
A criterion for showing the non-existence of

straightforward induction proofs

Elijah Schulzki
TU Wien, Austria

e12207791@student.tuwien.ac.at

June 2025

1 Introduction

In the automation of inductive proving, an important question is whether a
given correct statement can be proven by induction on itself. Lundstedt gave
instances of formulas that do not allow such a straightforward induction proof
in [1].

The aim of this seminar paper is to unify the proofs by Lundstedt into a
general criterion, that can be applied to statements of arithmetic as well as
statements concerning certain inductive data types.

We will first give the definitions necessary for the formalization of the above
question in the context of inductive data types, then we will state and prove the
criterion, and finally we will apply it to the examples provided by Lundstedt as
well as examples using the inductive data type of lists.

2 Preliminaries

We will firstly make precise, what me mean by a proof of a formula by induction
on itself:

Definition 2.1 Let L be a language with 0, s ∈ L, T an L-theory and φ(x) an
L-formula. ∀xφ(x) has a straightforward induction proof in T iff

T, φ(0) ∧ ∀x(φ(x) → φ(s(x) ⊢ ∀xφ(x)

We will work with theories of a form similar to T = ThL′(N) ∪ {D0
f , D

s
f}.

Here, L = L′ ∪ {f} and all c, g, R ∈ L′ have fixed interpretations cN, gN, RN.
ThL′(N) = {ψ L′-formula : N, c 7→ cN, g 7→ gN, R 7→ RN, · · · ⊨ ψ} andD0

f , D
s
f are

the base and step case of a recursive definition of f . For example, D0
f ≡ f(0) = 0

andDs
f ≡ f(s(x)) = f(x)+s(x) make up a recursive definition of f(n) =

∑n
i=0 i.

1

We now introduce a more general context, where recursive definition and
proofs by induction are also possible: inductive data types.

We work in a many-sorted first-order logic with sorts s1, . . . , sn. A definition
of an inductive data type D on top of s1, . . . , sn is given by a finite set of
constructors c1, . . . , ck where, for i = 1, . . . , k, ci is a function symbol of type
Dni × τni+1 × · · · × τmi

→ D with τni+1, . . . , τmi
∈ {s1, . . . , sn}. In reference

to a data type, ni will always denote the number of arguments of type D of
the constructor ci and mi will always denote the total number of arguments. In
order for such a set of constructors to be a valid definition of an inductive data
type, there has to be an i ∈ {1, . . . , k} with ni = 0. All ci with ni = 0 are called
base constructors, all others are called step constructors.

The natural numbers form the inductive data type Nat with constructors
0 : Nat0 → Nat and s : Nat1 → Nat. Another example is the inductive data
type List(s) of lists with elements from a sort s, which is discussed in Chapter
5.

Like the natural numbers, every inductive data type has a standard model.
For D an inductive data type defined on top of sorts s1, . . . , sn with construc-
tors c1, . . . , ck and A1, . . . , An interpretations of sorts, the set of constructor
terms of D with respect to A1, . . . , An is written as TD(A1, . . . , An) an is de-
fined as the smallest set X such that for all i ≤ k, for all a1, . . . , ani

∈ X and
aj ∈Ml(j) for ni+1 ≤ j ≤ mj and l(j) such that τ ji = sl(j), ci(a1, . . . , amj

) ∈ X.

Definition 2.2 Let s1, . . . , sn be sorts such that sl+1, . . . , sn are inductive data
types with si defined on top of s1, . . . , si−1. Let A1, . . . , Al be sets. Then the
standard model S of s1, . . . , sn with respect to A1, . . . , Al is defined by

sSi =

{
Ai for i = 1, . . . , l

Ts
i (s

S
1 , . . . , s

S
n−1) for i = l + 1, . . . , n

and cS = c for all constructors c.

Now we move on to recursive definitions:

Definition 2.3 Let D be an inductive data type defined over sorts s1, . . . , sn by
constructors c1, . . . , ck, let f : D× σ1 × · · · × σl → σ̃ be a function symbol with
σ1, . . . , σl, σ̃ ∈ {s1, . . . , sn, D}, f /∈ L. Then a primitive recursive definition of
f consists of equations Dc1

f , . . . , D
ck
f with

f(ci(x1, . . . , xmi
), z̄) = ti(x1, . . . , xmi

, f(x1, ·), . . . , f(xni
, ·), z̄) (Dci

f)

where t1, . . . , tk are L-terms and in every f(xj , ·), the · is replaced by the right
number of L-terms t(x1, . . . , xmi , z̄).

For our result, we will also consider relations as well as mutual recursion:

Definition 2.4 Let fi : D × σ1 × · · · × σl → σ̃i be new function symbols and
Ri : D × σ1 × · · · × σl new relation symbols for i = 1, . . . n.

