als gleich zu". Der Unterschied besteht darin, dass Terme Objekte (der

Mathematik) bezeichnen und Pradikate Eigenschaften dieser Objekte.

In dieser Definition steht nur “falls”. Im Kontext einer Definition ist aber “genau dann wenn" damit gemeint. Das
ist eine geringfiigige Inkonsistenz im Verhiltnis zwischen Logik und natiirlicher Sprache in der Mathematik.
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Die Bezeichnung des Definiens kann vom Autor einer Definition frei gewahlt werden. Um das Lesen
eines Texts zu erleichtern wird man sich aber iiblicherweise darum bemdiihen, sinnvolle Bezeichnungen
zu verwenden, so ist es z.B. uiblich, fiir natiirliche Zahlen den Buchstaben n zu verwenden, fiir einen
Index den Buchstabe i, usw. Es ist dabei auch méglich, und gar nicht so uniiblich wie man vielleicht
glauben wiirde, sehr bildliche Bezeichnungen zu verwenden. So gibt es in der Zahlentheorie z.B.
frohliche Zahlen oder Paare befreundeter Zahlen. Sie konnen auch selbst definieren, was sie wollen.
Hiufig ist das durchaus niitzlich oder sogar notwendig, um Lésungen von Ubungsbeispielen gut zu
strukturieren.

Einfache Definition eines Préddikats. Eine der gebrduchlichsten Formen einer Definition in der
Mathematik besteht darin, ein neues Pradikat P(xi, ..., x,) durch Angabe einer pradikatenlogischen
Formel? A(x1, ..., xn) zu definieren:

P(x1,...,%n) 1 A(x1, ..., Xn)-

Dabei ist P ein neues® Symbol oder eine neue Bezeichnung. Ein Beispiel fiir eine solche Definitionen
war die der Teilbarkeit. Ein anderes Beispiel ware die folgende Definition der Ordnung “kleiner-gleich”
aus “kleiner”:

X<y &Sx<yVx=y

Warnung 3.2. Beachten Sie, dass die Menge freier Variablen im Definiendum mit der Menge freier
Variablen im Definiens iiberstimmen muss. Wollen wir z.B. Teilbarkeit definieren, schreiben wir das
Definiendum als n | m. Als Definiens kommt also nur ein Pradikat in Frage, das die beiden freien
Variablen n und m hat. Etwas wie z.B.

nlm:<=n-k=m

zu schreiben ware falsch, weil k auf der rechten Seite frei vorkommt. Analoges gilt auch fiir die weiter
unten besprochenen Formen von Definitionen.

Einfache Definition einer Funktion. Die einfachste Definition einer Funktion besteht aus der
Angabe eines Terms. Das ist von der logischen Form

f(x1, ..., xn) == t(x1,..., Xn)

wobei f ein neues Symbol oder eine neue Bezeichnung ist und alle Symbole in t bekannt sind. So
wurde z.B. die Konjugation komplexer Zahlen aus dem bekannten Symbol — (minus) definiert. Ein
anderes Beispiel wire die folgende Definition des kleinsten gemeinsamen Vielfachen:

kgV(n, m) := min{k € N| n| k und m| k} (kleinstes gemeinsames Vielfaches)

Etwas komplexer, aber auch gebrauchlich, ist die folgende Form

y =Ff(x1,...,xn) = Alx1, ..., Xn, ¥)

2oder eines Satzes der in eine pradikatenlogische Formel iibersetzt werden kann
3“neu” bedeutet hier, dass das Symbol im aktuellen Stand der Entwicklung der mathematischen Theorie, von der
die Rede ist noch nicht vorkommt.
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wobei f ein neues Symbol ist und A(xy, ..., xn, y) eine pradikatenlogische Formel deren Symbole alle
bekannt sind. Damit die Funktion f dadurch wohldefiniert ist, muss Vxy - - - Vx,3ly A(x1, ..., Xn, ¥)
gelten. Ein Beispiel fiir eine Definition dieser Form ist etwa die folgende Definition der Subtraktions-
funktion in den ganzen Zahlen:

y=m-—-n:&n+y=m (Subtraktion ganzer Zahlen)

Wohldefiniertheit. Nicht immer ist auf den ersten Blick klar, ob ein Satz eine Definition ist oder
nicht. Eine Bedingung ist leicht zu iiberpriifen: alle im Definiens vorkommenden Begriffe miissen
bekannt sein. Aber selbst dann kdnnen noch Schwierigkeiten auftreten. Die Aquivalenz

y=m-—-n:<$&n+y=m

definiert die Subtraktionsfunktion — weil VmVn3ily n+ y = m. Wir driicken die Tatsache, dass
es sich beim vorangehenden Satz um eine Definition handelt aus indem wir sagen: “Damit ist —
wohldefiniert.” Vergleichen Sie das mit:

y=moOn:&mIyAn<ly

Hier wird vorgeblich eine Funktion ® definiert. Auch hier sind alle Begriffe, die im Definiens vor-
kommen bekannt. Weiters gilt auch VmVn3y (m < y A n < y), z.B. kdnnen wir fiir y einfach das
Maximum von m und n verwenden. Allerdings gilt nicht VmVn3ly (m <y A n < y). In diesem Fall
gibt es also mehr als ein y und damit ist ® nicht wohldefiniert. Wenn es die Intention war, ® als
das Maximum zu definieren, dann kann diese Definition z.B. wie folgt repariert werden:

y=monsm<yAn<yA(y=mVy=n)

Betrachten wir nun die folgenden Beispiele:
ggT(n,m) :=max{k € N| k| nund k | m} (groBter gemeinsamer Teiler)

Wir kdnnen uns wie folgt iiberlegen, dass durch den obigen Satz der ggT zweier natiirlicher Zahlen
n,m > 1 wohldefiniert ist: Zunichst einmal ist die Menge {k € N | k| nund k | m} endlich, da
jede Zahl > 1 nur endliche viele Teiler hat. Weiters ist die Menge nicht leer, da 1 jede Zahl teilt.
Eine nicht-leere endliche Menge natiirlicher Zahlen hat genau ein Maximum. Dieses ist der ggT.
Betrachten wir nun:

kgV(n, m) := min{k € N| n| k und m| k} (kleinstes gemeinsames Vielfaches)

Dieser Definition des kleinsten gemeinsamen Vielfachen liegt die Menge {k € N | n| k und m | k}
zugrunde. Diese Menge ist nicht leer, da sie z.B. n- m enthalt. Allerdings ist diese Menge unendlich
groB. Trotzdem ist das Minimum wohldefiniert, da jede nicht-leere (méglicherweise auch unendliche)
Teilmenge der natiirlichen Zahlen ein eindeutig definiertes Minimum hat. Dieses ist das kgV. Was
ist aber z.B. mit der folgenden Zeile?

ggV(n,m) :=max{k e N|n| k und m| k} (“groBtes gemeinsames Vielfaches”)

Auch dieser vorgeblichen Definition liegt die Menge {k € N | n| k und m | k} zugrunde, von der wir
uns bereits iiberlegt haben, dass sie unendlich ist. Eine unendliche Teilmenge der natiirlichen Zahlen
hat aber kein Maximum. Damit ist ggV nicht wohldefiniert.
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Definitionsgebaude. Wir wissen bereits, dass in einer Definition alle im Definiens vorkommenden
Begriffe bekannt sein miissen. Sobald ein Begriff aber definiert wurde, kann er natiirlich in weiteren
Definitionen verwendet werden, um seinerseits bei der Definition neuer Begriffe mitzuwirken. Auf
diese Weise kann man ganze Definitionsgebdude mit aufeinander aufbauenden Begriffen erstellen.
Das ist auch durchaus typisch in der Mathematik. Das folgende Defintionsgebdude entstammt z.B.
der elementaren Zahlentheorie.

nlm:<3kn-k=m (Teilbarkeit)
n heiBt Primzahl :< Vk (k |n=k=1Vk=n)An#1
p heiBt Primteiler von n :< p Primzahl und p | n
(p1, p2) heiBt Primzahlzwilling :< p1, p» Primzahlen und p; +2 = p,
ggT(n,m):=max{k e N| k| nund k| m} (groBter gemeinsamer Teiler)
n, m heiBen relativ prim :< ggT(n,m) =1

Wir kénnen die Abhangigkeiten dieser Definitionen analysieren, indem wir eine Skizze machen, in
der ein Pfeil von einem Begriff A zu einem Begriff B fiihrt wenn A im Definiens der Definition von
B vorkommt.

Teilbarkeit

Die Tatsache, dass im Definiens nur bekannte Begriffe vorkommen diirfen iibersetzt sich hier in die
Eigenschaft dieser Skizze keinen Zyklus zu enthalten.

’ Primzahlzwilling‘ ’ relativ prim

Sinn von Definitionen. Neben Aussagen (und Beweisen, die wir in Kapitel 4 kennen lernen Werden)
spielen Definition eine der wichtigsten Rollen in der Mathematik. Die Verwendung einer Definition
hat (mindestens) die folgenden zwei Effekte: Erstens bietet sie die Moglichkeit, eine Abkiirzung
zu verwenden. Es ist schlicht kiirzer zu sagen “Sei p eine Primzahl” als zu sagen “Sei p eine
natiirliche Zahl, die nur durch 1 und sich selbst teilbar ist und ungleich 1 ist.". Zweitens aber, und
das ist der wesentlich wichtigere Effekt, fiihrt eine Definition einen mathematischen Begriff ein,
mit dem wir eine gewisse mentale Vorstellung verbinden. Diese erlaubt es uns, iiber den Begriff
auf eine Art und Weise nachzudenken, die, mit zunehmender Klarheit der Vorstellung, mehr und
mehr von der formalen Definition abgelost ist, und dadurch effizienter ist. Kurz gesagt: die mentale
Vorstellung erlaubt uns, eine Intuition fiir den Begriff zu entwickeln. Tatsdchlich ist es eine der
zentralen Schwierigkeiten am Beginn der Beschaftigung mit Mathematik, die Fahigkeit zu erlernen,
aus einer (formalen) Definition eine mentale Vorstellung zu entwickeln, oder, anders formuliert: den
definierten Begriff zu verstehen. Um den durch eine Definition eingefiihrten Begriff zu verstehen, ist

es niitzlich, sich z.B. die folgenden Fragen zu stellen:
e Gibt es iiberhaupt Objekte die unter die Definition fallen? Normalerweise wohl “ja”, aber
auch der Fall "nein” kann interessant sein. Welche Objekte fallen "knapp” nicht unter die
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Definition? Was sind Standardbeispiele fiir solche Objekte, was sind Trivialbeispiele, was sind
Extrembeispiele?

e Gibt es viele solcher Objekte, oder vielleicht genau eines, oder sind alle, die es gibt in irgend-
einem Sinn 3dhnlich?

e Was kann man mit Objekten die unter die Definition fallen machen? Kann man vielleicht in
ganz simpler Weise aus gegebenen Objekten andere konstruieren, die auch unter die Definition
fallen?

e Wie steht dieser Begriff mit anderen, bereits bekannten, Begriffen in Zusammenhang?

Definitionen mit Nebenbedingungen. Gelegentlich ist es notwendig, den Giiltigkeitbereich einer
Definition durch eine Nebenbedingung einzuschrinken. So wird z.B. der Kehrwert in den reellen
Zahlen wie folgt definiert: Fiir x # 0 ist der Kehrwert % definiert als jenes y, das x - y = 1 erfiillt.
Als pradikatenlogische Formel geschrieben:

1
X;«é0:>(y:;:<:>x'y:1)

Damit ist der Kehrwert wohldefiniert da Vx (x #0 = 3ly x-y =1).

Rekursive Definitionen. Zum Abschluss wollen wir noch eine weitere Form von Definitionen be-
trachten, die fiir die Informatik, aber auch fiir die Mathematik, von groBer Bedeutung sind: rekursive
Definitionen. Das sind Definitionen, die auf sich selbst verweisen, ohne dabei aber zyklisch zu sein.
Der Selbstverweis enthalt tiblicherweise einen Parameter, der im rekursiven Aufruf kleiner wird. So
wird z.B. die Fakultdt auf allen natiirlichen Zahlen durch die Definition

ol:=1
(n+ 1) :=(n+1)n!

erklart. Das Definiendum dieser Definition ist die Funktion ! die eine natiirliche Zahl auf eine
natiirliche Zahl abbildet. Hier kommt zwar im Definiens ebenfalls die zu definierende Funktion !
vor, aber nur in eingeschrankter Form: mit einem kleineren Parameter (n statt n+1). Um also z.B.
den Wert 3! zu berechnen muss man nicht die ganze Funktion ! kennen, sondern nur den Wert 2!.
Um weiters den Wert von 2! zu berechnen, reicht es den Wert von 1! zu kennen. Um schlieBlich 1!
zu berechnen reicht es den Wert 0! zu kennen. Dieser ist explizit als 1 definiert. Damit kann also 1!
sowie, in weiterer Folge, 2! und 3! berechnet werden.

Ein weiteres Beispiel ist die Fibonacci-Folge. Diese wird durch die rekursive Definition

Fo:=0
F12:1
Frni2 == Fop1+ Fp

gegeben. Diese ist etwas komplizierter, da fiir die Berechnung eines Wertes F,, die beiden vorherigen
Werte benutzt werden und nicht nur, wie bei der Fakultdt, der direkt vorhergehende.

Rekursive Definitionen sind eng verwandt mit rekursiver Programmierung: ein rekursives Programm
ist im Wesentlichen eine rekursive Definition einer Funktion.

15



Das Wichtigste in Kiirze.

e Eine Definition etabliert die Bedeutung eines Ausdrucks, indem sie ihn zu anderen Ausdriicken,
deren Bedeutung bereits bekannt ist, in Beziehung setzt.

e Definitionen kdnnen verschiedene logische Formen haben.

e Der Zweck einer Definition besteht in der Mathematik {iblicherweise darin, einen Begriff ein-
zufiihren, mit dem wir eine gewisse mentale Vorstellung verbinden. Das Verstehen einer Definition
ist der Prozess der Entwicklung dieser Vorstellung.

e Um eine Definition zu verstehen ist es niitzlich, sich elementare Fragen iiber den definierten Begriff
zu stellen, wie etwa: Welche Objekte fallen unter diesen Begriff? Welche nicht? ...
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Kapitel 4

Beweise

Ein wesentlicher, wenn nicht der zentrale, Aspekt des mathematischen Arbeitens ist es, wahre Aussa-
gen von falschen Aussagen zu unterscheiden. Fiir die Aussagenlogik haben wir bereits Wahrheitstafeln
kennengelernt die es (sogar auf algorithmische Weise) erlauben festzustellen, ob eine Aussage giiltig
ist. In der Pradikatenlogik ist die Situation aber wesentlich komplizierter.

Stellen wir uns z.B. vor, dass wir iiberpriifen wollen, ob die folgende Aussage fiir alle natiirlichen
Zahlen n gilt: falls n gerade ist, dann ist auch n? gerade. Dazu kdnnten wir, inspiriert von der
vollstandigen Fallunterscheidung in Wahrheitstafeln, wie folgt vorgehen: Wir {iberpriifen die Aussage
fiir n = 0: 0 ist gerade, 0% = 0 ist ebenfalls gerade. 1 ist nicht gerade, also ist die Implikation fiir n = 1
wahr. 2 ist gerade, 2° = 4 ist ebenfalls gerade usw. Klar ist aber dabei: auf diese Weise werden wir
in endlicher Zeit nicht zum Ziel kommen. Dieser Ansatz des Durchprobierens aller Moglichkeiten ist
also in der Pradikatenlogik grundsitzlich zum Scheitern verurteilt, da sich Quantoren typischerweise
auf unendliche Grundmengen beziehen. Um solche Situationen in den Griff zu bekommen, verwendet

man in der Mathematik Beweise!.

Ein Beweis ist eine Ableitung einer Aussage aus anderen Aussagen durch logische Schliisse. Die
einzelnen Schritte eines Beweises, die logischen Schliisse, werden so gewdhlt dass sie offensicht-
lich korrekt sind. Ein logischer Schluss (oder eine logische Schlussfolgerung) besteht dabei aus
mehreren Voraussetzungen und einer Konklusion, welche die folgende Bedingung erfiillen: sind die
Voraussetzungen wahr, so ist auch die Konklusion wahr?.

