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Formal and natural languages
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v

How to specify a formal language?

» Automata
» Grammars

v

Strong connections to:

» Computability theory
» Complexity theory

v

Applications in computer science:

» Verification
» Compiler construction
» Data formats
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» Deterministic finite automata

» Nondeterministic finite automata

» Automata with e-transitions

» The class of regular languages

» The pumping lemma for regular languages
» Context-free grammars and languages

> Right linear grammars

» Pushdown Automata

» The pumping lemma for context-free languages

» Grammars in computer science

» Further topics
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Finite Automata — A First Example

@) card

card

push

4/ 56



Finite Automata — A More Abstract Example

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc

5/ 56



Finite Automata — A More Abstract Example

c

A

OBk

A
(@)——@)—

abbbcc

5/ 56



Finite Automata — A More Abstract Example

c

A

OBk

A
(@— @)

abbbcc

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc v

5/ 56



Finite Automata — A More Abstract Example

A LA LA
abbbcc vV

aab

5/ 56



Finite Automata — A More Abstract Example

c

A

OBk

A
(@)——@)—

abbbcc v
aab

5/ 56



Finite Automata — A More Abstract Example

c

A

OBk

A
(@— @)

abbbcc v
aab

5/ 56



Finite Automata — A More Abstract Example

c

A

OBk

A
(@— @)

abbbcc v
aab

5/ 56



Finite Automata — A More Abstract Example

A LA LA
abbbcc vV

aab

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\}cfg\/

abbbcc v
aab X

5/ 56



Finite Automata — A More Abstract Example

A LA LA
abbbcc vV

aab X

ac

5/ 56



Finite Automata — A More Abstract Example

c

A

OBk

A
(@)——@)—

abbbcc v
aab X

ac

5/ 56



Finite Automata — A More Abstract Example

c

A

OBk

A
(@— @)

abbbcc v
aab X

ac

5/ 56



Finite Automata — A More Abstract Example

aﬁbf?\icfg\l

abbbcc v
aab X
ac X

5/ 56



Finite Automata — A More Abstract Example
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The language accepted by this automaton is

L={a"b"c™ | k,n,m> 1}
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Deterministic Finite Automata — Definition

Definition

A deterministic finite automaton (DFA) is a tuple
A=(Q,X%,J, qo, F) where:

. @ is a finite set (the states).

. X is a finite set (the input symbols).

. 0: Q x X — Q (the transition function).

. qo € Q (the starting state)

. F C Q (the final states).

(€2 S O R S
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DFA — Example

as tuple: BB1
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The Language of a DFA

Definition A
Extend d: @ x X = Qtod: Q@ xX* = @ as follows.

S

fw=c¢
5(q,w) = 7

{ 5(8(q,v),x) ifw=wxforveI*xeX
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The Language of a DFA

Definition A
Extend d: @ x X = Qtod: Q@ xX* = @ as follows.

qg ifw=e
5(8(q,v),x) ifw=wxforveI*xeX

S

o(q, w) =

Example

A N

(S(QbC, qO) = g3, 5(8[)3, qO) = (e

Definition
Let A= (Q,X,0,qo, F) be a DFA. The language accepted by A is

L(A) = {w € * | §(qo, w) € F}.
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Designing an DFA

L= {w € {a,b}" | w contains an even number of a's

and an even number of b's}

BB2
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v' Deterministic finite automata

= Nondeterministic finite automata
» Automata with e-transitions

» The class of regular languages

» The pumping lemma for regular languages

» Context-free grammars and languages
> Right linear grammars
» Pushdown Automata

» The pumping lemma for context-free languages

» Grammars in computer science

» Further topics
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Nondeterministic Finite Automata — A Motivating Example

Automaton for accepting L = {wab | w € {a, b}*} ?
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Nondeterministic Finite Automata — A Motivating Example

Automaton for accepting L = {wab | w € {a, b}*} ?

a,b

0
@)@

Nondeterminism = consider all possible runs
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Nondeterministic Finite Automata — Definition

Definition

A nondeterministic finite automaton (NFA) is a tuple
A=(Q,X, A, qo, F) where:

. @ is a finite set (the states).

. X is a finite set (the input symbols).