2

For A1, . . . , Ani ⊆ {1, . . . , n} set

φ(A1, . . . , Ani
) ≡

ni∧
j=1

(∧
s∈Aj

Rs(xj , z̄) ∧
∧

s∈Ac
j

¬Rs(xj , z̄)

)

Then a primitive recursive definition of the family {f1, . . . , fn, R1, . . . , Rn} con-
sists of a family of L-terms {ti,r,Ā : i ≤ k, r ≤ n,A1, . . . , Ani

⊆ {1, . . . , n}} and
L-formulas {ψi,r,Ā : i ≤ k, r ≤ n,A1, . . . , Ani

⊆ {1, . . . , n}} with

fr(ci(x1, . . . , xmi
), z̄) = ti,r,A(x1, . . . , xmi

, f1(x1, ·), . . . fl(xni
, ·), z̄) (Dci

fr
(Ā))

Rr(ci(x1, . . . , xmi
), z̄) ↔ ψi,r,A(x1, . . . , xmi

, f1(x1, ·), . . . fl(xni
, ·), z̄) (Dci

Rr
(Ā))

where all · are replaced by the right number of L-terms t(x1, . . . , xmi
, z̄).

We also define
Dci

fr
≡

∧
A1,...,Ani

⊆{1...l}

(
φ(Ā) → Dci

fr
(Ā)

)
Dci

Rr
≡

∧
A1,...,Ani

⊆{1...l}

(
φ(Ā) → Dci

Rr
(Ā)

)
Like in the natural numbers, for every primitively recursively defined family

{f1, . . . , fl, R1, . . . , Rl}, there exist unique interpretations fS1 , . . . , fSl , RS
1 , . . . , R

S
l

on the standard model S.

The following recursively defined function will play an important role in our
result:

Definition 2.5 Let D be an inductive data type with constructors c1, . . . , ck.
The length function | · | : D → N is given by

|ci(x1, . . . xmi
)| =

ni∑
j=1

|xj |+ 1 (Dci
|·|)

In order to generalize the notion of straightforward induction, we need in-
duction axioms for inductive data types:

Definition 2.6 Let D be an inductive data type with constuctors c1, . . . , ck,
L ⊇ {c1, . . . , ck} a language and φ(x) an L-formula. We define:

Icix φ(x) ≡ ∀x1 · · · ∀xmi
:

(ni∧
j=1

φ(xj)

)
→ φ(ci(x1, . . . , xmi

))

The induction axiom is defined as IDx φ(x) ≡
(∧k

i=1 I
ci
x φ(x)

)
→ ∀x : φ(x).

3

Again, like in the natural numbers, for every L-formula and any M that is
an expansion of S to L, M ⊨ IDx φ(x).

Definition 2.7 Let D be an inductive data type with constructors c1, . . . , ck,
L ⊇ {c1, . . . , ck} a language, T an L-theory and φ(x) an L-formula. ∀xφ(x) has
a straightforward induction proof in T iff

T, IDx φ(x) ⊢ ∀xφ(x)

For our result, we also need the notion of the arguments of a function or
relation in recursion position that appear in a formula.

Definition 2.8 Let L be a language, f ∈ L. We define recursively:

Argf (c) = Argf (x) = ∅

Argf (g(t1 . . . tk)) = Argf (t1) ∪ · · · ∪Argf (tk)

Argf (f(t1 . . . tk)) = Argf (t1) ∪ · · · ∪Argf (tk) ∪ {t1}

Argf (R(t1 . . . tk)) = Argf (t1) ∪ · · · ∪Argf (tk)

Argf (¬φ) = Argf (∀xφ) = Argf (∃xφ) = Argf (φ)

Argf (φ ∧ ψ) = Argf (φ ∨ ψ) = Argf (φ) ∪Argf (ψ)

For a set of functions A we define ArgA(φ) =
⋃

f∈A Argf (φ).

Definition 2.9 Let L be a language, R ∈ L. We define recursively:

ArgR(S(t1 . . . tk)) = ∅

ArgR(R(t1 . . . tk)) = {t1}

ArgR(¬φ) = ArgR(∀xφ) = ArgR(∃xφ) = ArgR(φ)

ArgR(φ ∧ ψ) = ArgR(φ ∨ ψ) = ArgR(φ) ∪ArgR(ψ)

For a set of relations A we define ArgA(φ) =
⋃

R∈A ArgR(φ).

3 The main result

Definition 3.1 We call an L ∪ {f1, . . . , fl, R1, . . . , Rl}-formula φ suitable iff x
is the only free variable in φ, x is bound nowhere in the formula and x is the
only variable in t for all t ∈ Arg{f1...fl}(φ) ∪Arg{R1...Rl}(φ).

Definition 3.2 LetD be an inductive data type defined by constructors c1, . . . , ck
with n1, . . . , nk ∈ {0, 1}, L ⊇ {c1, . . . , ck} a language, S ′ an expansion of S to L.
Let f1, . . . , fl, R1, . . . , Rl be a primitive recursively defined family of new func-
tion and relation symbols, φ(x) a suitable L ∪ {f1, . . . , fl, R1, . . . , Rl}-formula.
φ satisfies the Lundstedt criterion for lower bound b and counterexample step

4

constructor cj , iff for every m ∈ N there exist α1, . . . , αmj ∈ S, β1, . . . , βl and
η1, . . . , ηl interpretations of the new function and relation symbols, such that
with Ŝm = (S ′, f̄ 7→ β̄, R̄ 7→ η̄):
1. For all r ≤ l, i ≤ k indices of step constructors and all δ1, . . . , δmi

with
|δ1| > b : Ŝm ⊨ ∀z̄Dci

fr
(δ̄, z̄) ∧ ∀z̄Dci

Rr
(δ̄, z̄)