Voraussetzungen und Behauptung. Wir wollen damit beginnen, eines der bekanntesten Beispiele
fiir einen Beweis zu analysieren: Sokrates ist ein Mensch. Alle Menschen sind sterblich. Also ist So-
krates sterblich. Wir wollen diesen Beweis nun in der Pradikatenlogik formalisieren. Dazu verwenden
wir die zwei Pradikate

S(x) < x ist sterblich
M(x) :< x ist ein Mensch

und auBerdem schreiben wir s fiir Sokrates. Hier gibt es also zwei Voraussetzungen: M(s) und
Vx (M(x) = S(x)). Eine Voraussetzung (oder Pramisse) ist eine Aussage aus der wir etwas

1Das Verhiltnis zwischen Wahrheit und Beweisbarkeit ist kompliziert und kann im Rahmen dieser Lehrveranstaltung
nicht ausfiihrlich behandelt werden. Fiir den Beweisbegriff der Mathematik — und dieser wird hier diskutiert — gilt aber
jedenfalls: jede bewiesene Aussage ist wahr.

2Es ist moglich formal zu definieren was ein Beweis (in der Pridikatenlogik) ist. Beweise shneln dann insofern einer
Programmiersprache als dass es gewisse Zeichenketten gibt, die Beweise sind und gewisse, die es nicht sind, genauso
wie gewisse Zeichenketten C-Programme sind und andere nicht. Fiir das Erlernen des mathematischen Arbeitens, das
ja das Ziel dieser Lehrveranstaltung ist, ist eine solche Definition aber nicht zweckmaBig.
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ableiten wollen. Die Behauptung ist hier: S(s). Die Behauptung ist jene Aussage die wir (aus den
Voraussetzungen) ableiten wollen. Der formale Beweis sieht dann, Zeile fiir Zeile, wie folgt aus:

1: M(s) (Voraussetzung)

2: Vx (M(x) = S5(x)) (Voraussetzung) zz: 5(s)
3: M(s) = S(s) (aus 2 mittels Instanziierung 1) )

4: S(s) (aus 1 und 3 mittels Modus Ponens MP) !

Die dabei verwendeten logischen Schliisse sind:

vx P(x) A A=B
P | 5 MP

Eine zentrale Eigenschaft von Beweisen ist: an jeder Stelle eines Beweises gibt es gewisse Voraus-
setzungen, die zur Verfiigung stehen, und eine Behauptung, die wir aus diesen Voraussetzungen
beweisen wollen. In einem formalen Beweis schreiben wir Voraussetzungen in die linke Spalte und
die aktuelle Behauptung in die rechte Spalte. Dabei stehen, auBer den urspriinglichen Voraussetzun-
gen, natiirlich auch alle bereits bewiesenen Zwischenaussagen als Voraussetzungen fiir den nachsten
logischen Schluss zur Verfiigung. So sind z.B. die zwischen Zeile 3 und Zeile 4 zur Verfiigung stehen-
den Voraussetzungen: M(s), Vx (M(x) = S(x)) und M(s) = S(s). Die Behauptung an der Stelle
zwischen Zeile 3 und Zeile 4 ist: S(s).

Die Korrektheit eines Beweises ergibt sich daraus, dass erstens nur korrekte Schlussregeln verwen-
det werden und dass zweitens diese nur auf, an der jeweiligen Stelle, verfiigbare Voraussetzungen
angewandt werden. Der obige Beweis kann nach Zeile 4 abgeschlossen werden, da in dieser Zeile die
zu zeigende Behauptung bereits abgeleitet wurde. Das Ende eines Beweises wird in mathematischen
Texten oft durch eine kleine Box [J oder durch die Abkiirzung q.e.d. (“quod erat demonstrandum”,
lat. fiir “was zu beweisen war") markiert.

Verwendung von Quantoren. Im obigen Beispiel haben wir gesehen wie wir eine Voraussetzung
der Form Vx P(x) in einem Beweis verwenden. Wie durch die Instanziierungsregel beschrieben,
diirfen wir jederzeit und fiir jedes beliebige Objekt c¢ einfach P(c) voraussetzen. Wann das fiir
welches Objekt sinnvoll ist, miissen bzw. diirfen wir selbst entscheiden.

Eine Voraussetzung der Form 3x P(x) zu verwenden bedeutet, die Existenz eines Objekts zu verwen-
den das die Eigenschaft P(-) hat, von dem wir sonst aber nichts wissen. Das geschieht in Beweisen
mit Formulierungen wie z.B. “Sei xp so dass P(xp) gilt.", die dann typischerweise gefolgt sind von
weiteren Berechnungen oder Argumenten, die auf xg Bezug nehmen, z.B. “"Dann hat f(xp) die Ei-
genschaft ...”. Dabei ist es natiirlich wichtig, dass der Name xp noch nicht verwendet wurde, da wir
iiber dieses neue Objekt ja nichts voraussetzen diirfen, auBer dass es die Eigenschaft P(-) hat.

Definitionen in Beweisen. In Beweisen miissen wir oft mit definierten Begriffen umgehen. Typi-
scherweise legt eine Definition, womoglich unter einer Nebenbedingung, fest, dass ihr Definiendum
dquivalent zu ihrem Definiens ist. In einem Beweis diirfen (und miissen) wir diese Definition dann
verwenden, indem wir, gegebenenfalls nach einer Uberpriifung der Nebenbedingung, ihr Definiendum
durch ihr Definiens ersetzen und umgekehrt. Das bezeichnen wir als Expansion oder Auffaltung einer
Definition.

Veranderung der Behauptung. Im obigen Beweis haben wir die Behauptung nicht verdndert. Sie
war zu Beginn, genauso wie am Ende, des Beweises “Sokrates ist sterblich.” Oft ist es allerdings
in einem Beweis niitzlich, auch die Behauptung zwischendurch zu verandern bzw. zu vereinfachen.
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Auch Veranderungen der Behauptung werden durch logische Schliisse durchgefiihrt. Im folgenden
wollen wir uns iiberlegen, wie das fiir Behauptungen die Allsdtze bzw. Existenzsitze sind durchgefiihrt
werden kann.

Wollen wir eine Behauptung der Form Vx P(x) beweisen, so setzen wir einfach ein beliebiges xp voraus
und zeigen von diesem, dass es die Eigenschaft P(-) haben muss. Wichtig dabei ist, so wie oben,
dass der Name xp noch nicht vergeben ist, da wir iiber dieses beliebige(!) Objekt nichts voraussetzen
diirfen. Das ist die direkteste Methode, um Behauptungen zu behandeln, die Allaussagen sind. Es
gibt aber auch andere Methoden, deren Verwendung manchmal zu bevorzugen ist, z.B. die Induktion,
die wir in Kapitel 8 besprechen werden.

Wollen wir eine Behauptung der Form 3x P(x) beweisen, so reicht es, ein Objekt anzugeben, das die
Eigenschaft P(-) hat. Auch in dieser Situation sind manchmal andere Vorgehensweisen sinnvoller,
z.B. der indirekte Beweis, den wir in Kapitel 5 besprechen werden.

Andern wir die Behauptung von A zu B, so driicken wir das oft aus, indem wir etwas sagen wie ‘“es
reicht also zu zeigen dass B".

Wir wollen nun einen Beweis durchfiihren, in dem wir mit Existenzaussagen und Definition arbeiten
und auch die Behauptung verdndern.

Satz. Falls n gerade ist, dann ist auch n® gerade.

Wir geben zunachst einen detaillierten Beweis an und iibersetzen ihn dann in einen formalen Beweis.
Der Zusammenhang zwischen diesen beiden Darstellungen wird durch die Verwendung von Farben
illustriert.

Beweis (detailliert). Sei n gerade. D.h. es gibt ein k so dass 2- k = n. Sei kg ein solches k,

d.h., 2- kg = n. Dann ist n?=4. kg. Es reicht zu zeigen, dass ein [ existiert mit 2 - [ = n?.

Das ist bereits bekannt. OJ

Beweis (formal).
1: n gerade (Voraussetzung) zz: n? gerade
2: 3k 2 - k = n (Expansion Definition) !
3: 2 ko = n (3-Voraussetzung)
4: n®> = 4 - k3 (Rechnung) !
5: es reicht zz: 3/ 2 - | = n? (Expansion Definition)

Nun sind wir fertig, da die Behauptung bereits eine Voraussetzung ist. [

Beide der obigen Darstellungen dieses Beweises sind sehr ausfiihrlich und dienen nur dem Verstdndnis
des Beweisbegriffs. Eine realistische Darstellung dieses Beweises, etwa im Kontext eines Lehrbuchs
fiir das erste Studienjahr, ware z.B.:

Beweis (realistisch). Sei n = 2k, dann ist n?> = 4k?> =2 -2k, also ist auch n? gerade. O

Warnung 4.1. Geben Sie bei der Verwendung von 3-Voraussetzungen auf die Variablennamen acht.
Zwar ist das Pradikat “n ist gerade” definiert als 3k n = 2 k, trotzdem wadre es aber falsch, in einem
Beweis etwas zu schreiben wie: Seien n und m gerade. D.h. es gibt ein kK mit n = 2 - k und ein
k mit m = 2 - k. Das “zweite k" muss einen anderen Namen haben, da es sich ja um ein anderes
Objekt handelt. Korrekt miisste es zum Beispiel heiBen: Seien n und m gerade. D.h. es gibt ein k
mitn=2-kundein/ mtm=2-1/.
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In einem realistischen Beweis werden viele Schritte, z.B. die Expansion von Definitionen, implizit
durchgefiihrt. Es wird von lhnen erwartet, dass Ihnen eine derartige Darstellung reicht, um den Beweis
zu verstehen und insbesondere, um von ihm eine detaillierte oder formale Darstellung anzugeben.

Aussagenlogische Konnektive. Auch aussagenlogische Konnektive werden in Beweisen mit natiirlichen
Schlussregeln behandelt. Wie auch bei den Quantoren ist es dabei wichtig, zu unterscheiden, ob man
eine Voraussetzung verwendet oder ob man die aktuelle Behauptung verandert.

Haben wir eine Voraussetzung der Form A A B konnen wir sowohl A als auch B als Voraussetzung
verwenden. Die Verwendung einer Voraussetzung der Form AV B bedeutet eine Fallunterscheidung
zu machen: zunachst beweisen wir unsere Behauptung aus der Voraussetzung A, danach aus der
Voraussetzung B. Diese Beweisstruktur werden wir in Kapitel 5 noch genauer behandeln. Eine Vor-
aussetzung der Form A = B verwenden wir wie im Sokrates-Beispiel mit dem logischen Schluss des
Modus Ponens.

Haben wir eine Behauptung der Form A A B, so kann diese gezeigt werden indem zunichst A und
dann B gezeigt wird. Eine Behauptung der Form AV B kann gezeigt werden indem A gezeigt wird
oder indem B gezeigt wird, aber auch hier sind oft indirekte Beweise, siehe Kapitel 5, niitzlich. Eine
Behauptung der Form A = B wird gezeigt indem unter der Voraussetzung A die Behauptung B
gezeigt wird. Auch fiir Behauptungen der Form A = B gibt es wichtige alternative Beweisformen,
etwa den indirekten Beweise oder den Beweis der Kontraposition, siehe Kapitel 5.

Widerlegungen. Oft sind wir in der Mathematik auch in einer Situation, wo wir von einer gewissen
Aussage A zeigen wollen dass sie falsch ist, d.h. wo wir A widerlegen wollen. Das ist gleichbedeutend
damit zu zeigen dass —A wahr ist. Wie wir Aussagen verneinen konnen und wie wir die dadurch
erhaltenen Aussagen dann beweisen kdnnen wissen wir bereits. Damit ist also im Grunde vollstandig
erklart was eine Widerlegung ist. Zur Verbesserung des Verstandnisses wollen wir uns aber den
wichtigen Spezialfall der Allaussagen ansehen.

Sei also A eine Aussage der Form Vx P(x). Dann ist die Verneinung von A dquivalent zu 3x —P(x).
Um also zu zeigen dass A falsch ist, reicht es ein konkretes Objekt ¢ anzugeben und zu zeigen dass
—P(c) gilt. Ein solches Objekt das die Eigenschaft P(-) nicht hat heiBt auch Gegenbeispiel fiir die
Behauptung Vx P(x).

Aufbau einer mathematischen Theorie. Damit haben wir nun die drei zentralen Elemente der
mathematischen Sprache kennengelernt: Aussagen, Definitionen und Beweise. Eine mathematische
Theorie ist im Wesentlichen eine Abfolge von Aussagen, Definitionen und Beweisen, die der Ein-
schrankung geniigen, dass zu jedem Zeitpunkt immer nur auf bereits Bekanntes aufgebaut wird: So
diirfen, wie wir in Kapitel 3 gesehen haben, in einer Definition nur Begriffe verwendet werden, die
bereits bekannt sind. Analog dazu diirfen in einem Beweis nur Aussagen verwendet werden, die wir
bereits bewiesen haben oder die wir voraussetzen wollen.

Ein mathematischer Text enthilt viele Aussagen. Es gibt eine ganze Reihe von Bezeichnungen fiir
Aussagen, welche die Rolle der jeweiligen Aussage im Gesamttext andeuten sollen. Die wichtigste Be-
zeichnung fiir eine Aussage ist Satz. Ein Satz ist eine Aussage, die der Autor eines mathematischen
Texts behauptet. Typischerweise folgt unmittelbar auf einen Satz ein Beweis dieses Satzes. Alterna-
tiv dazu wird auch manchmal die Bezeichnung Theorem verwendet. Oft werden besonders wichtige
Satze als Theoreme bezeichnet. Gelegentlich wird auch die Bezeichnung Proposition dafiir verwen-
det. Oft sind Propositionen weniger wichtige Aussagen als Satze. Ein Lemma (Plural “Lemmata”)
ist ein Hilfssatz: eine Aussage die zwar fiir sich genommen vielleicht nicht besonders interessant ist,
die aber niitzlich ist, um andere Aussagen zu beweisen. Ein Korollar ist eine Folgerung, die ganz

20



einfach aus einem (meist dem unmittelbar vorhergehenden) Satz bewiesen werden kann. Ein Axiom
ist eine Grundaussage einer Theorie, die wir voraussetzen ohne sie zu beweisen. Axiome sind in ma-
thematischen Texten eher selten, sie spielen vor allem bei der logischen Analyse der Grundlagen der
Mathematik eine Rolle.

Das Wichtigste in Kiirze.
e Ein Beweis ist eine Ableitung einer Aussage aus anderen Aussagen durch logische Schliisse.

e An jeder Stelle eines Beweises gibt es gewisse Voraussetzungen, die zur Verfiigung stehen, und eine
Behauptung, die wir aus diesen Voraussetzungen beweisen wollen. Diese werden Schritt fiir Schritt
durch logische Schliisse transformiert.

e In einem realistischen Beweis werden viele Schritte implizit durchgefiihrt. Einen Beweis zu verstehen
bedeutet auch, diese Schritte explizit machen zu kdnnen.

e Aussagen, Definitionen und Beweise sind die drei zentralen Elemente der mathematischen Sprache.
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Kapitel 5

Beweistechniken

In Kapitel 4 haben wir bereits viele einfache logische Schliisse kennengelernt, z.B. die Verwendung von
All- und Existenzvoraussetzungen, Modifikationen von All- und Existenzbehauptungen, Expansion
von Definitionen, Rechnungen, usw. In diesem Kapitel werden wir etwas komplexere Beweistechniken
besprechen, die eine Auswirkung auf die globale Struktur eines Beweises haben. Eine dazu notwendige
Vorarbeit besteht im Verstdndnis von Unterbeweisen.