. A C QXX x Q (the transition relation).

. qo € Q (the starting state)

. F C Q (the final states).

(€2 N O R S
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NFA — Example

a,b

'S
(@) —= (@)@

as tuple: BB3
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The Language of an NFA

Definition
Extend ACQRXEIXxQtoA:QxX*x Q@ as follows.

(g w,q) €A ifw=¢
(g, w,q*) e A ifw=vxforveX*xeckX,
and (q,v,q') € A,and (¢',x,9) € A
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The Language of an NFA

Definition A
Extend ACQRXEIXxQtoA:QxX*x Q@ as follows.

(g w,q) €A ifw=¢
(g, w,q*) e A ifw=vxforveX*xeckX,
and (q,v,q') € A,and (¢',x,9) € A

Example
(q()u ab7 qO)u (q07 abu q2) S A7 (CIO7 bb) CIO) S A

Definition
Let A= (Q,%, A, qo, F) be a NFA. The language accepted by A is

L(A)={w e X*|dg e F st. (qo,w,q) € A}-
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Equivalence of DFA and NFA

Theorem

Let L C X*, then there is a DFA D with L(D) = L iff there is a
NFA N with L(N) = L.

Proof (BB4).

1. Converting D to N: easy.

2. Converting N to D: subset construction.
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The Subset Construction — Example

Automaton for accepting L = {wab | w € {a, b}*}:

a,b

0

Conversion to DFA: BB5

In practice: only construct reachable states
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The Subset Construction — Lower Bound

Theorem

There are L, C¥X*,n > 1 and NFA N, with n+ 1 states with
L(N,) = L, s.t. all DFA D,, with L(D,) = L, have at least 2"
states.

Proof.
Let ¥ = {a, b} and for n > 1 define

Lp={wav |w,ve X |v|=n—-1}

BB6 O
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Deterministic finite automata
Nondeterministic finite automata
Automata with e-transitions
The class of regular languages

The pumping lemma for regular languages

Context-free grammars and languages
Right linear grammars
Pushdown Automata

The pumping lemma for context-free languages

Grammars in computer science

Further topics
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Epsilon-Transitions — A Motivating Example

Automaton for accepting decimal representations of integers:

Yy =1{-,0,1,2,3,4,5,6,7,8,9}
L=1{0,1,2,3,4,5,6,7,8,9} "
U{-w|we{0,1,2,3,4,56,7,8,9}"}
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Epsilon-Transitions — A Motivating Example

Automaton for accepting decimal representations of integers:

Y ={-,01,2,3,4,5,6,7,8,9}
L=1{0,1,2,3,4,5,6,7,8,9} "
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e-NFA — Definition

Definition
A nondeterministic finite automaton with e-transitions (-NFA) is
atuple A= (Q,X, A, qo, F) where:

1. Q is a finite set (the states).

2. Y is a finite set (the input symbols).

3. AC Q x (XU{e}) x Q (the transition relation).
4. qo € Q (the starting state)

5. F C Q (the final states).
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e-NFA — Properties

Definition
Transition relation A: includes e-transitions.

Definition
Let A= (Q,X, A, qo, F) be a e-NFA. The language accepted by A
is

L(A)={w e X*|dg € F st. (qo,w,q) € A}-

Theorem
Let L C X*, then there is a DFA D with L(D) = L iff there is a
e-NFA N with L(N) = L.

Proof.

Modified subset construction (e-closed subsets). O
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The Class of Regular Languages

Corollary

Let L C X*. The following are equivalent:
» There is a DFA D with L(D) = L.
» There is a NFA N with L(N) = L.
» There is a e-NFA N’ with L(N') = L.

Definition
L C ¥* is called regular language if there is a finite automaton A
with L(A) = L.

24/ 56



Closure Properties of Regular Languages

Theorem
If Ly, Ly C X* are regular, then L1 U Ly is regular.

Proof.
BB7
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Closure Properties of Regular Languages

Theorem
If Ly, Ly C X* are regular, then L1 U Ly is regular.

Proof.
BB7 ]

Theorem
If L C X" is regular, then L° = X* \ L is regular.

Proof.
BB8 ]

Theorem
If L, Ly C X* are regular, then L1 N Ly is regular.