2. Ŝm ⊨ φ(α1) ∧ ¬φ(cj(ᾱ))
3. For all t ∈ Arg{f1...fl}(φ) ∪Arg{R1...Rl}(φ): |t

Ŝm(α1)|, |tŜm(cj(ᾱ))| ≥ m

Theorem 3.3 LetD be an inductive data type defined by constructors c1, . . . , ck
with n1, . . . , nk ∈ {0, 1}, L ⊇ {c1, . . . , ck} a language, S ′ an expansion of S to L.
Let f1, . . . , fl, R1, . . . , Rl be a primitive recursively defined family of new func-
tion and relation symbols, φ(x) a suitable L ∪ {f1, . . . , fl, R1, . . . , Rl}-formula.
If there exist a lower bound b ∈ N and a step constructor cj , such that φ satisfies
the Lundstedt criterion for b and cj , then ∀xφ(x) does not have a straightfor-
ward induction proof in ThL(S ′) ∪ {Dci

fp
, Dci

Rp
: i ≤ k, p ≤ l}.

For the examples provided by Lundstedt, the following simplified formula-
tion for functions on the natural numbers will suffice:

Corollary 3.4 Let L ⊇ {0, s} be a language, with every symbol of L having a
fixed interpretation in N. Let f1, . . . , fl : Nk → N be new function symbols,

fi(0, z̄) = t0i (z̄) (D0
fi
)

fi(s(x), z̄) = tsi (x, f1(x), . . . , fl(x), z̄) (Ds
fi
)

with t01, . . . , t
0
l , t

s
1, . . . , t

s
l L-terms and φ(x) a suitable L ∪ {f1, . . . , fl}-formula.

Suppose for every m ∈ N there exists an α ∈ N and β1, . . . , βl : Nk → N, such
that:
1. βi(n+ 1, z̄) = (tsi)

N(n, β1(n, ·), . . . , βl(n, ·), z̄) for all n, z2, . . . , zk ∈ N
2. N, f̄ 7→ β̄ ⊨ φ(α) ∧ ¬φ(α+ 1)
3. tN,f̄ 7→β̄(α), tN,f̄ 7→β̄(α+ 1) ≥ m for all t ∈ Arg{f1...fl}(φ)
Then ∀xφ(x) does not have a straightforward induction proof in ThL(N) ∪
{D0

f1
, . . . , D0

fl
, Ds

f1
, . . . , Ds

fl
}.

In order to prove the theorem, we first need two lemmas.

Lemma 3.5 Let D be an inductive data type defined by constructors c1, . . . , ck
with n1, . . . , nk ∈ {0, 1}. Then for every n ∈ N, there exists a {c1, . . . , ck}-
formula ψn(x), such that for all α ∈ S : S ⊨ ψn(α) iff |α| = n.
∀x̄ : ¬ψ1(ci(x̄)) and ∀x̄ : ¬ψn(x1) → ¬ψn+1(ci(x̄)) are elements of Th{c1...ck}(S)
for all i ≤ k indices of step constructors and all n ∈ N.

Proof. We define ψn recursively:

ψ1(x) ≡
∨

i≤k index of
base constuctor

∃ȳ : x = ci(ȳ)

5

ψn+1 ≡
∨

i≤k index of
step constuctor

∃ȳ : (x = ci(ȳ) ∧ ψn(y1))

By induction on n, we directly get that S ⊨ ψn(α) implies |α| = n. The other
direction follows, because every element in S is reachable by a constructor.

For every step constructor ci and all ᾱ ∈ S |ci(ᾱ)| = |α1| + 1 ≥ 2, so
S ⊨ ¬ψ1(ci(ᾱ)).

If |ci(ᾱ)| = n + 1, then we would get |α1| = n, so S ⊨ ¬ψn(α1) →
¬ψn+1(ci(ᾱ)).

□

Lemma 3.6 Let L be a language, a1, . . . , ak ∈ L constant symbols, f1, . . . , fl,
R1, . . . , Rl function and relation symbols and φ(x̄) an L∪{f1, . . . , fl, R1, . . . , Rl}-
formula.
Let M and N be models in L ∪ {f1, . . . , fl, R1, . . . , Rl} with the same do-
main M and matching interpretations cM = cN , fM = fN , RM = RN for
all c, f,R ∈ L. Let A ⊆ M be such that fM1

∣∣
A
= fN1

∣∣
A
, . . . , fMl

∣∣
A
= fNl

∣∣
A
,

RM
1

∣∣
A
= RN

1

∣∣
A
, . . . , RM

l

∣∣
A
= RN

l

∣∣
A
.

Suppose for every t ∈ Arg{f1...fl}(φ) ∪ Arg{R1...Rl}(φ) : tM(āM) ∈ A. Then
M ⊨ φ(ā) iff N ⊨ φ(ā).