Unterbeweise. Wir haben bereits Implikationen, also Aussagen der Form A = B bewiesen, in-
dem wir unter der Voraussetzung A die Behauptung B bewiesen haben. Dieser Vorgang kann auch
verschachtelt werden. Angenommen wir stehen beim Schreiben eines formalen Beweises in der Zeile
X, wo unter gewissen Voraussetzungen die Behauptung F zu zeigen ist. Dann konnen wir uns dazu
entscheiden, in Zeile X + 1 einen neuen Unterbeweis zu beginnen. In diesem kdnnen wir dann eine
Voraussetzung A und eine Behauptung B frei wahlen. Im Unterbeweis sind alle Voraussetzungen, die
an der Zeile X vorhanden sind ebenfalls verwendbar. Sobald dieser Unterbeweis abgeschlossen ist,
springen wir wieder zuriick zur dariiberliegenden Ebene. Wir erhalten damit, in der Zeile Y, aus dem
Unterbeweis die neue Voraussetzung A = B. Die Behauptung ist wieder jene der dariiberliegenden
Ebene: F. Die Voraussetzung A steht ab Zeile Y nicht mehr zur Verfiigung. Die Voraussetzung A
und die Behauptung B haben also lediglich innerhalb des Unterbeweises Giiltigkeit. Als formaler
Beweis wird das wie folgt geschrieben:

X .. zz: F
X+1. A zz: B
Y:A=B zz: F

Ein Unterbeweis, der mit der Voraussetzung A und der Behauptung B beginnt, endet also immer
mit A = B als neuer Voraussetzung auf der dariiberliegenden Ebene. Natiirlich kann man in einem
Unterbeweis auch mehrere Voraussetzungen A, ..., A, einfiihren, indem man z.B. Aauf AjA---AA,
setzt. Auch ist es moglich, innerhalb eines Unterbeweises einen neuen Unterbeweis zu beginnen. Diese
Struktur kann also beliebig verschachtelt werden, dhnlich wie das z.B. auch beim Programmieren
mit verschachtelten Schleifen méglich ist.

Fallunterscheidung. Eine Beweistechnik die in der Mathematik sehr haufig ist und sich Unterbe-
weisen bedient ist die Fallunterscheidung. Wir wollen zunachst einen Beweis mittels Fallunterschei-
dung fiihren und diesen dann im Detail analysieren.
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Satz. Fiir alle n € N gilt: LgJ + L";FlJ = n.
Beweis. Wir machen eine Fallunterscheidung.

1. Falls n gerade ist, dann existiert ein k € N mit n = 2k und wir erhalten

1[5 -[3][2 e

2. Falls n ungerade ist, dann existiert ein kK € N mit n = 2k + 1 und wir erhalten

[nJ_i_{n—#—lJ _{2k+1J+{2k+2J _ {k+1J+U<+1J—k+k+1—n.

2 2 2 2 2
U

Wir wollen uns nun die Struktur eines formalen Beweises mittels Fallunterscheidung genauer iiberlegen.
Im Allgemeinen haben wir eine Voraussetzung der Form AV B und eine Behauptung C. Im obigen
Beispiel wire etwa A < n ist gerade, B < n ist ungerade und C < |5 + L”ZIJ = n. Zunachst
miissen wir, in Zeile X, die Aussage AV B beweisen. Dann beweisen wir C aus der Voraussetzung
A und danach C aus der Voraussetzung B. Damit haben wir also C aus AV B bewiesen. Da AV B
bereits bewiesen ist, sieche Zeile X, ist damit auch C bewiesen. Als formaler Beweis sieht das wie

folgt aus:

X: AV B zz: C
X+1. A zz: C

Y: A= C zz: C
Y+1: B zz: C
Z:B=C zz: C
Z+1: C (aus X, Y, Z mittels Fallunterscheidung) zz: C

Die Korrektheit des logisches Schlusses mit dem C in Zeile Z + 1 abgeleitet wird basiert auf der
Giiltigkeit der Aquivalenz
(AVB=C)< (A= C)A(B= ().

Auf Basis dieser Aquivalenz erhalten wir zunichst AV B = C aus den Zeilen Y und Z und sodann
C aus der Zeile X mittels Modus Ponens.

Fallunterscheidungen konnen allgemeiner als im obigen Beispiel gewahlt werden. So miissen Fallun-
terscheidungen nicht immer disjunkt sein, z.B. konnen wir fiir eine reelle Zahl x die Fallunterscheidung
x <0V x >0 verwenden. Dann wird der Fall x = 0 doppelt behandelt, was aber genauso zu einem
logisch korrekten (wenn auch etwas redundantem) Beweis fiihrt. Auch kénnen wir in mehr als zwei
Falle aufspalten, z.B. kann fiir eine reelle Zahl x auch die Fallunterscheidung x <0Vx =0V x >0
verwenden. Andere hiufige Fallunterscheidungen sind z.B. fiir x,y e R: x < yVy > x, fiir ne N:
n=0 (mod3)Vn=1(mod3)Vn=2 (mod3) oder entsprechend fiir die Restklassen modulo
m > 3, fiir eine Primzahl p und eine natiirliche Zahl n: p | n oder p { n.

Essentiell ist allerdings dass eine Fallunterscheidung vollstandig ist, d.h. dass alle Mdglichkeiten
abgedeckt werden. So ist etwa fiir n € N die Fallunterscheidung “n ist gerade oder n ist Primzahl”
nicht vollstindig, da ungerade zusammengesetzte Zahlen wie z.B. 9 nicht abgedeckt sind. Eine
unvollstandige Fallunterscheidung AV B kann nicht bewiesen werden und damit kann AV B in Zeile
X nicht als Voraussetzung zur Verfiigung stehen.
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Kontraposition. Eine Aussage der Form A = B wird meistens bewiesen indem unter der Voraus-
setzung A die Behauptung B gezeigt wird. Gelegentlich ist es aber einfacher stattdessen unter der
Voraussetzung —B die Behauptung —A zu zeigen. Das ist ebenfalls ein Beweis von A = B da die
Formel

(A= B) & (B = —A)

giiltig ist. Die Formel =B = —A heiBt Kontraposition der Formel A = B. Betrachten wir ein
Beispiel.

Satz. Wenn 3n+ 1 ungerade ist, dann ist n gerade.

Beweis. Sei n ungerade. Dann ist n = 2k + 1. Damit ist 3n + 1 = 6k + 4 = 2(3k + 2). Also ist
3n+ 1 gerade. O

Im Allgemeinen sehen formale Beweise mittels Kontraposition wie folgt aus: Wir haben eine Be-
hauptung der Form A = B. Wir fiihren einen neuen Unterbeweis mit der Voraussetzung =B und
der Behauptung —A. Sobald dieser abgeschlossen ist erhalten wir =B = —A was wir mittels Kon-
traposition zu A = B dndern. Als formalen Beweis schreibt man das wie folgt.

X .. zzz. A= B
X+1.-B zz: A

Y: =B = -A zzz A= B

Y 4+ 1: A= B (aus Y mittels Kontraposition) zzz A= B

Warnung 5.1. Die Implikation A = B ist zwar dquivalent zu ihrer Kontraposition =B = —A, nicht A
aber zu —=A = =B, wie sich leicht mit einer Wahrheitstafel nachrechnen I&sst.

Stehen zu Beginn eines Beweises mittels Kontraposition mehrere Voraussetzungen zur Verfiigung,
kann man sich aussuchen welche man invertiert, da ja z.B. die Formel

(AiNAy = B) © (ALA-B = -A)) & (A2 AN —-B = —A;)
giiltig ist.

Indirekter Beweis. Ein indirekter Beweise einer Behauptung A geht so vor, dass wir aus der
Voraussetzung —A einen Widerspruch ableiten. Das ist ein Beweis von A, da die Aquivalenz

As (FA= 1) (%)

giiltig ist, wie sich leicht mit einer Wahrheitstafel nachrechnen lasst. Das Zeichen L (ausgesprochen
als “Falsum”, lat. fiir Unwahrheit) steht fiir einen logischen Widerspruch. Der Wahrheitswert von
L ist immer 0. Ein beriihmtes Beispiel fiir einen indirekten Beweis ist der Euklidsche Beweis fiir die
Unendlichkeit der Primzahlen:

Satz. Es gibt unendlich viele Primzahlen.

Beweis. Angenommen, es gibe nur endlich viele Primzahlen. Dann kénnen wir sie als p, ..., pn
bezeichnen. Sei m = [[_; pi + 1. Dann gilt fiir alle i = 1, ..., n dass p;  m. Nun hat aber jede Zahl
einen Primteiler, also hat auch m einen Primteiler q. Dann ist aber g keines der p;. Widerspruch. [
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Ein weiteres bekanntes Beispiel fiir einen indirekten Beweis ist der Beweis der Irrationalitdt von V2.
In diesem nehmen wir an, dass \/2 rational ist, d.h. eine Darstellung als (gekiirzter) Bruch hat.
Daraus leiten wir mit einigen elementaren Uberlegungen einen Widerspruch ab, womit also gezeigt
ist dass v/2 nicht rational ist, d.h. also irrational ist.

Im Allgemeinen sieht ein indirekter formaler Beweis wie folgt aus: Wir haben eine Behauptung A und
beginnen einen neuen Unterbeweis mit der Annahme —A und der Behauptung L. Durch Abschluss
dieses Unterbeweises erhalten wir die Implikation —=A = L als Voraussetzung. Daraus erhalten wir
mittels (x) sofort A. Als formaler Beweis geschrieben hat ein indirekter Beweis die folgende Form:

X .. zz: A
X+1: -A zz: |

Y: A= L zz: A

Y +1: A (aus Y mittels (x)) zz: A

Beweise von Aquivalenzen. Die Aquivalenz von Aussagen spielt in der Mathematik eine groBe
Rolle. Dementsprechend ist es oft notwendig zu zeigen dass zwei gegebene Aussagen A und B
dquivalent sind, das heift also die Formel A < B zu beweisen. Dies geschieht oft, indem zuerst
A = B und dann B = A bewiesen wird. Das ist ein vollstdndiger Beweis von A < B, da ja die
folgende Formel giiltig ist:

(A B)s (A= B)A(B=A)

Diese Vorgehensweise lisst sich auf Beweise der Aquivalenz mehrerer Aussagen verallgemeinern. Um
zu zeigen dass die Aussagen Az, Ao, ..., A, dquivalent sind, reicht es die folgenden Aussagen zu
zeigen: A1 = Ao, ..., Ap_1 = An, Ay = A;. Damit folgen die Implikationen also einer Kreisform von
A1 bis nach A, und dann wieder zuriick zu A;. Betrachten wir ein Beispiel:

Satz. Seien n,m > 1. Die folgenden Aussagen sind dquivalent:

1. n|m.
2. Es gibt ein k > 1 so dass n = ggT(m, k).

3. Jeder Teiler von n ist ein Teiler von m.

Beweis. 1 = 2: Wir nehmen n | m an. Wir setzen k = n. Dann gilt ggT(m, k) = n.

2 = 3: Wir nehmen n = ggT(m, k) an. Dann gilt auch n | m. Sei nun I ein beliebiger Teiler von n.
Dann haben wir /| nund n| m, also / | m.

3 = 1: Wir nehmen an dass jeder Teiler von n ein Teiler von m ist. Nun ist aber n ein Teiler von
sich selbst. Also gilt n | m. O

In diesem Beweis gibt es also drei Unterbeweise: fiir jede der Implikationen 1 = 2, 2 = 3 und
3 = 1 einen. Mit einem solchen Beweis kann man sich im Vergleich zum Nachweis aller paar-
weisen Aquivalenzen einiges an Arbeit ersparen. Konkret mussten wir im obigen Beweis nur drei
Implikationen beweisen. Hatten wir die Aquivalenzen 1 < 2, 1 < 3 sowie 2 < 3 iiber jeweils zwei
Implikationen bewiesen, hadtten wir insgesamt sechs Implikationen zu beweisen gehabt.
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Sinn von Beweisen. Der primire Sinn eines Beweises besteht darin, zu iiberzeugen dass die
behauptete Aussage wahr ist. Zunachst einmal geht es dabei darum, dass der Autor eines Beweis
sich selbst davon iliberzeugt, dass die Aussage, und zwar ohne den geringsten Rest eines Zweifels zu
erlauben, wahr ist. Um das zu erreichen bietet eine rigide und detaillierte Beweisfiihrung genau den
richtigen Rahmen.

In weiterer Folge erfiillt ein Beweis aber auch den Zweck, einen Leser oder einen Zuhorer davon
zu liberzeugen, dass die behauptete Aussage wahr ist. In diesem Sinn ist ein Beweis ein Akt der
Kommunikation. In diesem gibt es einen Sender, einen Empfanger und einen Kontext. So betrachtet
tiberrascht es nicht dass, je nach Situation, Beweise unterschiedlich dargestellt werden, insbesondere
was ihren Detailliertheitsgrad angeht. So wird z.B. ein Lehrbuch fiir das erste Studienjahr Beweise
detaillierter prasentieren als weiterfiihrende Werke, die schon viel mathematisches Wissen vorausset-
zen. Auch macht es fiir die Darstellung einen Unterschied, ob ein Beweis miindlich oder schriftlich
prasentiert wird. In diesem Zusammenhang ist auch die Frage “Wie genau muss ich das beweisen?”
zu beantworten: so genau namlich, wie es dem Kontext angemessen ist. Um Missverstandnisse nach
Moglichkeit auszuschlieBen, ist man aber im Zweifel lieber zu genau als nicht genau genug.

Der zweite wichtige Sinn von Beweisen besteht darin zu erkldren, wieso die behauptete Aussage
wahr ist. Derartige Einsichten sind nicht nur wesentlich fiir das Verstandnis einer mathematischen
Theorie, sie erlauben es in weiterer Folge auch, dhnliche Aussagen mit dhnlichen Beweisen selbst
zu zeigen, was auch fiir Anwendungen von groBer Bedeutung ist. Deswegen ist es auch wichtig,
Beweise genau zu lesen: man versteht nicht nur die Zusammenhinge besser, sondern man lernt
auch, von den grundlegenden Beweisideen bis zu Details der Formulierung, wie man selbst Beweise
entwickeln kann. Durch bloBes Auswendiglernen der bewiesenen Sitze ist das nicht méglich. Diese
zweite Funktion von Beweisen erkldrt auch, wieso es in der Mathematik iiblich ist, von wichtigen
S&tzen mehrere Beweise zu betrachten. So hat z.B. C. F. GauB selbst acht verschiedene Beweise des
quadratischen Reziprozitdtsgesetzes, eines wichtigen Resultats der Zahlentheorie, angegeben.

Das Wichtigste in Kiirze.

e In einem Beweis mittels Fallunterscheidung wird die Behauptung in jedem der Falle gesondert be-
wiesen. Die Vollstandigkeit der Fallunterscheidung ist fiir die Korrektheit des Beweises unverzichtbar.

e Ein Beweis durch Kontraposition beruht auf der Aquivalenz (A = B) < (—B = —A).
e Ein indirekter Beweis beruht auf der Aquivalenz A & (=A = 1).

e Eine Aquivalenz A & B wird typischerweise gezeigt, indem A = B und, getrennt davon, B = A
gezeigt wird.
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Kapitel 6

Mengen

Der Begriff der Menge spielt eine zentrale Rolle in der Mathematik. Mengen sind, in informatischer
Terminologie ausgedriickt, die wichtigste Datenstruktur der Mathematik. G. Cantor definierte den
Mengenbegriff wie folgt: Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Objekten
unserer Anschauung oder unseres Denkens zu einem Ganzen!. Die in einer Menge M zusammenge-
fassten Objekte heiBen Elemente von M.

Dass die Elemente einer Menge “wohlunterschieden” sind, bedeutet nichts anderes als dass jedes
Objekt hochstens ein Mal in der Menge vorkommt: entweder es kommt vor oder nicht, es kann aber
nicht mehrfach vorkommen. Dass es sich bei einer Menge um eine “Zusammenfassung” handelt
bedeutet, dass es auf die Reihenfolge der Elemente einer Menge nicht ankommt. Zwei Mengen sind
also genau dann gleich, wenn sie die selben Elemente haben.