Proof.
LN Ly = (LS U LS)". 0
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The Pumping Lemma for Regular Languages

Lemma (Pumping Lemma)

Let L be a regular language. Then there is an n € N s.t. for every
w € L with |w| > n we have w = vivavs with

1. Vo 7é€,
2. ‘V1V2‘ <n, and
3. forall k >0 also vivfvs € L.

Proof.
BB9 ]
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Non-Regular Languages

Lemma (Pumping Lemma)

Let L be a regular language. Then there is an n € N s.t. for every
w € L with |w| > n we have w = vivavs with

1. vn#e,
2. ‘V1V2‘ <n, and
3. forall k >0 also vivkvs € L.

Example
L={a"b™ | m> 1} is not regular (BB10).
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Context-Free Grammars — A First Example

How can we specify the set of all arithmetical expressions?
E.g. 12,304+ 21-6,(123+7)-15+88,...

E-N|E+E|E-E|(E)
N — D | DN
D—0|1]2]3|4]5/6|7|8]9

30/ 56



Context-Free Grammars — Definition

Definition

A context-free grammar (CFG) is a tuple G = (N, T, P, S) where
1. N is a finite set of symbols (the nonterminals),
2. T is a finite set of symbols (the terminals),

3. P is a finite set of production rules of the form:
A— w where Ac Nand we (NUT)*

4. S € N (the start symbol).

31/ 56



Context-Free Grammars — Example

G=(NT,T,P,S)
NT ={N,D, E}

T={+-(),0,1,2,3,4,56,7,8,9}

P={E—-NE—E+EE—E-EE—(E),
N — D,N — DN,
D—-0D—1D—2D—3D— 4,
D—5D-—6D—7D—8D—09}

S=E
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The Language of a Grammar

Let G =(N,T,P,S) be a CFG.

Definition
For every A — w € P and every uAv € (N U T)* define

UAV = uwv.

The derivation relation =, is the reflexive and transitive closure of
=G-

Definition

The language of G is L(G) ={w € T* | S =F w}.

Definition
L C Y* is called context-free if there is a context-free grammar G
with L(G) = L.

33/ 56



Context-Free Grammars — Example Derivation

E—N|E+E|E-E|(E)
N — D | DN
D—0|1]2]3|4]|5|6|7|8]9

Example derivation: BB11
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Formalisms

Automata | Grammars
Regular Languages | DFAs, NFAs ?
Context-Free Languages ? CFG
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Further topics
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Right Linear Grammars

Definition
A grammar G = (N, T, P, S) is called right linear if all productions
are of one of the following forms:

A — xB where xe T,Be N
A— xwhere xe T
A—¢

Theorem
Let L CX¥*. Then L is regular iff L has a right linear grammar.

Proof (BB12).

1. From right linear grammar to e-NFA.
2. From NFA to right linear grammar.

L]
Remark: notion of left linear grammars with analogous result
37/ 56



Right Linear Grammars — Example

Let L ={a™b" | m,n > 0} (BB13)
Right linear grammar

Automaton

38/ 56



Formalisms

Automata | Grammars
Regular Languages | DFA, NFA | LLG, RLG
Context-Free Languages ? CFG
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Regular vs. Context-Free Languages

Theorem

Every regular language is context-free.

Proof.

Every regular language has a right linear grammar. Every right
linear grammar is context-free. 0J
Theorem

There is a context-free language which is not regular.

Proof.

L={a"b" | n > 1} is not regular (pumping lemma), but

S — ab | aSb is a context-free grammar for L. O
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Automata for Context-Free Languages ?

v
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Well-balanced strings of parentheses, e.g.

(), (00), ((O0))) € W but
(00 & W

Context-free grammar for W: E — EE | (E) | €
W is not regular (by pumping lemma, BB14)
Generating a language vs. accepting a language
How to accept a well-balanced string? (BB15)
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Automata for Context-Free Languages ?

v

v

v

Well-balanced strings of parentheses, e.g.