Proof. We proceed by induction on the subterms and subformulas of φ.
For terms t1, t2 and formulas ψ1, ψ2, define:

t1 ≤′
1 t2 ⇔ ∃f∃u1 · · · ∃uk : t2 = f(u1, . . . , uk) ∧ (t1 = u1 ∨ · · · ∨ t1 = uk)

ψ1 ≤′
2 ψ2 ⇔

(ψ2 = ¬ψ1 ∨ ψ2 = ∀x : ψ1 ∨ ψ2 = ∃x : ψ1)∨
∃ψ3 : ((ψ2 = ψ1 ∧ ψ3) ∨ (ψ2 = ψ3 ∧ ψ1))∨
∃ψ3 : ((ψ2 = ψ1 ∨ ψ3) ∨ (ψ2 = ψ3 ∨ ψ1))∨
∃ψ3 : ((ψ2 = ψ1 → ψ3) ∨ (ψ2 = ψ3 → ψ1))

≤1,≤2 are the transitive closures of ≤′
1,≤′

2 and for a term t and a formula
ψ.

t ≤3 ψ ⇔ ∃R∃u1 · · · ∃uk : (R(u1, . . . , uk) ≤2 ψ) ∧ (t ≤1 u1 ∨ · · · ∨ t ≤1 uk)

Claim 1: For all t ≤3 φ(ā) : t
M = tN .

For t = c ∈ L we demanded cM = cN . For t = f(u1, . . . , uk), we get
u1, . . . , uk ≤1 t ≤3 φ(ā), so u1, . . . , uk ≤3 φ(ā). By the induction hypothesis,
uM1 = uN1 , . . . , u

M
k = uNk . If f ∈ L, then fM = fN , so tM = tN . If f = fr

for r ≤ l, we know u1 ∈ Argf (t) ⊆ Argf (φ(ā)) because t ≤3 φ(ā). Therefore

uM1 ∈ A, so tM = fM(u1, . . . , uk) = fN (u1, . . . , uk) = tN . □
Claim 2: For all ψ ≤2 φ(ā) and all d1, . . . , dk : M ⊨ ψ(d̄) iff N ⊨ ψ(d̄).

For ψ = R(t1, . . . , tk) ψ ≤2 φ(ā) implies t1 . . . , tk ≤3 φ(ā), so tM1 =
tN1 ,. . . , t

M
k = tNk . If R ∈ L, then RM = RN , so for all d1, . . . , dk : M ⊨ ψ(d̄)

iff N ⊨ ψ(d̄). If R = Rr for r ≤ l it follows again, that t1 ∈ ArgR(φ(ā)), so

6

again for all d1, . . . , dk : M ⊨ ψ(d̄) iff N ⊨ ψ(d̄). For ψ = ¬ψ1,∀x : ψ1,∃x :
ψ1, ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1 → ψ2, the induction step is a standard result. □

Because φ(ā) ≤2 φ(ā) and φ(ā) has no free variables, we get M ⊨ φ(ā) iff
N ⊨ φ(ā).

□

Proof of Theorem 3.3 With the formulas {ψn : n ∈ N} we can reformulate
points 1-3 to state Ŝm ⊨ Γ∪∆m with Γ = ThL(S)∪{φ(a1),¬φ(cj(a1, . . . , amj

))}∪
{∀x̄ :

(∧b
p=1 ¬ψp(x1)

)
→

(
Dci

fr
(x̄) ∧Dci

Rr
(x̄)

)
: r ≤ l, i index of step constructor}

and ∆m = {¬ψp(t(a1)) ∧ ¬ψq(t(cj(a1, . . . , amj))) : p < m, t ∈ Arg{f1...fl}(φ) ∪
Arg{R1...Rl}(φ)}.

Then for ∆∞ =
⋃

m∈N ∆m and Γ0 ⊆ Γ ∪∆∞ finite, there exists an m with

Γ0 ⊆ Γ ∪ ∆m and therefore Ŝm ⊨ Γ0. So, by the compactness theorem, there
exists a model M with M ⊨ Γ ∪∆∞.

Let A = {δ ∈ M : δ has sort D, for all p ∈ N : M ⊨ ¬ψp(δ)}, then for
all t ∈ Arg{f1...fl}(φ) ∪ Arg{R1...Rl}(φ): tM(aM1), tM(cMj (aM1 , . . . , aMmj

) ∈ A
because M ⊨ ∆∞.

We define the model N by N|L∪{a1,...,amj
} = M|L∪{a1,...,amj

}. For r ≤ l,

we notice that for all δ1, ζ̄ ∈ M with M ⊨ ψ1(δ1), we get a unique value for
fr(δ1, ζ̄) from one of the Dci

fr
. Using all these values, we get a unique value for

fr(δ2, ζ̄) with M ⊨ ψ2(δ2) and so on, ending up with a recursively defined f stdr

and analogously with Rstd
r . We define:

fNr (δ, ζ̄) =

{
fMr (δ, ζ̄) if δ ∈ A

f stdr (δ, ζ̄) else

RN
r (δ, ζ̄) ≡

{
RM

r (δ, ζ̄) if δ ∈ A

Rstd
r (δ, ζ̄) else

By Lemma 3.6 M ⊨ φ(a1) iff N ⊨ φ(a1) and M ⊨ φ(cj(ā)) iff N ⊨ φ(cj(ā)).
So N ⊨ ¬Icjx φ(x) and therefore N ⊨ IDx φ(x),¬∀x : φ(x).

We also get N ⊨ ThL(S) since N|L = M|L.
Finally, we show for all i ≤ k and r ≤ l N ⊨ Dci

fr
, Dci

Rr
: Let δ1, . . . , δmi

∈ N .