Intuitiv kdnnen wir uns also eine Menge vorstellen wie ein Sack, der gewisse Gegenstinde, die
Elemente, enthdlt. Natiirlich kann ein Sack auch weitere Sacke enthalten — ebenso kdnnen die
Elemente einer Menge wieder Mengen sein. Die leere Menge, die wir uns vorstellen als “leeren Sack”
ist definiert als die eindeutige Menge die gar kein Element halt.

Wir schreiben “x € M", um auszudriicken dass das Objekt x ein Element der Menge M ist. Wir
sagen dann auch: “M enthadlt x" oder “x ist in M enthalten”. Wenn wir ausdriicken wollen, dass
mehrere Objekte, z.B. x, y und z in der Menge M sind, so kénnen wir das tun indem wir schreiben
“x € Mund y € M und z € M" oder, kiirzer, “x,y,z € M". Wir schreiben “x ¢ M", um
auszudriicken, dass x nicht in M enthalten ist. Wir schreiben (), oder manchmal auch {}, fiir die
leere Menge. Damit gilt also x ¢ 0 fiir alle x.

Definition von Mengen. Eine Menge kann auf verschiedene Arten definiert werden: Die einfachste
Form besteht darin, einfach all ihre Elemente explizit aufzahlen. So kénnen wir etwa die Mengen
A=1{1,2,3,4,5}, B={2,/3,V/5} oder C = {A, B} definieren. Diese Vorgehensweise ist nur bei
(kleinen) endlichen Mengen sinnvoll. Da es bei Mengen nicht auf die Reihenfolge ankommt und jedes
Element nur vorkommt oder nicht vorkommt, nicht aber mehrere Male vorkommen kann, ist z.B.
{2,2,1} = {1,2}. Auch wenn dieses Beispiel etwas kiinstlich erscheint, ist es in einer Situation wo
iiber unbekannte Objekte xi, ..., X, gesprochen wird eine Erleichterung, eine Menge als {xi, ..., xn}

!Aus heutiger Perspektive ist diese Definition iiberholt, da sie zu verschiedenen Paradoxien fiihrt. Wir geben sie
hier trotzdem an, da sie die Intention der Begriffsbildung kurz und biindig klarstellt und die erwdhnten Paradoxien fiir
uns keine Rolle spielen werden. Ein solider Mengenbegriff kann auf Basis der axiomatischen Mengenlehre entwickelt
und als Grundlage der Mathematik verwendet werden.
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anschreiben zu konnen, ohne vorher zeigen zu miissen, dass xi, ..., x, paarweise unterschiedlich?
sind.

Wesentlich haufiger wird eine Menge durch eine Beschreibung definiert, d.h. durch Angabe eines
definierenden Pridikats. Die dazu verwendete Notation hat die Form

A= (x| P()}

was gelesen wird als “A ist die Menge aller x fiir die P(x) gilt.”. Alternativ zu dieser Notation wird
oft auch A = {x : P(x)} oder gelegentlich auch A = {x/P(x)} geschrieben. Auf diese Weise konnen
wir z.B. die Menge aller geraden ganzen Zahlen definieren als G = {n | n € Z A n ist gerade}. Man
beachte dass eine solche Definition drei Teile hat: 1. den Namen A der definierten Menge, 2. den
Namen x einer Variablen die fiir die Elemente der Menge steht und 3. ein Pradikat P(x) das von der
freien Variable x abhéngt. Diese Notation bindet die Variable x, so dass x im Ausdruck {x | P(x)}
nur mehr gebunden vorkommt.

Wir erlauben uns gelegentlich von der strikten Form A = {x | P(x)} dieser Definition abzuweichen.
Die folgenden beiden Kurznotationen sind niitzlich und werden in der Mathematik haufig verwendet:

1. Falls die Definition von der Form
A={x|xe MAnP(x)}

ist, d.h. falls es eine Grundmenge, ein Universum M, gibt aus dem die Elemente entnommen werden,
dann schreibt man diese Definition auch, etwas kiirzer, als

A={xeM]|P(x).

Das wird ausgesprochen als “A ist die Menge aller x in M mit P(x)."”. Damit kénnen wir also z.B. die
Definition von G kiirzer darstellen als G = {n € Z | n ist gerade}. Auch Varianten dieser Notation
sind gebrduchlich. So wiirde man z.B. die Menge aller Mengen ganzer Zahlen, die keine Primzahlen
enthalten, wie folgt anschreiben: {ACZ | ANP = 0}.

2. Ist die Definition einer Menge von der Form

A={y|3Ix(y = f(x) A P(x))}

fur eine Funktion f, so schreibt man diese Definition auch als

A={f(x) | P(x)}.

Das wird ausgesprochen als “A ist die Menge aller f(x) mit P(x).” Die Menge der Quadratzahlen
kann so z.B. definiert werden durch @ = {n? | n € N} da n — n? eine Funktion ist.

Wir haben also gesehen dass ein Pradikat mit einer freien Variable eine Menge definiert. Umgekehrt
definiert auch eine Menge A ein Pradikat mit einer freien Variable, ndmlich x € A. Wir kdnnen also
Mengen mit Pradikaten mit einer freien Variable identifizieren.

Teilmengen. Eine Menge A heit Teilmenge einer Menge B falls jedes Element von A auch
Element von B ist. Wir schreiben auch A C B fiir "A ist Teilmenge von B". A C B bedeutet
also nichts anderes als Vx (x € A = x € B). Dementsprechend zeigt man eine Aussage der Form
A C B meistens indem man von einem beliebigen x annimmt dass x € A ist und dann aus dieser
Voraussetzung die Behauptung x € B beweist.

2Wir sagen von Objekten xi, ..., x, dass sie paarweise unterschiedlich sind falls x; # x; fir alle i, j mit i # j gilt. So
sind z.B. 1,2 paarweise unterschiedlich, 2,2, 1 aber nicht.
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Ahnlich ist es mit der Gleichheit zweier Mengen: A = B ist dquivalent zu Vx (x € A & x € B),
was wiederum dquivalent ist zu A C B A B C A. Dementsprechend ist auch eine der verbreitetsten
Beweistechniken zum Nachweis einer Identitit A = B von Mengen, zundchst A C B und dann
B C A zu zeigen.

Wir sagen dass A eine echte Teilmenge von B ist falls A C B ist und auBerdem A # B ist. Das
wird oft als A C B oder auch als A C B geschrieben.

Boolesche Operationen auf Mengen. Es ist oft niitzlich auf Basis von bereits vorhandenen Men-
gen weitere Mengen zu definieren. Wir werden jetzt einige Operationen auf Mengen kennenlernen.
Seien A und B Mengen. Dann definieren wir:

Der Durchschnitt von A und B ist die Menge AN B = {x | x € AA x € B}. Der Durchschnitt
von A und B enthilt also genau die gemeinsamen Elemente von A und B. Zwei Mengen A und B
heiBen disjunkt, falls sie keine gemeinsamen Elemente haben, das heiBt also falls AN B = ().

Die Vereinigung von A und B ist die Menge AUB = {x | x € AV x € B}. Die Vereinigung zweier
Mengen besteht also aus all jenen Objekten die Element von mindestens einer der beiden Mengen
sind.

Die Differenzmenge von A und B ist die Menge A\ B = {x | x € AA x ¢ B}. Die Differenzmenge
wird auch ausgesprochen als “A ohne B”. Eine andere gebriuchliche Notation fiir A\ B ist A— B.

Warnung 6.1. Wahrend zwar AUB = BUA und ANB = BN A gilt, ist im Allgemeinen A\ B # B\ A.

Oft arbeiten wir mit einer bestimmten Grundmenge, einem Universum M. Das Komplement einer
Menge A C M beziiglich M ist die Menge A = M\ A = {x € M | x ¢ A}. Oft ist M aus
dem Kontext heraus klar und wird nicht mehr explizit erwdhnt. Alternative Notationen fiir das
Komplement der Menge A sind A’ sowie A.

Zur Veranschaulichung von Situationen die eine geringe Anzahl von Mengen involvieren zeichnet
man oft Venn-Diagramme, siehe Abbildung 6.1.

Man sieht leicht, dass diese Operationen auf Mengen eng verwandt mit der Aussagenlogik sind. So
entspricht die Vereinigung U der Disjunktion V, der Durchschnitt M der Konjunktion A und das
Komplement -¢ der Negation —. Auf Basis dieser Korrespondenz konnen wir auch Wahrheitstafeln
benutzen um Mengenidentitdten und -inklusionen zu beweisen. So iibersetzt sich z.B. die de Morgan
Regel =(A Vv B) <& —A A =B fiir beliebige Aussagen A und B direkt in die Mengengleichheit
(AU B)¢ = AN B indem wir ein beliebiges Objekt x fixieren und dann beobachten, dass

xe(AUB) & a(xe AvxeB)& xe AN—xeBe xe ANBC.
N—— =
A B
Dabei haben wir die Aussage x € A als A und x € B als B abgekiirzt. Das lasst sich auch direkt

mit einer Wahrheitstafel wie folgt nachrechnen:

x€EA|xeB | xe AUB | xe (AUB)E | x€ A° | x€ B | x € A°NB°
0 0 1 1

O = O =

0 1
0 1 1 0 1 0
1 0 1 0 0 0
1 1 1 0 0 0

Jede aussagenlogische Aquivalenz induziert also eine Mengenidentitit.

Analog dazu konnen aus giiltigen aussagenlogischen Implikationen Mengeninklusionen abgelesen
werden. So ist z.B. AA B = AA(BV C) eine giiltige Formel woraus sofort folgt dass, fiir beliebige
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AU B in grau AN B in grau A\ B in grau
M M M

AC in grau ACB ANB=10

Abbildung 6.1: Venn-Diagramme

Mengen A, B und C gilt: ANB C AN(BUC) indem wir ein beliebiges Objekt x fixieren und, so wie
oben, fiir A die Aussage x € A verwenden, fiir B die Aussage x € I und fiir C die Aussage x € C.

Weitere Operationen auf Mengen. Gegeben zwei beliebige Objekte x und y kdnnen wir das
geordnete Paar (x, y) bilden. Das Adjektiv geordnet bezieht sich auf die Eigenschaft (x, y) # (y, x).
Da in der Mathematik meistens geordnete Paare betrachtet werden, wird ein geordnetes Paar oft auch
einfach als Paar bezeichnet. Diese Form der Zusammenfassung von Objekten kann verallgemeinert
werden: Wir kénnen Objekte xi, ..., x, in das n-Tupel (x1, ..., x,) zusammenfassen. 2-Tupel sind also
Paare, 3-Tupel heiBen auch Tripel. Anders als bei einer Menge kommt es also bei einem Tupel auf
die Reihenfolge an. AuBerdem kann ein Tupel das selbe Element mehrfach enthalten.

Das kartesische Produkt zweier Mengen A und B ist die Menge Ax B = {(x,y) | x € AAy € B},
also die Menge aller geordneter Paare deren erste Komponente aus A und deren zweite Komponente
aus B kommt. So ist z.B. {a, b} x {1,2,3} = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}. Oft spricht
man auch einfach nur vom Produkt. Das Produkt der Mengen A1, ..., A, ist die Menge A X - - X
An={(x1,....xn) | x1 € A1, ..., Xn € Ap}.

Warnung 6.2. Verwechseln Sie nicht (a, b) € M mit a, b € M Die Schreibweise a, b € M ist eine
Abkiirzung fiir a € M A b € M und bedeutet also, dass die beiden Objekte a und b Elemente von M
sind. Die Schreibweise (a, b) € M bedeutet, dass das (geordnete) Paar (a, b) ein Element von M ist.

Die Kardinalitdt einer Menge A ist die Anzahl der Elemente von A und wird als |A| geschrieben.
Fiir eine endliche Menge A ist |A| einfach eine natiirliche Zahl. So ist z.B. |{n € N | n teilt 10}| = 4.
Oft schreibt man |A| = oo um auszudriicken dass die Menge A unendlich viele Elemente hat3.

3Auch im Unendlichen kann man noch verschieden groBe Mengen unterscheiden. So haben z.B. N, Z und Q die
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Abbildung 6.2: Graph der Funktion f : R — R, x — x?

Die Potenzmenge einer Menge A ist die Menge P(A) = {B | B C A}. Die Potenzmenge von A ist
also die Menge aller Teilmengen von A. So ist z.B.

P({1,2,3}) = {0, {1}, {2}, {3}, {12}, {1, 3}, {2,3} {1,2,3}}.

Fiir eine endliche Menge A gilt |P(A)| = 24l

Relationen. Seien A und B Mengen. Eine Menge Menge R C A x B heit Relation zwischen A
und B. Eine Relation R zwischen A und B ist also eine Menge von geordneten Paaren. Fiir x € A
und y € B sagen wir “x steht in der Relation R zu y” falls (x,y) € R gilt. In Symbolen schreiben
wir das als x R y. Haufig betrachten wir Relationen im Fall wo A = B ist. Dann sprechen wir einfach
von einer Relation auf A. Fiir eine Relation R auf A ist auch die Notation (A, R) gebrauchlich, z.B.
(Z,=5) fiir die Aquivalenz modulo 2 auf den ganzen Zahlen.

Wir kennen bereits viele Beispiele fiir Relationen. So ist z.B. < (kleiner-gleich) auf R eine Relation
und fiir jede natiirliche Zahl m > 2 ist =, (kongruent modulo m) eine Relation auf Z. Wir werden
in Kapitel 9 noch weitere Relationen und Klassen von Relationen kennenlernen.

Funktionen. In vielen Situation spielen mehrere GréBen eine Rolle und wir wissen, oder kdnnen
beobachten, dass eine GroBe dabei von einer oder mehreren anderen eindeutig bestimmt wird. In
der Mathematik wird eine solche Abhangigkeit durch den Begriff der Funktion, oder synonym dazu
auch: der Abbildung, modelliert. Betrachten wir z.B. den Bremsweg eines Autos, so hat das Auto zu
jedem Zeitpunkt eine eindeutig bestimmte Geschwindigkeit. Wir schreiben dann die Geschwindigkeit
zum Zeitpunkt t als v(t) um diese Abhidngigkeit auszudriicken. Funktionen bzw. Abbildungen spielen
eine zentrale Rolle in der gesamten Mathematik

Wir haben bereits gelegentlich mit Funktionen gearbeitet und iiber Funktionen gesprochen. Formal
kdnnen wir Funktionen iiber Relationen definieren. Seien A und B Mengen. Eine Funktion oder
Abbildung von A nach B ist ein Tripel f = (A, B, G) wobei G C Ax Bund Vx € Adly € B: xGy.
A heiBt dann Definitionsmenge der Abbildung f, B heiBt Zielmenge von f und G heiBt Graph von
f. Der Graph einer Funktion von R nach R kann auf die bekannte Weise visualisiert werden, siehe
z.B. Abbildung 6.2. Das einem x € A durch G eindeutig zugeordnete y heiBt Bild von x und wird

selbe Kardinalitdt. AuBerdem haben R und C die selbe Kardinalitdt. Diese beiden Kardinalitdten unterscheiden sich
aber. Eine detailliertere Beschreibung dieser Situation wiirde hier aber zu weit fiihren.
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als f(x) geschrieben. Die Bildmenge von f ist f(A) = {f(x) | x € A}. Achtung: Die Bildmenge ist
immer eine Teilmenge der Zielmenge ,d.h. es gilt f(A) C B, sie muss aber nicht gleich der Zielmenge
sein.

Zur Definition von Funktionen gibt es zwei gebrduchliche Kurznotationen. Um z.B. das Quadrieren
in den reellen Zahlen zu definieren kann man f : R — R, x — x2 schreiben. Das wird ausgesprochen
als “Sei f die Funktion von den reellen Zahlen in die reellen Zahlen die x auf x? abbildet.”. Eine
alternative Notation ist f : R — R, f(x) = x?, was wie folgt ausgesprochen wird: “Sei f die Funktion
von den reellen Zahlen in die reellen Zahlen mit f(x) = x2.".

A Warnung 6.3. Vermischen Sie diese beiden Notationen nicht. Ausdriicke wie f(x) ++ x? ergeben
keinen Sinn, da ja nicht f(x) auf x? abgebildet wird, sondern x.