(), (00), ((O0))) € W but
(00 & W

Context-free grammar for W: E — EE | (E) | €
W is not regular (by pumping lemma, BB14)
Generating a language vs. accepting a language

How to accept a well-balanced string? (BB15)
= Need more than constant memory
= For context-free languages: automaton with a stack
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Pushdown Automata — Definition

Definition

A pushdown automaton (PDA) is a tuple

A=(Q,X,l,6,qo, 2o, F) where:

. @ is a finite set (the states).

. X is a finite set (the input symbols).

. [ is a finite set (the stack symbols).

ACQx(XU{e}) xT x Q xT* (the transition relation).
where for each (g,x,z) € Q x (X U{e}) x I there are only
finitely many (¢',w) € Q x ™ s.t. (q,x,z,4',w) € A.

5. qgo € Q (the starting state).

6. Zy € I (the starting stack symbol).

7. F C Q (the final states).

A w0 N
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Computation of a PDA

Let A= (Q,X%,T,9,qo, Zo, F) be a PDA.

Definition

A configuration of A is a triple (g, w,v) € Q x X* x ['* where
> q is the current state,
> w is the remaining input, and
> v is the current stack contents.

Convention: top of the stack is on the left

Definition

Define the binary step relation -4 on configurations of A as:

(g, xw,yv) Fa (p,w,uv) if (q,x,y,p,u) € A

Define I as reflexive and transitive closure of 4.
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The Language of a PDA

Definition
Let A= (Q,%,T,d,qo0, 2o, F) be a PDA, then the language
accepted by A by final state is defined as:

L(A) = {w € £* | (q0, w, Zp) 4 (g,&, v) for some g € F and any v}
Definition
Let A= (Q,%,T,6,qo, 2o, F) be a PDA, then the language

accepted by A by empty stack is defined as:

N(A) = {w € " | (g0, w, Z0) Fa (g;¢,¢) for any q}

45/ 56



Y= {(7 )}7 M= {207 1}

Derivation of (()()): BB16

46/ 56



Final-State Acceptance vs. Null-Stack Acceptance

Theorem
Let L C ¥*, then the following are equivalent:

1. There is a PDA Ayn with N(Ayn) = L.
2. There is a PDA Afr with L(Ag) = L.

Proof (BB17).

1=2
2=1 O

47/ 56



Pushdown Automata and Context-Free Grammars

Theorem
A language L has a context-free grammar iff it has a PDA.

Proof (BB18).

1. Given grammar G, construct PDA A.
2. Given PDA A, construct grammar G.

48/ 56



Formalisms

Automata | Grammars
Regular Languages | DFA, NFA | LLG, RLG
Context-Free Languages PDA CFG
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The Pumping Lemma for Context-Free Languages

Lemma (Pumping Lemma)

Let L be a context-free language. Then there is an n € N s.t. for
every w € L with |w| > n we have w = vivav3vavs with

1. |vavawa| < n,
2. wvy # ¢, and
3. for all k >0 also vivivavivs € L.

Proof Sketch (BB19).
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Non-Context-Free Languages

Lemma (Pumping Lemma)

Let L be a context-free language. Then there is an n € N s.t. for
every w € L with |w| > n we have w = vivav3vavs with

1. ‘V2V3V4| S n,
2. wvy # ¢, and
3. for all k > 0 also V1V2kV3VL{(V5 eL.

Example
L={a"b™c™ | m > 1} is not context-free (BB20).
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HTML is a Context-free Language

Source of website

Char -a|A|b|B]|---
String — ¢ | Char String
Element — Heading | Paragraph | Link | String | <br> | ---
Elements — ¢ | Element Elements
Heading — <h3> String </h3> | - --
Paragraph — <p> Elements </p>
Link — <a href = “String“> String </a>
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Generalization: XML (Extensible Markup Language)
» DTD (Document Type Definition) is a grammar

» There are DTDs for:
HTML, office formats, mathematical formulas, address data,
vector graphics, cooking recipes, formal proofs, ...

» Very rich infrastructure available

55/ 56



Further Topics

Context-sensitive languages: vAv — uwv

v

v

Regular expressions

v

Decidability/complexity of, e.g., membership, emptyness, ...

v

Parser generators

Introductory Textbook:

J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to
Automata Theory, Languages, and Computation, 2nd edition,
2001, Addison-Wesley.
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