If ∀p ∈ N : N ⊨ ¬ψp(δ1), then by Lemma 3.5 ∀p ∈ N : N ⊨ ¬ψp(ci(δ̄)), be-
causeN ⊨ Th{c1...ck}(S), so δ1, ci(δ̄) ∈ A. Arg{f1...fl}(D

ci
fr
)∪Arg{R1...Rl}(D

ci
fr
) =

Arg{f1...fl}(D
ci
Rr

) ∪ Arg{R1...Rl}(D
ci
Rr

) = {x1, ci(x̄)}, so by Lemma 3.6 M ⊨
Dci

fr
(δ̄) iff N ⊨ Dci

fr
(δ̄) and M ⊨ Dci

Rr
(δ̄) iff N ⊨ Dci

Rr
(δ̄).

Else, either δ1 is not of type D, in this case ci is a base constructor and M ⊨
ψ1(ci(δ̄)), or there is a p ∈ N with M ⊨ ψp(δ1), in this case M ⊨ ψp+1(ci(δ̄)).
In both cases, δ1 and ci(δ̄) fall in the recursively defined part of fN and RN ,
so they fulfill Dci

fr
, Dci

Rr
.

In conclusion, we have N ⊨ ThL(S)∪{Dci
fp
, Dci

Rp
: i ≤ k, p ≤ l}, N ⊨ IDx φ(x)

and N ⊭ ∀x : φ(x). So ThL(S) ∪ {Dci
fp
, Dci

Rp
: i ≤ k, p ≤ l}, IDx φ(x) ⊬ ∀x : φ(x)

7

and therefore ∀x : φ(x) does not have a straightforward induction proof in
ThL(S) ∪ {Dci

fp
, Dci

Rp
: i ≤ k, p ≤ l}.

□

4 Examples by Lundstedt

We will now apply Corollary 3.4 to the three examples, which Lundstedt exam-
ined in his paper. For these examples, the background language does not play a
big role in the proofs, one could even consider a language, that includes function
and relation symbols for every f : Nk → N and R ⊆ Nk. We will work in the
language L = {0, s,+, ·, <, exp, !} with exp(n,m) = nm and n! = n(n−1) · · · 2·1.

Example 4.1 ∀n∃k :
∑n−1

i=0 (2i + 1) = k2 does not have a straightforward
induction proof.

To see this, we define a new function f : N → N by

f(0) = 0 (D0
f)

f(s(x)) = f(x) + 2x+ 1 (Ds
f)

and φ(x) ≡ ∃k : f(x) = k · k. So, Argf (φ) = {x}. (A more formally correct
but less readable version of Ds

f would be f(s(x)) = (f(x) + (s(s(0)) · x))+ s(0),
this translation is left to the reader from now on.)

For m ∈ N take α = m and β : n 7→ n2 + 2m+ 1. Then
1. β(n+ 1) = (n+ 1)2 + 2m+ 1 = n2 + 2m+ 1 + 2n+ 1 = β(n) + 2n+ 1.
2. β(m) = m2 + 2m+ 1 = (m+ 1)2, so N, f 7→ β ⊨ φ(α).
But (m+1)2 = m2+2m+1 < β(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2,
so there is no k with β(m+ 1) = k2, so N, f 7→ β ⊨ ¬φ(s(α)).
3. Finally, α, s(α) ≥ m holds by definition.

So, by Corollary 3.4 ∀x∃k : f(x) = k · k does not have a straightfor-
ward induction proof in ThL(N) ∪ {D0

f , D
s
f}. However, the stronger statement

∀n :
∑n−1

i=0 (2i+ 1) = n2 does have a proof by straightforward induction.

Example 4.2
∑∞

i=1
1
i2 = π2

6 is a famous result by Euler and it is easy to check
π2

6 < 2. However, ∀n :
∑n

i=1
1
i2 < 2 does not have a straightforward induction

proof.
In order to avoid talking about rational numbers, we will work with the

equivalent statement ∀n : (n!)2
∑n

i=1
1
i2 < 2(n!)2. The right and left side of this

inequality can be recursively defined as follows:

f(0) = 0 (D0
f)

g(0) = s(0) (D0
g)

f(s(x)) = (x+ 1)2f(x) + g(x) (Ds
f)

8

g(s(x)) = (x+ 1)2g(x) (Ds
g)

To obtain our original statement, we set φ(x) ≡ f(x) < 2 · g(x). Again,
Argf (φ) = Argg(φ) = {x}.

For m ∈ N set α = m and q = 2 − 1
2 (
∑m

i=1
1
i2 +

∑m+1
i=1

1
i2). By simple

arithmetic and the result of Euler, it follows that q +
∑m

i=1
1
i2 < 2 <

∑m+1
i=1

1
i2

and that q > 0, so q = q1
q2

with q1, q2 ∈ N. We want β(n)
γ(n) = q +

∑n
i=1

1
i2 , which

is achieved by β(n) = (n!)2
(
q2

∑n
i=1

1
i2 + q1

)
and γ(n) = (n!)2q2.