Das Wichtigste in Kiirze.

e Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Objekten unserer Anschauung
oder unseres Denkens zu einem Ganzen.

e Mengen konnen mit einstelligen Préadikaten identifizert werden. So definiert ein Pradikat P(x) die
Menge aller Objekte, die P erfiillen (geschrieben als {x | P(x)}). Umgekehrt definiert eine Menge
A das Pradikat Element dieser Menge zu sein (geschrieben als x € A).

e Boolesche Operationen, die ja bereits von Pradikaten bekannt sind, kénnen direkt auf Mengen
angewandt werden. Andere wichtige Operation auf Mengen sind das kartesische Produkt und die
Potenzmenge.

e Relationen und Funktionen kdnnen als Mengen aufgefasst, bzw. iiber Mengen definiert werden.
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Kapitel 7

Gleichungen

Gleichungen sind eine der wichtigsten Arten von Aussagen in der Mathematik. Eine Gleichung ist
ein Ausdruck der Form t = s, wobei t und s Terme sind, die mathematische Objekte beschreiben.
Die Gleichung t = s driickt aus, dass die beiden Terme t und s das selbe Objekt bezeichnen.
Wenn eine Gleichung keine Variablen enthidlt, dann ist sie eine Aussage. Z.B. ist die Gleichung
2+ 2 = 341 eine wahre Aussage und die Gleichung 2 + 2 = 3 eine falsche Aussage. Falls die
Gleichung Variablen enthilt, ist sie ein Pradikat. So ist z.B. die Gleichung y = x? ein Pradikat,
das von genau jenen Paaren (x,y) erfiillt wird, bei denen y das Quadrat von x ist. Die Terme t
und s miissen nicht unbedingt Zahlen beschreiben. Auch Gleichungen zwischen Mengen sind haufig
niitzlich. Z.B. driickt die Gleichung

PN {neZ]| nist gerade} = {2}
aus, dass 2 die einzige gerade Primzahl ist.

Warnung 7.1. Obwohl eine Gleichung mit freien Variablen an sich ein Pradikat spezifiziert, ist damit,
je nach Kontext, manchmal auch die allquantifizierte Aussage gemeint. So ist z.B. in der Definition
He :={y € G| x+y=y+x} mit "x+y =y+ x" das Pradikat mit den zwei freien Variablen
x und y gemeint. In einer Formulierung wie etwa der folgenden “G = (Z,, +) ist eine Gruppe. Wir
wollen nun x + y = y + x zeigen.” ist mit “x +y = y + x" die Aussage Vx,y € G: x+y =y + x
gemeint.

Aufeinanderfolgende Gleichungen. In Beweisen werden haufig Gleichungen benutzt. Die Kon-
ventionen fiir aufeinanderfolgende Gleichungen sind die selben wie fiir aufeinanderfolgende Aussagen,
vor allem: die Richtung der logischen Implikation ist vorwérts. Das heit also: wenn in einem Beweis
mehrere Gleichungen in Folge angegeben werden und sonst nichts dazu gesagt wird, so wird damit
ausgedriickt, dass jede Gleichung aus der vorherigen Gleichung folgt. So hat z.B. die folgende Liste
von Gleichungen

4a+2=2a—-6
2a = -8
a=—4
die logische Bedeutung:
4a+2=2a—-6
= 2a = -8
= a=—4,
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das heiBt: “aus 4a+ 2 = 2a — 6 folgt 2a = —8 und aus 2a = —8 folgt a = —4". Durch Weglassen
des Zwischenschritts erhalten wir 4a 4+ 2 = 2a — 6 = a = —4. Gelegentlich will man angeben, dass
auch die umgekehrte Richtung der Implikation gilt. Das kann dann wie folgt getan werden:

da+2=2a—6
& 2a = -8
= a=-4

Damit haben wir also sogar 4a + 2 = 2a — 6 < a = —4 gezeigt. Aber Achtung: nicht alle Trans-
formationen lassen sich umkehren. Wird etwa die obige Rechnung mit a®> = 16 fortgesetzt, so gilt
zwar

4a+2=2a—-6 (1)
& 2a = —8 (2)
& a=—4 (3)
= a® =16 (4)

aber a> = 16 = a = —4 ist nicht wahr (Gegenbeispiel: a = 4). Beim Arbeiten mit Gleichungen ist
es also besonders wichtig, sich immer im Klaren dariiber zu sein, was woraus folgt?.

Warnung 7.2. Ein haufiger Fehler beim Beweis einer Gleichung t = s besteht darin, eine Liste von
Gleichungen der Form

anzugeben. Diese Liste beweist, wenn sie nicht weiter kommentiert wird, u = u aus der Voraussetzung
t = s. Das ist nutzlos, da damit die wahre Aussage u = u aus der behaupteten Gleichung gezeigt
wurde. Gefragt ist die Umkehrung: ein Beweis der behaupteten Gleichung t = s aus wahren Aussagen.

Umformungen. Eine Umformung einer Gleichung, die zu einer dquivalenten Gleichung fiihrt, heiBt
Aquivalenzumformung. Z.B. gilt

X=yeoXt+z=y+z

Die Implikation von links nach rechts erhalten wir durch addieren von z, die von rechts nach links
durch subtrahieren von z. Diese Aquivalenzumformung haben wir z.B. oben verwendet, um von
Gleichung (1) zu Gleichung (2) zu gelangen (indem wir x =4a+2, y =2a—6 und z = —2a — 2
gesetzt haben).

Weiters gilt:
z#0=>(x=yex-z=y-2z).

Von links nach rechts multiplizieren wir mit z, von rechts nach links dividieren wir durch z, wofiir
wir auch annehmen miissen dass z # 0 ist. Diese Aquivalenzumformung haben wir oben verwendet,

!An diesem Beispiel sieht man auch noch einmal gut, was der Unterschied zwischen = und < ist und wie diese
beiden Verkniipfungen gemeinsam verwendet werden kdnnen.

36



um von Gleichung (2) zu Gleichung (3) zu gelangen (indem wir x = 2a, y = —8 und z = 2 gesetzt
haben).

Eine hadufig gebrauchte, und sehr allgemeine, Transformation von Gleichungen besteht in der An-
wendung einer Funktion. Ist ndmlich f eine Funktion dann gilt:

x=y=f(x)=f(y).

Aber Achtung: Im Allgemeinen ist die Umkehrung nicht wahr Sei z.B. f : R — R, x  x? dann gilt
zwar x = y = f(x) = f(y) aber f(x) = f(y) # x = y, wie wir auch oben am Beispiel bei den
Gleichungen (3) und (4) gesehen haben.

Ungleichungen. Eine Ungleichung ist ein Ausdruck der Form t < s oder t < s, wobei t und s
Terme sind, die mathematische Objekte, meistens reelle Zahlen, beschreiben. Ebenso wie Gleichungen
sind Ungleichungen, je nachdem ob sie Variable enthalten oder nicht, Pradikate oder Aussagen. Dabei
ist natiirlich s > t dquivalent zu t < s und s > t dquivalent zu t < s.

Im Kontext von Ungleichungen kdnnen wir, wie bei Gleichungen, auch addieren und subtrahieren.
Auch beim multiplizieren und dividieren kann man dhnlich vorgehen: nach wie vor darf aber natiirlich
nicht durch 0 dividiert werden. Zusatzlich ist noch zu beachten dass bei der Multiplikation mit einer
negativen Zahl die Richtung der Ungleichung umgekehrt wird. Zusammenfassend haben wir also:

x<y&ex+z<y+z
z>0=>(x<yex-z<y-z)
z<0=(x<y&ex-z>y-z)

Die Anwendung von Funktionen muss im Kontext von Ungleichungen wesentlich restriktiver gehand-
habt werden. Eine Funktion f mit der Eigenschaft

x <y =f(x)<f(y)
wird als monoton wachsend bezeichnet. Erfiillt f sogar die Eigenschaft
x<y=f(x)<f(y)

wird sie als streng monoton wachsend bezeichnet. In diesen Fillen kénnen wir f benutzen um eine
Ungleichung umzuformen. Viele Funktionen sind allerdings nicht monoton wachsend.

Beweise von Gleichungen. Gleichungen konnen auf verschiedene Arten bewiesen werden. Wir
wollen nun vier wichtige Vorgehensweisen zum Beweis einer Gleichung betrachten.

1. Umformung bekannter Gleichung: Wir konnen eine Gleichung t, = s, zeigen indem wir eine
bekannte Gleichung t; = s; voraussetzen und diese schrittweise zu t; = sp, t3 = s3,... umformen
bis wir t, = s, erreichen. Diese Vorgehensweise haben wir oben angewandt um a®> = 16 aus
4a+ 2 = 2a — 6 zu beweisen.

2. Gleichungskette: Wir konnen eine Gleichung t; = t, zeigen, indem wir Terme tp, ..., t,_1 angeben
mit t; = tp, to = t3, ..., t,—1 = t,. Ein solcher Beweis wird als Gleichungskette
h=h=-=t-1=1

geschrieben. Betrachten wir ein Beispiel in den komplexen Zahlen: Wir wissen dass (1) z2=z-%
und (2) z-z/ =Z- Z/. Daraus erhalten wir

22 =Wz 27352 20 5=207222=1a |2=(al |2
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d.h. also |z1 - 23| = (|z1|-|22|)?. Da nun der Betrag einer komplexen Zahl niemals negativ ist, kdnnen
wir die Injektivitdt der Funktion f : R>g — Rxg, x = x2, d.h. die Eigenschaft f(x) = f(y) = x =y,
ausniitzen um daraus |z - z2| = |z1| - |z2| zu erhalten.

Diese Vorgehensweise zum Beweis einer Gleichung wird meistens zur Darstellung von Beweisen
bevorzugt, da sie am elegantesten und am leichtesten zu lesen ist. Allerdings sind Beweise in dieser
Form nicht immer leicht zu finden, so dass eine hiufige Vorgehensweise darin besteht, einen in
anderer Form gefundenen Beweis in diese Form einer Gleichungskette zu bringen.

3. Ausrechnen beider Seiten: Wir kénnen eine Gleichung t = s zeigen indem wir zunichst t aus-
rechnen, dann s ausrechnen und schlieBlich beobachten, dass wir in beiden Fallen das selbe Ergebnis
erhalten haben. So kann etwa die Gleichung (n + 1)(n+ 2) = (n+ 2)? — (n + 2) gezeigt werden
durch (die beiden Gleichungsketten)

(n+1)(n+2)=n+2n+n+2=n*+3n+2
(n+22%—(n+2)=n+4n+4—n—2=n*>+3n+2

Diese Vorgehensweise bietet sich an, wenn “ausrechnen” eine verniinftige Bedeutung hat, z.B. bei
Polynomen. Im Prinzip kann man solche Beweise durch ausrechnen beider Seiten auch in die Form
einer einzigen Gleichungskette bringen, indem man die erste Gleichungskette von links nach rechts
aufschreibt und dann die zweite, von rechts nach links, daran anhangt.

Fiir die oben durch eine Gleichungskette bewiesene Aussage |z - zo| = |z1| - |z2] kdnnten man auch
einen Beweis durch Ausrechnen beider Seiten angeben indem man z; = a3 + iby und 2 = a» + iby
setzt. Dieser wiare aber deutlich langer und weniger elegant.

4. Antisymmetrie: Im Prinzip kann fiir x, y € R auch x = y gezeigt werden, indem x < y Ay < x
gezeigt wird. Dann folgt ndmlich x = y mittel Antisymmetrie. Das ist allerdings fiir Zahlen nur in
Ausnahmesituationen zweckmaBig. Bei Mengen wird diese Strategie allerdings oft angewandt: eine
Mengengleichheit A = B wird oft bewiesen, indem A C B und B C A bewiesen werden. Dafiir
haben wir in Kapitel 6 schon einige Beispiele gesehen.

Abstrakte Gleichheitsinferenz. Das Rechnen mit Gleichungen kann rein formal durchgefiihrt
werden. Es ist zwar im Normalfall niitzlich, aber nicht immer zwingend erforderlich, eine genaue
Vorstellung von den Objekten, die man behandelt, und den Transformationen, denen man sie durch
die Anwendung von Gleichungen unterwirft, zu haben. So haben wir z.B. etwas weiter oben die
Gleichung (1): |z|?> = z-Z angewandt, um die Gleichung (1'): |z1 - z2|?> = (z1- 22) - (Z1 - 22) zu zeigen.
Dafiir war es nicht notwendig zu wissen, was der Betrag einer komplexen Zahl ist, oder wie man
komplexe Zahlen multipliziert. Es war nicht einmal notwendig zu wissen, was eine komplexe Zahl
iberhaupt ist. Rein formal geschieht hier nur eine Substitution: Da ja fiir alle z die Gleichung (1)
gilt, so gilt sie insbesondere auch fiir z = z - z,. Und somit folgt (1’) aus (1).

Als ein rein formales Beispiel wollen wir nun Funktionen f, g sowie ein Objekt a betrachten fiir die
die folgenden Gleichungen gelten:

g(f(x),x)=a (1)
g(a x) =x (2)

g(x. gy, 2)) = glg(x,y) z) (3)
g(x,f(x))=a (4)

Damit konnen wir wie folgt die Gleichung g(v, a) = v zeigen:
g(v,a) =M g(v,g(f(v),v)) =) g(g(v, f(v)),v) = g(a,v) =O) v.

38



Um diesen Beweis durchzufiihren, ist es nicht notwendig, zu erkennen, dass man damit zeigt, dass
ein Rechtseinheitselement in einem Monoid mit Inversen auch ein Linkseinheitselement ist.

Das Summenzeichen. Gleichungen in den Zahlen handeln oft von Summen und Produkten. Das
Summenzeichen ) dient dazu eine Summe kompakt darzustellen. Die allgemeine Form lautet

n
D
i=1

was eine Abkiirzung ist fiir
ai+ax—+...+an

So ist z.B.
5

Zl_l+1+1+l
“~i 2 3 45

Die Variable i bezeichnet man als Laufvariable. Die Laufvariable wird durch das Summenzeichen )
gebunden, im Ergebnis kommt sie nicht mehr vor. 1 ist die untere Grenze und n ist die obere Grenze.
Diese Notation erinnert also an eine for-Schleife aus einer imperativen Programmiersprache.

Solche Summen konnen auf vielfdltige Weise umgeschrieben werden. Zunichst einmal kann die
Laufvariable, da sie ja eine gebundene Variable ist, beliebig umbenannt werden, d.h.

n n
E a; = E aj
i=1 Jj=1

Weiters konnen Summen beliebig aufgespalten werden. Das heiBt fiir k < n gilt
n k n
Ya-Yat Y
i=1 i=1 i=k+1

Auch oft niitzlich ist die Anwendung des Distributivgesetzes, das heiBt

n n
C E a; = E ca;.
i=1 i=1

Achtung: Dabei ist es natiirlich notwendig dass ¢ die Laufvariable i nicht enthilt.

Durch eine Indexverschiebung kann gelegentlich die Darstellung der Summanden a; vereinfacht
werden. Fiir k € Z gilt namlich:

n n+k
YSETD S
i=m j=m+k
Hier wird also j = i 4+ k gesetzt. So ist z.B.
4 6
d(i+2)=3+4+5+6=) |
i=1 j=3

Statt Summanden der Form i + 2 haben wir es also jetzt nur noch mit Summanden der Form j zu
tun.
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Weitere Operationszeichen. Viele weitere Operationen erlauben eine dhnliche Schreibweise wie
Summen. So wird z.B. ein Produkt als

geschrieben. Fiir Produkte gelten analoge Rechenregeln. Auch Operationen auf Mengen wie Verei-
nigung und Durchschnitt werden oft mit groBen Operationszeichen geschrieben:

s

A=A iUAU---UA,
1

Ai=AiNAN---NA,

IDE

i—1

Auch hier gelten analoge Rechenregeln.