1. β(n + 1) = (n + 1)2(n!)2
(
q2

∑n
i=1

1
i2 + q1

)
+ (n + 1)2(n!)2q2

1
(n+1)2 = (n +

1)2β(n) + γ(n) and γ(n+ 1) = (n+ 1)2(n!)2q2 = (n+ 1)2γ(n).
2. (N, f 7→ β, g 7→ γ ⊨ φ(n))
⇔ (n!)2

(
q2

∑n
i=1

1
i2 + q1

)
< 2(n!)2q2

⇔
∑n

i=1
1
i2 + q1

q2
< 2,

so N, f 7→ β, g 7→ γ ⊨ φ(α) ∧ ¬φ(s(α)
3. Again, α, s(α) > m is clear.

So, by Corollary 3.4 ∀x : f(x) < 2g(x) does not have a straightforward in-
duction proof in ThL(N) ∪ {D0

f , D
0
g , D

s
f , D

s
g}. Again, there is a strengthening

with a proof by straightforward induction, namely ∀n :
∑n

i=1
1
i2 + 1

n ≤ 2.

Example 4.3 For many common functions, there are so-called tail-recursive
definitions, which involve an accumulator argument a. They may be preferred
to the standard recursive definitions for practical reasons. Here are the tail-
recursive definitions of the factorial, multiplication and exponentiation:

fact(0, a) = a (D0
fact)

fact(s(x), a) = fact(x, a · s(x)) (Ds
fact)

mult(x, 0, a) = a (D0
mult)

mult(x, s(y), a) = mult(x, y, a+ x) (Ds
mult)

texp(x, 0, a) = a (D0
texp)

texp(x, s(y), a) = texp(x, y, a · x) (Ds
texp)

Correctness proofs for these definitions are desirable but not possible using
straightforward induction. More precisely, the statements ∀x : fact(x,1)=x!,
∀x∀y : mult(x, y, 0) = x · y and ∀x∀y : texp(x, y, 1) = exp(x, y) do not have
straightforward induction proofs.

Again, the statements ∀x∀a : fact(x, a) = x! · a, ∀y∀x∀a : mult(x, y, a) =
x·y+a and ∀y∀x∀a : texp(x, y, a) = exp(x, y)·a admit proofs by straightforward
induction and imply the correctness of the definitions.

To apply our criterion, we take α = m and define:

β(x, a) = m!

γ(x, y, a) = xm

9

γ′(x, y, a) = my

γ′(x, y, a) =

{
(m+ 1) · y + 1 if x · y + a = (m+ 1) · y
x · y + a else

δ(x, y, a) = xm

δ′(x, y, a) =

{
(m+ 1)y + 1 if xy · a = (m+ 1)y

xy · a else

We will only go through the three points of the criterion for the case of mult,
fact and exp follow analogously.
1. Because γ only depends on x, γ(x, s(y), a) = γ(x, y, a+ x).
2. γ(x,m, 0) = xm, but γ(x, s(m), 0) = xm ̸= x(m+ 1) for x = 1.
3. Argmult

(
∀x : mult(x, y, 0) = x · y

)
= {y} and α, s(α) ≥ m.

This technically only tells us, that there is no proof of ∀y∀x : mult(x, y, 0) =
x · y by straightforward induction on y. Surprisingly, it is harder to show the
nonexistence of a proof by straightforward induction on x, even though induction
y seems more natural:
1. x(y+1)+a = (m+1)y iff xy+(a+x) = (m+1)y, so either γ′(x, y+1, a) =
(m+ 1)y + 1 = γ′(x, y, a+ x) or γ′(x, y + 1, a) = x(y + 1) + a = γ′(x, y, a+ x).
2. γ′(m, y, 0) = my, but γ′(s(m), y, 0) = (m+ 1)y + 1 ̸= (m+ 1)y.
3. Argmult

(
∀y : mult(x, y, 0) = x · y

)
= {x} and α, s(α) ≥ m.

5 Further examples

Most times when applying Theorem 3.3 or Corollary 3.4, the simplest approach
will be to think of only one function or relation symbol as recursively defined
and consider all other symbols as elements of the background language. The
following example as well as example 3.4 are counterexamples, where it seems
necessary to use the recursive definition of multiple symbols:

Example 5.1 We work in the inductive data type Nat of natural numbers and
define predicates P and Q by:

P (0) ↔ ⊤ (D0
P)

Q(0) ↔ ⊤ (D0
Q)

P (s(x)) ↔ Q(x) (Ds
P)

Q(s(x)) ↔ P (x) (Ds
Q)

The above definition is not technically correct, a correct version would look
like:

P (0) ↔ ⊤ (D0
P)

Q(0) ↔ ⊤ (D0
Q)

10

(P (x) ∧Q(x) → (P (s(x)) ↔ ⊤))

∧ (P (x) ∧ ¬Q(x) → (P (s(x)) ↔ ⊥))

∧ (¬P (x) ∧Q(x) → (P (s(x)) ↔ ⊤))

∧ (¬P (x) ∧ ¬Q(x) → (P (s(x)) ↔ ⊥))

(Ds
P)

(P (x) ∧Q(x) → (Q(s(x)) ↔ ⊤))

∧ (P (x) ∧ ¬Q(x) → (Q(s(x)) ↔ ⊤))

∧ (¬P (x) ∧Q(x) → (Q(s(x)) ↔ ⊥))

∧ (¬P (x) ∧ ¬Q(x) → (Q(s(x)) ↔ ⊥))

(Ds
Q)

Again, we will from now on only give the more readable version of the
definition.

∀x : P (x) can be proved by induction on ∀x : P (x) ∧ Q(x), but there is no
proof by straightforward induction, as can be seen by taking b = 0, α = 2m and

η1(n) ⇔ n is even

η2(n) ⇔ n is odd

1. Since s is the only step constructor, we have to consider Ds
P and Ds

Q, clearly
s(n) is even ⇔ n is odd and s(n) is odd ⇔ n is even.
2. α = 2m is even, but s(α) = 2m+ 1 is not.
3. α = 2m ≥ m and s(α) = 2m+ 1 ≥ m.

We will now be working with the inductive data type List(s), which has the
two constructors nil : List(s)0 → List(s) and cons : List(s) × s → List(s),
with nil representing the empty list and cons(a, L) representing the list with
first element a and rest L. We will only consider List(Nat), but the arguments
can be applied to most sorts s. The language L will depend on the example,
S ′ will be the appropriate expansion of S. We will also use the shorthand
[x1, . . . , xn] = cons(x1, cons(· · · cons(xn,nil) · · ·)).

Example 5.2 We can recursively define the concatenation of two lists, as well
as the reverse of a list:

nil ◦ L2 = L2 (Dnil
◦)

cons(x, L1) ◦ L2 = cons(x, L1 ◦ L2) (Dcons
◦)

rev(nil) = nil (Dnil
rev)

rev(cons(x, L)) = rev(L) ◦ [x] (Dcons
rev)

This is not a primitive recursive definition of the family {◦, rev} in the sense
of Definition 2.4, since Dcons

rev applies ◦ to rev(L) instead of L. So in order to use
Theorem 3.3, we need to add ◦ to the background language L = {nil, cons, ◦}.

The first two natural statements about rev are ∀L : rev(rev(L)) = L and
∀L1∀L2 : rev(L1 ◦ L2) = rev(L2) ◦ rev(L1). The second statement has a proof

11

by straightforward induction on L1:

Induction Base: rev(nil◦L2)
Dnil

◦= rev(L2) = rev(L2)◦nil
Dnil

rev= rev(L2)◦rev(nil)
(∀L : L = L ◦ nil ∈ ThL(S ′)).

Induction Step: rev(cons(x, L1)◦L2)
Dcons

◦= rev(cons(x, L1 ◦L2))
Dcons

rev= rev(L1 ◦
L2) ◦ [x]

IH
= (rev(L2) ◦ rev(L1)) ◦ [x] = rev(L2) ◦ (rev(L1) ◦ [x])

Dcons
rev= rev(L2) ◦

rev(cons(x, L1)) (∀L1∀L2∀L3 : (L1 ◦ L2) ◦ L3 = L1 ◦ (L2 ◦ L3) ∈ ThL(S ′)).
Using the second statement, we also get a proof of the first:

Induction Base: rev(rev(nil))
Dnil

rev= rev(nil)
Dnil

rev= nil.

Induction Step: rev(rev(cons(x, L)))
Dcons

rev= rev(rev(L)◦[x]) = rev([x])◦rev(rev(L))
IH,Dcons

rev= (nil ◦ [x]) ◦ L Dnil
◦ ,Dcons

◦= cons(x, L).
But the first statement does not have a straightforward induction proof in

ThL(S ′), as we can see by taking b = 1 and

β([x1, . . . , xn]) = [0, xn−1, . . . , x1]

For m ∈ N, we take α1 = [0, . . . 0] with |α1| = m and α2 = 1.
1. Since cons is the only step constructor and rev is the only function not
in the background language, we only have to consider Dcons

rev : |δ1| > 1 implies
δ1 ̸= nil, so δ1 is of the form [k1, . . . , kn] with n > 0. So β(cons(δ2, δ1)) =
β([δ2, k1, . . . , kn]) = [0, kn−1, . . . , k1, δ2] = β(δ1) ◦ [δ2].
2. β(β(α1)) = β(β([0, . . . , 0])) = β([0, . . . , 0]) = [0, . . . , 0] = α1, but
β(β(cons(α2, α1))) = β(β([1, 0, . . . , 0])) = β([0, . . . , 0, 1]) = [0, 0, . . . , 0]
̸= cons(α2, α1).
3. φ(L) ≡ rev(rev(L)) = L is an example of a formula with nontrivial ar-
guments: Argrev(φ) = Argrev(rev(rev(L))) ∪ Argrev(L) = Argrev(rev(L)) ∪
{rev(L)} ∪ ∅ = {L, rev(L)}.
|β([0, . . . , 0])| = |[0, . . . , 0]| = m and |β([1, 0, . . . , 0])| = |[1, 0, . . . , 0]| = m+ 1.

Example 5.3 There also exists a tail-recursive definition of rev:

trev(nil, L2) = L2 (Dnil
trev)

trev(cons(x, L1), L2) = trev(L1, cons(x, L2)) (Dcons
trev)

Like in Example 4.3, there is no correctness proof by straightforward induc-
tion in ThL(S ′) ∪ {Dnil

trev, D
cons
trev } with L = {nil, cons, ◦, rev}:

Let φ(L) ≡ trev(L,nil) = rev(L), b = 0,m ∈ N, α1 = [0, . . . , 0] with |α1| =
m,α2 = 1 and β(L1, L2) = α1. Then:
1. Since β is constant, β(cons(δ1, δ2), δ3) = β(δ2, cons(δ1, δ3)) for all δ1, δ2, δ2.
2. β(α1,nil) = α1 = rev(α1), but β(cons(1, α1),nil) = α1 ̸= rev(α1) ◦ [1].
3. |α1| = m, |cons(1, α1)| = m+ 1.