Das Wichtigste in Kiirze.

o Gleichungen konnen auf verschiedene Arten bewiesen werden, u.a. durch 1. Umformung einer
bekannten Gleichung, 2. eine Gleichungskette, 3. Ausrechnen beider Seiten, 4. Antisymmetrie.

e Gleichungsketten sind in den meisten Fallen fiir die Darstellung eines Beweises aufgrund ihrer
leichten Lesbarkeit zu bevorzugen.

e Bei der Umformung einer bekannten Gleichung lauft die logische Implikation, wenn nichts anderes
erwahnt wird, nur vorwarts, d.h. von oben nach unten.
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Kapitel 8

Induktion

In diesem Kapitel beschaftigen wir uns mit einer der wichtigsten Beweistechniken fiir Allaussagen
iiber natiirliche Zahlen (und verwandte Strukturen): mit der Induktion. Sei P(n) ein Pradikat auf
den natiirlichen Zahlen. Dann besagt das Induktionsprinzip:

P(0) AVn (P(n) = P(n+1)) = Vk P(k), 0

in Worten: "Wenn P fiir 0 gilt und fiir jede beliebige natiirliche Zahl n die Giiltigkeit von P fiir n die
Giiltigkeit von P fiir n41 impliziert, dann gilt P fiir alle natiirlichen Zahlen." Dieses Prinzip wird als
Axiom iiber die natiirlichen Zahlen postuliert und benétigt als solches keinen Beweis im strengen Sinn.
Allerdings ist es natiirlich angemessen sich die “offensichtliche” Wahrheit eines Axioms zumindest
plausibel zu machen.

Nehmen wir dazu an, dass P(0) sowie ¥n (P(n) = P(n+1)) gilt. Wie kdnnen wir dann z.B. zeigen,
dass P(1) gilt? Ganz einfach: aus Vn (P(n) = P(n+ 1)) erhalten wir, indem wir n = 0 setzen,
P(0) = P(1). P(0) ist bereits bekannt, also folgt mittels Modus Ponens P(1). Wie kdnnen wir
zeigen, dass P(2) gilt? Wie oben erhalten wir P(1). Zusatzlich erhalten wir, indem wir n = 1 setzen,
auch P(1) = P(2). Insgesamt also: P(2) Diese Vorgehensweise ldsst sich bis zu jeder beliebigen
natiirlichen Zahl k fortsetzen. Also gilt P(k) fiir alle k € N.

Die Benutzung des Induktionsprinzips kann man sich so vorstellen wie die Benutzung einer Leiter.
Kann man die erste Sprosse einer Leiter erklimmen (d.h. also P(0)) und weiB man wie man von einer
Sprosse auf die nichste kommt (d.h. also Vn (P(n) = P(n+ 1)), dann kann man auf eine beliebig
hohe Leiter hinaufklettern.

Induktionsbeweise. Um das Induktionsprinzip in einem Beweis zu verwenden, geht man iiblicherweise
folgendermaBen vor. Zuerst wird P(0) bewiesen. Das bezeichnet man als Induktionsanfang (l1A).
Danach wird ¥n (P(n) = P(n + 1)) bewiesen. Das bezeichnet man als Induktionsschritt (IS).
Der Induktionsschritt geschieht durch Eroffnung eines neues Unterbeweises in dem, fiir ein belie-
biges n, aus der Voraussetzung P(n) die Behauptung P(n + 1) bewiesen wird. Im Kontext dieses
Unterbeweises bezeichnet man P(n) auch als Induktionsvoraussetzung (IV) und P(n + 1) als
Induktionsbehauptung (IB). SchlieBlich kann aus P(0) und Vn (P(n) = P(n+ 1)) mittels Induk-
tion(sprinzip) die Aussage Vk P(k) geschlossen werden®. In unserer Notation fiir formale Beweise
sieht ein Induktionsbeweis also wie folgt aus:

!Wie die gebundene Variable in dieser Aussage heiBt, ist, wie immer bei gebundenen Variablen, egal. Sie kénnen
also mittels Induktion genauso gut Vn P(n) schlieBen.
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X: P(0) zz: A

X +1: P(n) zz: P(n+1)
Y:V¥n (P(n) = P(n+1)) zz: A
Y + 1: Vk P(k) (aus X und Y mittels Induktion) zz: A

Wir wollen nun ein einfaches Beispiel fiir einen Induktionsbeweis betrachten wobei wir seine Struktur
und seine einzelne Elemente deutlich kennzeichnen.

.. . n - n(n+1
Satz. Fiirallenc N gilt: Y/ i = ( > ).

Beweis. Mittels Induktion:

0
1A: Zi:oz%.

i=0
. n(n+1)
1S: Ve ) =
1S: ;Z;I >
B N () +2)
7i—0 - 2

Beweis der IB aus der IV:

n+1

Z,_Z,+ (n+1) (|V)"("2+1) (n+1):”(”+1)+2(”+1)

(n+ 1)(n+2)
- 2
]

Das Prinzip der kleinsten Zahl. Wir wollen nun ein mit dem Induktionsprinzip verwandtes Prinzip
betrachten: Das Prinzip der kleinsten Zahl. Sei Q(n) ein Pradikat auf den natiirlichen Zahlen. Das
Prinzip der kleinsten Zahl ist die folgende Aussage:

Ik Q(k) = Jj (QU) A Vi < j =Q(i)), (PKZ)

in Worten: “Wenn es eine Zahl gibt, fiir die Q gilt, dann gibt es eine kleinste solche Zahl.” Dieses Prin-
zip ist offensichtlich wahr. Wir wollen nun zeigen, dass man durch logische Aquivalenzumformungen
des Prinzips der kleinsten Zahl eine starke Form der Induktion erhdlt. Das Prinzip der kleinsten Zahl
lautet:

3k Q(k) = Jj (QU) AVi < j —Q(i))
——

A B

Wir betrachten die Kontraposition =B = —A von A = B und mit den iiblichen Rechenregeln fiir
die Negation erhalten wir

Vi (=QU) V Vi <j —Q())) = Vk ~Q(k),
was weiter umgeschrieben werden kann zu

Vi (Vi <j=Q(i) = —=Q(j)) = Vk =Q(k).
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Definieren wir nun P(x) 1< —Q(x), so erhalten wir
Vj (Vi <j P(i) = P(j)) = Yk P(k). (S

Die Aussage (SI) ist eng mit dem bereits bekannten Induktionsprinzip (I) verwandt, da sie auch eine
hinreichende Voraussetzung fiir Vk P(k) bietet, namlich: Vj (Vi < j P(i) = P(j)). Man bezeichnet
die Aussage (SI) auch als starke Induktion. Diese Bezeichnung erklart sich wie folgt: Setzen wir
fir den Induktionsschritt j = n + 1, so erlaubt die starke Induktion im Beweis von P(n + 1) die
Verwendung aller Aussagen P(0), P(1),..., P(n) als Voraussetzungen, die gewdhnliche Induktion
aber nur die der Aussage P(n). Um die Rolle des Induktionsanfangs zu verstehen betrachten wir den
Fall j = 0. Dann ist zu zeigen dass Vi < 0 P(i) = P(0). Nun gibt es aber keine i € N mit i < 0.
Die linke Seite dieser Implikation ist also trivialerweise wahr, d.h. es ist bleibt P(0) ohne zusatzliche
Voraussetzung zu zeigen, was genau dem iiblichen Induktionsanfang entspricht.

Varianten des Induktionsprinzips. Es ist hdufig auch tatsidchlich notwendig, wie bei der starken
Induktion, mehr als nur den unmittelbaren Vorganger zu verwenden. Aus der starken Induktion lassen
sich entsprechende Induktionsprinzipien leicht ableiten, z.B.:

P(0) A P(1) AVn (P(n) A P(n+1) = P(n +2)) = Yk P(k).

Hier besteht die Induktionsbasis auf P(0) und P(1), der Induktionsschritt aus ¥Vn (P(n)AP(n+1) =
P(n 4+ 2)). Dieses Induktionsprinzip ist z.B. niitzlich beim Beweis von Eigenschaften von Folgen
wie der Fibonacci-Folge die durch eine Abhidngigkeit eines Folgenglieds von den zwei vorherigen
Folgengliedern definiert ist.

Manche Eigenschaften natiirlicher Zahlen sind zwar fiir 0 nicht wahr, aber ab einem gewissen m dann
firallen> m. Z.B. gilt 2" > n? fiir alle n > 4 aber nicht fiir n = 3. Auch solche Eigenschaften kann
man mit Induktion zeigen. Dazu ist es lediglich notwendig den Induktionsanfang zu verschieben. Wir
erhalten dann das einfache Induktionsprinzip

P(m)A¥n>m (P(n) = P(n+1)) = Yk > m P(k).
aus dem Prinzip der kleinsten Zahl angewandt auf das Pradikat n > m = P(n).

Diese beiden Varianten lassen sich natiirlich auch kombinieren zu einem Induktionsprinzip ab einem
gewissen m das die Verwendung mehrerer Vorganger erlaubt.

Wohlfundierte Induktion. Im obigen Beweis der logischen Aquivalenz zwischen (PKZ) und (SI)
haben wir keinerlei Eigenschaften der natiirlichen Zahlen verwendet. Der selbe Beweis kann fiir eine
beliebige Halbordnung? durchgefiihrt werden. Daraus erhalten wir wie folgt ein sehr allgemeines
Induktionsprinzip.

Sei (X, <) eine Halbordnung. Dann heiBt (X, <) wohlfundiert, falls jede nicht-leere Teilmenge
A C X ein (beziiglich <) minimales Element enthilt, d.h.

A#£D=3Ixe AVy <x:y ¢ A,

wobei y < x eine Abkiirzung fiir y < x Ay # x ist. Das Prinzip der kleinsten Zahl in den natiirlichen
Zahlen erkennen wir also als die Aussage dass (N, <) wohlfundiert ist. Ist (X, <) eine wohlfundierte
Halbordnung, so gilt also dem obigen Beweis folgend auch

Vi (Vi <j P(i) = P(j)) = Yk P(k)

2Eine Relation (X, R) heiBt Halbordnung, falls sie die folgenden Eigenschaften hat: 1. Reflexivitat, d.h. Vx x R x,
2. Antisymmetrie, d.h. VxVy (x Ry Ay R x = x = y) und 3. Transitivitédt, d.h. VxVyVz(xRy AyRz = xR z).
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fiir jedes Pradikat P(x) auf X. Wir erhalten also ein Induktionsprinzip auf (X, <) das wir wie gewohnt
zum Fiihren von Induktionsbeweisen verwenden konnen.

Wir wissen bereits, dass (N, <) eine wohlfundierte Halbordnung ist. Andere Beispiele sind (P(A), )
fiir eine endliche Menge A oder (N*, |), die Teilbarkeit in den natiirlichen Zahlen3. Induktion entlang
einer beliebigen wohlfundierten Halbordnung ist ein sehr allgemeines Prinzip das nicht nur fiir die
Mathematik zentral ist, sondern auch in diversen Anwendungen direkte Verwendung findet, z.B. bei
Beweisen der Termination von Programmen.

Ein Beispiel fiir die direkte Verwendung der Wohlfundiertheit einer Halbordnung ist der folgende
Beweis.

Satz. Jede natiirliche Zahl n > 2 hat einen Primteiler.

Beweis. (NT,]) ist eine wohlfundierte Halbordnung. Sei T, = {k € N* | k > 2,k | n}. Dann ist
0 # T, C N7, also enthilt T, ein (beziiglich |) kleinstes Element p, d.h.:

peToAVgeNT :q|p=q¢ T,

Dannist p | nund p # 1. AuBerdem ist sogar p € P. Ware namlich p ¢ P dann hatte p noch einen
Teiler g € {2,...,p— 1} der wegen g | p und p | n auch g € T, erfiillen misste. Widerspruch. [

Induktive Definitionen. Wir haben bereits einige rekursive Definitionen von Funktionen gesehen.
Auch fiir die Definition von Mengen kann man analog dazu vorgehen: dabei spricht man meist
von einer induktiven Definition einer Menge. So ist z.B. die Menge der aussagenlogischen Formeln
induktiv wie folgt definiert:

1. eine atomare Aussage p ist eine aussagenlogische Formel.
2. Falls A eine aussagenlogische Formel ist, dann ist auch —A eine aussagenlogische Formel.

3. Falls A und B aussagenlogische Formeln sind, dann sind auch AAB, AV B, A= B und
A < B aussagenlogische Formeln.

Bei Angabe einer solchen Definition ist natiirlich gemeint, dass nur solche Objekte aussagenlogische
Formeln sind. Das heiBt: Die Menge der aussagenlogischen Formeln ist die kleinste Menge, welche
die Bedingungen 1.-3. erfiillt. Man beachte, dass die Bedingungen 2. und 3. Voraussetzungen iiber
die Menge der aussagenlogischen Formeln enthalten, die Bedingung 1. aber nicht. Bedingungen wie
1. entsprechen somit dem Induktionsanfang, Bedingungen wie 2. und 3. dem Induktionsschritt.

Viele in der Mathematik und Informatik wichtigen Mengen sind induktiv definiert, z.B. die Menge
der arithmetischen Terme, die Menge der Programme in einer typischen Programmiersprache, die
von gewissen Elementen erzeugte Untergruppe einer Gruppe, die Menge der Listen, ...

Strukturelle Induktion Um eine Aussage fiir alle Elemente einer induktiv definierten Menge zu
zeigen, kann man strukturelle Induktion verwenden. Wir wollen dazu nun ein Beispiel betrachten.
Die Menge der Binarbaume wird induktiv wie folgt definiert: 1. Ein einziger Knoten

3wobei N™ = N\ {0}
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ist ein Bindrbaum. 2. Falls By und B, Binarbidume sind, dann ist auch

ein Binarbaum. So sind z.B.

/\ und

Binarbaume. Wir konnen nun eine Aussage liber alle Bindrbdume zeigen, indem wir eine strukturelle
Induktion auf der Menge der Binarbaume durchfiihren. Dabei entspricht die Bedingung 1. dem
Induktionsanfang und die Bedingung 2. dem Induktionsschritt.

Wir definieren weiters rekursiv die GroBe eine Bindrbaums durch

o =1 |Bl = |B1] + B2 +1
und die Hohe eines Bindrbaums durch

h(e) =0 h(B) = max{h(By), h(B>)} + 1.
Satz. Fiir jeden Binirbaum B gilt: |B| < 2h(B)+1 _ 1,

Beweis. Wir gehen mit struktureller Induktion iiber die Definition der Menge der Bindrbdume vor.
IA: |e|=1und2M®+t 1 =1
IS: IV |By| < 2M(BIH1 _ 1 und |By| < 2h(B2)+1 _ 1
IB: |B| < 2h(B)+1 1
Beweis der IB aus der |V:

‘B‘ — ‘Bl| + ‘82| + 1 §|V 2h(31)+1 + 2h(Bz)+1 -1
Nun ist aber h(B) = max{h(Bi) + 1, h(B2) + 1} und damit erhalten wir

B| < 2M(B) 4 2h(B) _ 1 — ph(B)+1 _ 1

Das Wichtigste in Kiirze.

e Die Induktion ist eine der wichtigsten Beweistechniken fiir Allaussagen iiber natiirliche Zahlen und
verwandte Strukturen.

e Ein typischer Induktionsbeweis besteht aus einem Induktionsanfang (IA) und einem Induktions-
schritt (IS). Der Induktionsschritt besteht darin, die Induktionsbehauptung (IB) aus der Induktions-
voraussetzung (IV) zu beweisen.
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e Es gibt verschiedene Varianten des Induktionsprinzips, und damit der Form eines Induktionsbewei-
ses. Die allgemeinste davon ist die wohlfundierte Induktion.

e Um Aussagen iiber alle Elememente einer induktiv definierten Menge, wie z.B. der Menge der

Bindrbdume, zu zeigen, verwendet man strukturelle Induktion. Diese folgt der Struktur der induktiven
Definition.
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Kapitel 9

Abstraktion

Bisher haben wir vor allem mit ganzen Zahlen gearbeitet. Eine ganze Zahl, genauso wie eine
natiirliche Zahl oder eine rationale Zahl, ist ein Objekt das durch endlich viel Information, also
z.B. durch einen endlich langen Bitstring, dargestellt werden kann. So kann jedes n € N oder m € Z
durch (sein Vorzeichen und) seine Dezimal- oder auch Binardarstellung angegeben werden, jedes
g € Q durch einen Bruch. Wenn wir gedanklich mit solchen Objekten hantieren, kénnen wir uns,
zumindest im Prinzip, vorstellen, dass diese Objekte vollstindig spezifiziert vor unserem geistigen
Auge liegen. In diesem Sinn handelt es sich dabei um konkrete Objekte. Das entspricht bis zu einem
gewissen Grad der Situation, in der man sich beim Programmieren befindet. Auch dort hat man mit
unbekannten Objekten, z.B. der Eingabe eines Programms, zu tun die, in der Regel, endlich viel
Information enthalten und damit durch einen Bitstring endlicher Lange spezifiziert werden konnen.

In der Mathematik ist man aber nicht darauf beschrankt. Weite Teile der Mathematik beschaftigen
sich mit Objekten, die nicht durch endlich viel Information vollstdndig spezifiziert werden kdnnen.
In diesem Sinn handelt es sich um abstrakte Objekte. Die durch diesen Ubergang ins Abstrakte ent-
stehenden Theorien und die sich dadurch er6ffnenden Zusammenhange sind auch fiir Anwendungen
im Konkreten, etwa in der Informatik, unverzichtbar. In diesem Kapitel werden wir die elementare
Zahlentheorie verlassen, um uns mit abstrakten Objekten zu beschaftigen. Wenn sich auch die Na-
tur der Objekte mit denen wir arbeiten dadurch verdndert, so bleibt doch eines gleich: die Art und
Weise wie wir mathematisch arbeiten. Im Abstrakten bedeuten Begriffe wie Aussage oder Pradikat
das selbe wie im Konkreten und die selben logischen Schlussfolgerungen und Beweistechniken finden
Anwendung.

Quasiordnungen. Wir beginnen mit einem konkreten Beispiel: Wir betrachten eine Menge W von
Webseiten und zeichnen einen Pfeil’ von einer Webseite x zu einer Webseite y falls ein Hyperlink
von x zu y fiihrt, siehe Abbildung 9.1. Wir kdnnen uns nun fiir die Frage interessieren, von welcher
Webseite zu welcher man alleine durch das Folgen von Hyperlinks gelangen kann. Klar dabei ist:
wenn man von x nach y gelangen kann und auch von y nach z, dann kann man auch von x nach
z gelangen. AuBerdem will man wohl sagen, dass man von x nach x gelangen kann, indem man gar
nichts tut.

Waihrend dieses Beispiel konkret und anwendungsnah ist, fiihrt eine Abstraktion und damit eine
Reduktion auf die mathematisch wesentlichen Eigenschaften schnell zum folgenden Begriff einer
Quasiordnung:

Definition. Sei A eine Menge und sei R C A x A eine Relation auf A. R heifit ...

!Eine solche Darstellung von Punkten und Pfeilen zwischen diesen Punkten bezeichnet man auch als gerichteten
Graphen.
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A
A

Abbildung 9.1: Webseiten und Hyperlinks

1. reflexiv falls Vx € A: xR x,
2. transitiv falls VxVyVz: xRy AyRz = xR z,
3. Quasiordnung falls R reflexiv und transitiv ist.

Wir erhalten also eine Quasiordnung (W, ~) indem wir x ~ y definieren als: es gibt einen Pfad
von Hyperlinks von x nach y. Diese Relation ist auch reflexiv weil der leere Pfad auch ein Pfad ist.
Diese Relation ist transitiv weil die Verkettung zweier Pfade selbst wieder ein Pfad ist.

Ein weiteres Beispiel fiir eine Quasiordnung ist die Relation (C, <) auf den komplexen Zahlen, die
durch z1 X z & |z1]| < |z2| definiert ist. Weiter unten werden wir im Detail zeigen, dass (C, %)
transitiv ist. Quasiordnungen sind also abstrakte Objekte in unserem Sinn, da sie sich im Allgemeinen
nicht durch endlich viel Information darstellen lassen.

Abstrakte Objekte in Beweisen. Wir wollen uns nun mit der Verwendung von abstrakten Objek-
ten in Beweisen beschiftigen. Zu diesem Zweck erinnern wir uns noch kurz an den folgenden Begriff
aus der elementaren Zahlentheorie:

Definition. Zwei natiirliche Zahlen a, b > 1 heiBen teilerfremd fallsVd e N: d | aAd | b= d = 1.

Was ist der Unterschied zwischen dem Begriff der Teilerfremdheit und dem Begriff der Quasiordnung?
a, b, d kénnen jeweils durch endlich viel Information spezifiziert werden. Mit (A, R) sowie x,y,z € A
ist das im Allgemeinen nicht moglich, wie man am Beispiel (C, %) sieht. Dies ist allerdings ein
rein inhaltlicher Unterschied. Auf die Ebene des logischen Umgangs mit diesen Begriffen hat er
keine Auswirkung. Um das zu illustrieren, wollen wir formale Beweise zweier Aussagen angeben und
gegeniiberstellen.
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Satz. 10 und 21 sind teilerfremd.

Beweis (formal).
1: zz: 10 und 21 sind teilerfremd
2: zzzVd e N:d |10Ad |21 = d =1 (Exp. Def.)
3: Sei d' € N, es reicht zz: d' | 10 A d’ | 21 = d' =1 (V-Behauptung)
4:d" |10, d" |21 zz: d’ =1 (Aussagenlogik)
5.d €{1,2,510},d €{1,3,7,21} zz: " (Rechnung)

Nun sind wir fertig, da die Behauptung bereits eine Voraussetzung ist. [

Satz. (C, x) ist transitiv.

Beweis (formal).
1 zz: (C, x) ist transitiv
2: 22: V21,20, 23 € C: 21 X 22 N 22 X 23 = z1 < z3 (Exp. Def.)
3: Seien z1, 25,2, € C, es reicht zz: z] X 2, \ zb < 2§ = z{ <X Z; (V-Behauptung)
4: 71 X 2y, zb % 24 zz: 7] < 2 (Aussagenlogik)
5: |z1| < |z, |z5] < |Z5] zz: |z1| < |z| (Expansion Definition)
Nun sind wir fertig, da die Behauptung bereits eine Voraussetzung ist. ]

Die Zeilen 1 bis 4 dieser beiden Beweise bestehen aus den selben Schritten. Lediglich in den letzten
beiden Zeilen 5 und 6 muss problemspezifisch argumentiert werden. Ein gewisses AusmaB problem-
spezifischer Argumentation ist natiirlich unvermeidlich, da es sich ja um zwei verschiedene Aussagen
handelt. Allerdings dndert sich am Umgang mit diesen Aussagen durch ihren Abstraktionsgrad nichts:
Die Expansion von Definitionen, die Beweisstrategie fiir V-Behauptungen, die Verwendung der Aus-
sagenlogik, usw. geschieht auf genau die selbe Art und Weise.

Produkt von Relationen Wir gehen jetzt noch einen Schritt weiter und betrachten eine Operation
auf Relationen: das Produkt zweier Relationen. Durch dieses Produkt wird also ein abstraktes Objekt
aus zwei gegebenen abstrakten Objekten erzeugt.

Definition. Seien (A1, R1) und (A2, R2) Relationen. Dann ist das Produkt von (A;, Ry) und (A2, R2)
definiert als die Relation (Al X A, R) mit (Xl, X2) R (yl,yg) = x1 Riy1 Axo Ry yo.

Beispiel. Das Produkt von (R, <) mit sich selbst ist die Relation (R x R, L) mit (x,y) L (u,v) <
x < uANy <v, siehe Abbildung 9.2.

Auch auf dieser Abstraktionsebene andert sich an der logischen Behandlung der mathematischen
Objekte nichts. Wir werden fiir einen einfachen Satz iiber das Produkt zweier beliebiger Relationen
einen formalen, einen detaillierten und einen realistischen Beweis betrachten.

Satz. Seien (A1, R1) und (Az, Ry) reflexiv. Dann ist auch deren Produkt (A1 x Az, R) reflexiv.

Man beachte, dass wir es in diesem Satz mit beliebigen Mengen A;, A sowie beliebigen Relationen
R1 und R, darauf zu tun haben, nicht mit einer fixen Menge C und einer fixen Relation < wie oben.
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Abbildung 9.2: Die Menge {(x,y) € R? | (x,y) < (2,1)}

Beweis (formal).
1: zz: (A1, R1) r. A (A2, Rp) r. = (A1 X Ao, R) r.
2: (A1, Ry) reflexiv, (A2, Ry) reflexiv. zz: (A1 X Ap, R) reflexiv (Aussagenlogik)
3:Vx1 € A1 x1 R1 x1, Vxo € As xp Ry xp zz: V(Xl,XQ) €A1 x A (X]_,X2) R (X1,X2) (EXp. Def)
4: 2z: Vx3 € A1Vxp € Ap: x1 Ry x1 A x2 Ra xo. (Exp. Def.)
5. Seien xj € A1, x5 € Ay, es reicht zz: x| Ry x{ A x) R> x} (V-Behauptung)

Nun sind wir fertig, da die Behauptung bereits eine Voraussetzung ist. [

Beweis (detailliert). Seien (A1, R1) und (A2, Rp) reflexiv, d.h. Vx; € A1 : x1 R1x3 und Vxo €
Azt xo Ra xp. Zu zeigen ist V(x1, x2) € A1 X Az (x1,x2) R (x1, x2), d.h. Vx; € A1Vxp € Ap:
x1 R1 x1 A xo Ry xo. Seien x{ € A; und x5 € Ay. Dann reicht es zu zeigen, dass x| Ry x|
und x5 R x5. Damit ist die
Behauptung bewiesen. O

Beweis (realistisch). Seien (x1, x2) € A1 X Az. Da (A1, Ry) reflexiv ist, ist x; Ry x1. Da (A2, R2)
reflexiv ist, ist xo Ry x2. Damit ist also (x1, x2) R (x1, x2). D.h. (A1 X Az, R) ist reflexiv. [

Ein Satz wie dieser, “Reflexivitat wird durch Produktbildung beibehalten”, ist ein typisches Beispiel
fiir die Art von einfachen Resultaten, die oft auf Definitionen (in diesem Fall: des Produkts zweier
Relationen) folgen. Sie sind niitzlich, um den neu definierten Begriff besser zu verstehen, vgl. dazu
auch die Fragen iiber Definitionen in Kapitel 3.

Man beachte auch, dass dieser Satz einen hohen Abstraktionsgrad hat. Er trifft auf beliebige reflexive
Relationen zu, ob diese nun als Grundmenge eine endliche Menge von Webseiten, die ganzen Zahlen
Z, die komplexen Zahlen C, oder irgendeine andere Menge haben. Dass die Mathematik in den
Naturwissenschaften und Ingenieurswissenschaften wie z.B. der Informatik einen so hohen Nutzen
hat, liegt vor allem an dieser Fahigkeit zur Abstraktion.

Aquivalenzrelationen. Eine der wichtigsten Klassen von Relationen sind Aquivalenzrelationen.
Wie der Name schon sagt, geht es dabei um eine Formalisierung des Begriffs der Aquivalenz als
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Relation. Diese Intention fiihrt zur folgenden Definition.

Definition. Sei A eine Menge und sei R C A x A eine Relation auf A. R heiBt ...

1. symmetrisch falls VxVy: xRy = y R x
2. Aquivalenzrelation falls R reflexiv, symmetrisch und transitiv ist.

Beispiel. Sei m € Z, m > 1. Dann ist die Relation “kongruent modulo m" fiir a, b € Z definiert
durch a =, b :& m| a— b. Diese Relation ist eine Aquivalenzrelation.?

Beispiel. Sei A die Menge der Studenten, die an dieser Lehrveranstaltung teilnehmen und sei, fiir
X,y € A die Relation R definiert durch: x R y genau dann wenn x und y im selben Jahr geboren
sind. Dann ist (A, R) eine Aquivalenzrelation.3

Sei (A, ~) eine Aquivalenzrelation® und sei x € A. Dann heiBt die Menge [x]. = {y € A |
x ~ y} Aquivalenzklasse (oder oft auch nur einfach Klasse) von x beziiglich ~. Die Men-
ge aller Aquivalenzklassen schreibt man als A/~ = {[x]. | x € A}. Die Aquivalenzklassen ei-
ner Aquivalenzrelation (A, ~) bilden eine Partition von A, d.h. jedes x € A liegt in genau einer
Klasse C € A/~, namlich in [x].. Auch umgekehrt gilt, dass jede Partition einer Menge einer
Aquivalenzrelation auf dieser Menge entspricht.

Eine Relation R auf einer Menge A ist eine Teilmenge R C A x A. Damit hatten wir also schon, in
Form von Relationen, mit Teilmengen einer beliebigen Menge A bzw. eben von A x A zu tun. Eine
Relation ist also, in anderen Worten ein Element der Potenzmenge von A x A, d.h. R € P(A x A).
Mit der obigen Darstellung einer Aquivalenzrelation als Partition steigen wir noch eine Stufe héher:
A/~ ist eine Menge von Mengen. Wir haben also A/~ C P(A), d.h. A/~ € P(P(A)). Aber auch
bei diesen “groBen” Mengen dndert sich an der logischen Behandlung nichts: die selben logischen
Schlussregeln, Beweistechniken, usw. werden in Beweisen verwendet.

Das Wichtigste in Kiirze.

e Wenn wir statt mit konkreten mit abstrakten mathematischen Objekten arbeiten, bleibt die logische
Ebene unverdndert. Im Abstrakten genauso wie im Konkreten gelten die selben Regeln fiir Beweise,
logische Schlussfolgerungen, Beweistechniken und den Umgang mit Definitionen.

2Zeigen Sie das als Ubungsbeispiel.

3Zeigen Sie das als Ubungsbeispiel.

*Fiir Aquivalenzrelationen (und andere symmetrische Relationen) verwendet man gerne symmetrische Zeichen wie
z.B. ~, &, =, ..
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Kapitel 10

Vermutungen

Bisher haben wir uns meist mit Aussagen beschiftigt, von denen wir bereits wussten, ob sie wahr
oder falsch sind. Aufgaben der hdufig vorkommenden Form “Zeigen Sie, dass ..." sind von dieser Art.
In Aufgaben der Form “Beweisen oder widerlegen Sie ..." ist zwar der Wahrheitswert der gegebenen
Aussage nicht bekannt, wohl aber die Aussage selbst.

Oft ist man beim mathematischen Arbeiten aber in einer Situation, wo selbst die zentralen Aussagen
nicht bekannt sind. Das ist z.B. immer dann der Fall, wenn man mit neuen Begriffen konfrontiert wird
und diese, oder deren Verhiltnis zu bestehenden Begriffen, besser verstehen will. Wir wollen dann
also nicht bestehende Aussagen beweisen, sondern wahre Aussagen selbst finden (und beweisen).
Ein wichtiges Werkzeug zur systematischen Behandlung solcher Situationen sind Vermutungen.

Eine Vermutung ist eine Aussage, deren Wahrheitswert nicht bekannt ist, von der man aber glaubt
dass sie wahr ist. Es gibt Vermutungen ganz unterschiedlicher GréBenordnungen in der Mathematik:
angefangen von einem Werkzeug zum Lésen einfacher Ubungsbeispiele bis hin zu Vermutungen die
Jahrhunderte unbewiesen waren (bzw. sind) und die Entwicklung ganzer Teilgebiete der Mathema-
tik angetrieben haben. Fiir uns sind in dieser Lehrveranstaltung vor allem erstere von Relevanz. Bei
solchen, also “kleinen”, Vermutungen besteht der hauptsidchliche Nutzen einer Vermutung in der
Prazisierung einer, zunachst vielleicht noch unklaren, mathematischen Vorstellung. Ist eine konkre-
te Vermutung, und damit eine konkrete Aussage, erst einmal aufgestellt, kann sie bewiesen oder
widerlegt werden was in jedem Fall zu einer Zunahme des Wissens iiber die Situation fiihrt.

Vermutungen werden in der Mathematik von offenen Problemen unterschieden. Ein offenes Problem
ist eine Aussage deren Wahrheitswert nicht bekannt ist. Man hat also, im Unterschied zu einer
Vermutung, bei einem offenen Problem keinen hinreichenden Grund dafiir, an einen bestimmten
Wabhrheitswert zu glauben.