The same b, α1, α2 and β also show, that ∀L : ψ(L) does not have a proof
by straightforward induction, where ψ(L) ≡ trev(trev(L,nil),nil) = L. It seems
that for most tail-recursive definitions, this approach using a constant function

12

works.

Example 5.4 Theorem 3.3 also makes the analysis of more complex construc-
tions, like the formalization and correctness proof for insertion sort, possible.
For this, we will be working in the language L = {0, s,≤, cd,nil, cons}, where
≤ is the usual order on the natural numbers and cd is a function needed
in a case distinction in the definition of the insert function and defined by

cd(m,n, p, q) =

{
m if p ≤ q

n else
.

We can now define the two functions for insertion of an element into a sorted
list and for sorting a list, as well as a relation to indicate that a number is less
than or equal to all elements of a list and a predicate for all sorted lists:

insert(x,nil) = nil (Dnil
insert)

insert(x, cons(y, L)) =

{
cons(x, cons(y, L)) if x ≤ y

cons(y, insert(x, L)) else
(Dcons

insert)

isort(nil) = nil (Dnil
isort)

isort(cons(x, L)) = insert(x, L) (Dcons
isort)

x ≤′ nil ↔ ⊤ (Dnil
≤′)

x ≤′ cons(y, L) ↔ x ≤ y ∧ x ≤′ L (Dcons
≤′)

sorted(nil) ↔ ⊤ (Dnil
sorted)

sorted(cons(x, L)) ↔ x ≤′ L ∧ sorted(L) (Dcons
sorted)

Now we want to show that φ(L) ≡ sorted(isort(L)) does not have a straight-
forward induction proof. There are two possible ways to do this with slightly
different results: one could give variations of the functions or of the predicate.

For the first way, let b = 1,m ∈ N, α1 = [0, . . . , 0] with |α1| = m,α2 = 1 and

β(x, [y1, . . . , yn]) = insertS′(x, [y1, . . . , yn−1]) ◦ [yn]

γ([x1, . . . , xn]) = isortS′([x1, . . . , xn−1]) ◦ [xn]

1. |δ| > 1 implies δ ̸= nil, so δ is of the form [k1, . . . , kn] with n > 0.
If x ≤ y, then β(x, cons(y, δ) = insert(x, [y, k1, . . . , kn−1]) ◦ [kn]
= [x, y, k1, . . . kn−1] ◦ [kn] = cons(x, cons(y, δ)), otherwise β(x, cons(y, δ)
= insert(x, [y, k1, . . . , kn−1]) ◦ [kn] = cons(y, insert(x, [k1, . . . , kn−1])) ◦ [kn]
= cons(y, β(x, δ)).
γ(cons(x, δ)) = isort([x, k1, . . . , kn−1]) ◦ [kn] = insert(x, isort([k1, . . . , kn−1])) ◦
[kn] = β(x, isort([k1, . . . , kn−1]) ◦ [kn]) = β(x, γ(δ)).
2. γ(α1) = [0, . . . , 0] is sorted, but γ(cons(1, α1)) = [0, . . . , 0, 1, 0] is not.
3. |α1|, |cons(1, α1)| ≥ m.

13

So φ(L) does not have a straightforward induction proof in ThL′(S ′) with
L′ = L ∪ {≤′, sorted}, meaning that the nonexistence of a straightforward in-
duction proof for insertion sort does not depend on the axiomatization of being
a sorted list.

For the second way, take b = 2,m ∈ N, α1 = [0, . . . , 0] with |α1| = m,α2 = 1
and

η([x1, . . . , xn]) ⇔ [x1, . . . , xn−2, xn, xn−1] is sorted

1. |δ| > 2 implies δ = [k1, . . . , kn] with n ≥ 2.
η(cons(x, δ)) ⇔ [x, k1, . . . , kn−2, kn, kn−1] is sorted
⇔ x ≤ k1, . . . , kn ∧ [k1, . . . , kn−2, kn, kn−1] is sorted ⇔ x ≤′ δ ∧ η(δ)
2. η(isort(α1)) ⇔ [0, . . . , 0] is sorted, which is true.
But η(isort(cons(1, α1))) ⇔ η([0, . . . , 0, 1]) ⇔ [0, . . . , 0, 1, 0] is sorted, which is
false.
3. |isort(α1)| = |[0, . . . , 0]| = m and |isort(cons(1, α1))| = |[0, . . . , 0, 1]| = m+ 1.

So φ(L) does not have a straightforward induction proof in ThL′(S ′) with
L′ = L ∪ {insert, isort,≤′}, meaning that the nonexistence of a straightforward
induction proof of the correctness of sorted does not depend on the sorting
algorithm.

References

[1] Anders Lundstedt. Necessarily non-analytic induction proofs– summary of
some results. 2020. url: https://anderslundstedt.com/research/.

14