Wir werden nun einige Techniken fiir den effektiven Umgang mit Vermutungen kennenlernen. Um
diese im Beispiel am Ende des Kapitels leichter zu referenzieren, nummerieren wir sie hier durch.

(1) Aufstellen einer Vermutung. Das Aufstellen einer Vermutung ist immer dann angebracht,
wenn man einen Grund dafiir hat zu glauben, dass eine Aussage wahr ist. Worin dieser Grund besteht
kann je nach Situation sehr unterschiedlich sein. Typisch sind etwa Beispiele oder Teilklassen, in denen
die Vermutung wahr ist.

So koénnte man z.B. auf Basis der folgenden Rechnungen®

4=2+26=3+38=5+3,10=7+3,...,60=29+31

oder shnlicher, wesentlich umfangreicherer, von einem Computer durchgefiihrten Rechnungen
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die Vermutung aufstellen, dass sich jede gerade Zahl > 4 als Summe zweier Primzahlen schreiben
|sst. Diese Aussage ist auch als Goldbachsche Vermutung bekannt und stammt aus dem Jahr 1742.
Bis heute ist sie weder bewiesen noch widerlegt worden.

(2) Entwicklung eines Beweisplans. Um eine (etwas groBere) Vermutung zu beweisen ist es oft
sinnvoll, einen Beweisplan zu entwickeln, d.h. eine Unterteilung der groBen Vermutung in mehrere
kleinere und wie diese zusammen den Beweis der groBen Vermutung ergeben.

Als Beispiel betrachten wir die folgende

Vermutung. Jedes n € 7 das eine Quadratzahl und eine Kubikzahl ist’> hat die Form n = Tk oder
n="7k-+1.

Hier geht es also um Quadratzahlen und Kubikzahlen modulo 7. Es ist also naheliegend, sich zunachst
einmal zu iiberlegen welche Form Quadratzahlen und, unabhingig davon, Kubikzahlen modulo 7
iberhaupt haben kdnnen. Konkret wollen wir die Aussagen

A. a€Z7:>a2EQ§Z7

B. a€Z7:>a3€K§Z7

fiir noch unbekannte @ und K zeigen. Im Zuge dieses Beweises erwarten wir konkrete @ und K zu
finden. Damit reicht es dann zu zeigen dass

C. QnK ={0,1}

Durch diesen Beweisplan haben wir also unsere Vermutung in drei kleinere Vermutungen zerlegt,
aus denen gemeinsam die urspriingliche Vermutung folgt.

(3) Revision der Vermutung. Findet man fiir eine Vermutung ein Gegenbeispiel wird die Vermu-
tung widerlegt. Manchmal muss die Vermutung dann zur Ginze verworfen werden. Ein bekanntes
Beispiel dafiir ist die folgende Vermutung: Eine Zahl der Form F, = 22" + 1 heiBt “Fermatzahl”.
Pierre de Fermat stellte fest dass Fo, ..., F4 Primzahlen sind und vermutete (im Jahr 1640) dass alle
Fn Primzahlen sind. Diese Vermutung wurde von Leonhard Euler (im Jahr 1732) widerlegt, indem
er zeigte dass 641 | Fs. Spater sind noch etliche weitere Fermatzahlen entdeckt worden, die keine
Primzahlen sind. Die urspriingliche Vermutung wurde verworfen.

Wird ein Gegenbeispiel bekannt, ist es aber auch oft moglich, mit einer revidierten Vermutung weiter-
zuarbeiten, indem etwa das Gegenbeispiel, oder eine ganze Klasse zu der es gehdrt, ausgeschlossen
wird. So kénnte man z.B. nach Betrachtung einiger Beispiele die folgende Vermutung aufstellen:
“Alle Primzahlen sind ungerade.” Diese Vermutung kann leicht durch das Gegenbeispiel 2 widerlegt
werden. Anstatt jetzt aber die Vermutung zur Ganze zu verwerfen ist es sinnvoll mit der revidierten
Vermutung “Alle Primzahlen bis auf 2 sind ungerade.” weiterzuarbeiten. Diese Aussage ist namlich
tatsachlich wahr.

(4) Abschwdchung der Vermutung. Um einen Beweis fiir eine Vermutung zu finden ist es oft
sinnvoll zunichst einmal die Vermutung zu abzuschwichen .3 Eine Abschwichung ist meistens leichter
zu beweisen. Wie diese Abschwichung aussieht hiangt von der konkreten Situation ab. Oft ist es

2wie z.B. 64 = 8% = 4°
3Eine Aussage A heiBt schwicher als eine Aussage A’ falls A’ = A gilt.
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z.B. sinnvoll, die Vermutung auf eine bestimmte, einfache Klasse von Objekten einzuschranken (z.B.
Primzahlen statt beliebigen Zahlen, Rechtecke statt beliebigen Vierecken, etc.). Oft ist es auch
sinnvoll, zusatzliche, vereinfachende, Annahmen zu treffen (z.B. die Vermutung fiir teilerfremde a, b
statt fiir beliebige a, b zu zeigen, etc.). Und umgekehrt geschieht es oft, dass man beim Versuch einen
bestimmten Beweis durchzufiihren, eine zusitzliche Annahme trifft, unter der der Beweis gelingt.
Damit ist zwar eine schwachere Vermutung bewiesen, aber dieser Beweis kann oft als erster Schritt
zu einem Beweis der gesamten Vermutung dienen.

Ahnliches trifft zu, wenn man es mit einer mathematischen Frage, und damit noch nicht einer
konkreten Vermutung, zu tun hat. Auch in diesem Fall ist es typischerweise niitzlich, damit zu
beginnen, eine eingeschrankte und dadurch einfachere Frage zu bearbeiten.

(5) Verallgemeinerung eines Beweises. Nach dem erfolgreichen Abschluss eines Beweises ist es
sinnvoll, in Form einer Riickschau eine Analyse des Beweises durchzufiihren. Vor allem ist es niitzlich
sich zu fragen, wovon das Argument wesentlich abhangt und ob es verallgemeinert werden kann. Ist
das der Fall, kann vielleicht auch die Vermutung verallgemeinert werden und man hat ein starkeres
Resultat* als urspriinglich geplant erhalten. Es ist auch niitzlich sich zu fragen, ob man den Beweis
oder die Beweisstrategie fiir andere, verwandte, Probleme benutzen kann.

Differenzen zweier Quadrate. Wir wollen nun ein etwas lidngeres Beispiel besprechen, an dem
wir die oben eingefiihrten Techniken zum Umgang mit Vermutungen illustrieren kdnnen.

Wir beschaftigen uns mit der folgenden Frage:
Welche Zahlen sind als Differenz zweier Quadrate darstellbar?

Das ist keine konkrete Aussage. Wir sind also in einer Situation wo wir erst iiberlegen miissen welche
Aussagen wir liberhaupt beweisen wollen.

Um zu einem Problem einen ersten Zugang zu finden, ist es oft niitzlich, einige Beispiele zu be-
trachten. Das kann auch als Anwendung von Technik (4) gesehen werden: statt zu fragen: welche
Zahlen sind als Differenz zweier Quadrate darstellbar? fragen wir zunachst fiir ein konkretes n: ist n
als Differenz zweier Quadrate darstellbar? Wir beobachten also z.B.:

1=1%2-0?
3=2%2_12
5=13%_-2°
7 =42 32

An dieser Stelle kdnnte man einmal, etwas naiv, die folgende Vermutung aufstellen.
Definition. Sei D = {n>1|3k,1>0:n=k%—[?}.

Vermutung 1. Sei n > 1. Dann ist n € D genau dann wenn n ungerade ist.

Der nachste Schritt besteht darin, einen Beweisplan zu entwickeln. Dazu sehen wir uns noch einmal
die obigen Rechnungen an und versuchen sie zu verallgemeinern. Die linken Seiten 1, 3, 5,7 kdnnen
geschrieben werden als 2k + 1. Nun betrachten wir z.B. die Zeile 3 = 22 — 12. In dieser Zeile ist
k = 1. Damit kann die rechte Seite als (k + 1)? — k? geschrieben werden. Unser Beweisplan besteht
also darin 1. die Aussage

*Eine Aussage A heiBt stirker als eine Aussage A’ falls A = A’ giiltig ist. A ist also stirker als A’ genau dann wenn
A’ schwicher als A ist.
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A. Fiir alle k > 0: (k+1)2 — k2 = 2k + 1.

und 2. aus A dann Vermutung 1 zu zeigen.

A kann auch tatséachlich leicht durch die folgende Rechnung bewiesen werden:
(k+1)2 — k> =k?+2k+1—k* =2k + 1.

Wie sieht es nun mit dem Beweis von Vermutung 1 aus A aus? Klar ist: Falls n ungerade ist, dann
kann es als n = 2k + 1 und damit als n = 2k + 1 = (k 4+ 1)? — k? geschrieben werden. Damit ist
gezeigt, dass alle ungeraden n > 1 in D sind. Wie sieht es mit der Inklusion in die andere Richtung
aus? Ist jedes n € D ungerade? Fiir alle Differenzen benachbarter Quadrate ist die Antwort ja, da
ja (k+ 1)2 — k? ungerade ist. Wie sieht es aus, wenn die beiden Quadrate nicht benachbart sind?
Wir betrachten das Beispiel 32 — 12 = 8 und stellen fest, dass 8 keine ungerade Zahl ist. Wir haben
also ein Gegenbeispiel zu Vermutung 1 gefunden.

Wir miissen also die Vermutung auf Basis des Gegenbeispiels und des bekannten Beweises revidieren:
Wir haben nur mit Quadraten von Zahlen mit Differenz a = 1 gearbeitet. Fiir diese hat unser
Beweisplan funktioniert. Dieser Parameter a scheint also fiir das Problem eine zentrale Rolle zu
spielen. Wir fiihren also die folgende Notation ein®:

Definition. Fiir a> 1sei D,={n>1|3k>0:n=(k+a)®— k?}.

Dann ist D = J,~; D, und unser Plan fiir die Lésung der urspriinglichen Frage der Charakterisie-
rung von D besteht jetzt darin, zunichst alle D, zu charakterisieren und diese Ergebeniss dann zu
einer Charakterisierung von D zusammenzufiihren. Wir kdnnen nun prazisieren, wofiir unser Beweis
funktioniert:

Satz. Sei n > 1. Dann ist n € D1 genau dann wenn n ungerade ist.

Dieser Satz folgt nun unmittelbar aus A, da Dy = {(k +1)> — k? | k > 0} =" {2k + 1| k > 0}.
Wir haben also jetzt eine schéne Charakterisierung der Menge D1, nicht aber von ganz D.

Wir betrachten nun die ndchste Vereinfachung des urspriinglichen Problems: Was ist D, 7 Wir fiihren
wieder Rechnungen durch:

22 _0%=4
3?_-12=38
42— 22 =12
52 -32=16

Das legt die Vermutung nahe, dass D, genau aus den Vielfachen von 4 (die > 0 sind) besteht,
genauer:

Vermutung 2. D, = {4q | g > 1}.

Wie oben entwickeln wir einen Beweisplan der auf einer Verallgemeinerung von Rechnungen basiert.
Die linke Seite wird als (k +2)? — k? geschrieben, die rechte Seite als 4(k + 1). Damit besteht unser
Beweisplan daraus, 1. die Aussage

B. Fiir alle k > 0: (k +2)% — k2 = 4(k + 1).

®Die Verwendung von Definitionen zur Einfiihrung neuer Notationen und Begriffe ist beim Arbeiten mit Beweispldnen
oft niitzlich.
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zu beweisen und 2. aus B dann Vermutung 2. B kann leicht durch die Rechnung
(k4+2)2 —k>=Kk>+4k+4— k> =4k +4=4(k+1).
gezeigt werden. Daraus folgt auch Vermutung 2 da ja
Dy ={(k+2)?—k>|k>0} =B {4(k+1)| k>0}={4q]| qg>1}.

Damit ist also Vermutung 2 bewiesen.

Wir haben das Problem jetzt fiir D; und D, gel6st und betrachten als niachstes D3, also wiederum
eine Vereinfachung des allgemeinen Problems. Fiir a = 3 ergibt sich die Rechnung

n=(k+3)*—k?>=k>+6k+9— k* = 6k +9 = 3(2k + 3).

Nun ist sowohl 3 als auch 2k + 3 ungerade, also ist auch n ungerade. Wir haben also gezeigt, dass
alle n € D3 ungerade sind.

Uberlegen wir uns nun, als Nachbetrachtung, wovon dieses Argument abhingt. n = (k + a)? — k?
wird, unabhingig von a, immer zu n = 2ak + a®. Im zweiten Schritt der Rechnung haben wir a
herausgehoben, also n = a(2k + a) erhalten. Danach haben wir festgestellt: “a = 3 ist ungerade.
Damit ist auch 2k + a ungerade und damit auch n = a(2k + a)." Wir sehen also: dieses Argument
funktioniert fiir beliebige ungerade a, nicht nur fiir a = 3. Durch diese Beobachtung haben wir den
obigen Beweis verallgemeinert und daraus die folgende Aussage erhalten:

Satz. Falls a ungerade ist und n € D,, dann ist auch n ungerade.

Damit ist das Problem fiir a=1,2,3,5,7,9, ... gelost. Uns fehlen also noch die geraden a > 4. Sei
also a = 2b. Dann hat die fiir dieses Problem zentrale Rechnung die Form

n= (k +2b)*> — k? = k? 4 4bk + 4b® — k* = 4bk + 4b> = 4(bk + b?).
Damit ist n ein Vielfaches von 4. Wir haben also bewiesen:

Satz. Falls a gerade ist und n € D,, dann ist n ein Vielfaches von 4.

Damit haben wir nun alle Moglichkeiten fiir a behandelt. Da D = | J,-; D, erhalten wir:

Satz. Sein> 1. Dann ist n € D genau dann wenn n ungerade oder ein Vielfaches von 4 ist.

Dieser Satz ist durch die obigen Uberlegungen vollstindig bewiesen. Allerdings ist dieser Beweis
nicht gut lesbar, da er etliche Spezialfille und Umwege enthilt. Das ist typisch: oft ist das Format,
in dem man einen Beweis findet nicht gut dazu geeignet, den Beweis zu prasentieren. Dem kann
Abhilfe geschaffen werden, indem man eine Schonschrift des Beweises anfertigt. Wir tun das im
Folgenden auf Basis der obigen Uberlegungen:

Beweis. Fiir die Implikation von links nach rechts sei n € D. Dann existieren a > 1, k > 0 so dass
n=(k+a)? — k? = k? + 2ak + a®> — k? = 2ak + a*>. Wir machen eine Fallunterscheidung: Falls a
gerade ist, d.h. a = 2b fiir ein b > 1, ist n = 4bk + 4b®> = 4(bk + b?) ein Vielfaches von 4. Falls
n ungerade ist, d.h. a = 2b+ 1 fiir ein b > 0, dann ist n = (2b+ 1)(2(k + b) + 1) ungerade weil
sowohl 2b + 1, als auch 2(k + b) + 1 ungerade sind.

Fiir die Implikation von rechts nach links sei zundchst n ungerade, d.h. n = 2k + 1 fiir ein kK > 0.
Dannist n =2k +1 = (k+1)2—k? € D. Sei n nun ein Vielfaches von 4, d.h. n = 4q fiir ein g > 1.
Dannist (q+1)2-(¢g—1)2=¢*>+29+1—(¢°> —29+1)=4g=ncD. O
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Das Wichtigste in Kiirze.

e Eine Vermutung ist eine Aussage, deren Wahrheitswert nicht bekannt ist, von der man aber glaubt,
dass sie wahr ist.

e In einer unklaren mathematischen Situation besteht der entscheidene Beitrag einer Vermutung
darin, eine (mathematisch klare) Aussage zur Verfiigung zu stellen, die bewiesen oder widerlegt
werden kann. In beiden Fallen erhilt man neue Erkenntnisse iiber die Situation.

e Durch Anwendung verschiedener Standardtechniken im Umgang mit Vermutungen kann eine un-
klare mathematiche Situation systematisch verstanden werden.
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