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Abstract. We show that many large cardinal notions can be characterized

in terms of the existence of certain elementary embeddings between transi-
tive set-sized structures, that map their critical point to the large cardinal in

question. As an application, we use such embeddings to provide new proofs

of results of Christoph Weiß on the consistency strength of certain generalized
tree properties. These new proofs eliminate problems contained in the original

proofs provided by Weiß.

1. Introduction

Many large cardinal notions are characterized by the existence of non-trivial
elementary embeddings with certain properties. There are two kinds of such char-
acterizations, the first, more common one, where the large cardinal property of κ
is characterized by the existence of elementary embeddings with critical point κ,
and the second, less common one, where the large cardinal property of κ is charac-
terized by the existence of elementary embeddings which map their critical point
to κ. A classical result of Menachem Magidor ([8, Theorem 1]) provides the first
example of a characterization of the second kind by showing that a cardinal κ is
supercompact if and only if for every η > κ, there is a non-trivial elementary em-
bedding j : Vα −→ Vη with α < κ and j(crit (j)) = κ. Other prominent examples
of large cardinal characterizations of the second kind are provided by the notion
of subcompactness (introduced by Ronald Jensen) and its generalizations (see [2]),
and also Ralf Schindler’s remarkable cardinals (see [11]).

In this paper, we provide characterizations of various well-known large cardinals
as the images of the critical points of certain elementary embeddings. All of these
characterizations are based on the concept introduced in the next definition. In the
following, we say that an elementary embedding j : M −→ N between transitive
classes is non-trivial if there is an ordinal α ∈ M with j(α) > α. In this case, we
let crit (j) denote the least such ordinal.

Definition 1.1. Given cardinals κ < θ, we say that a non-trivial elementary em-
bedding j : M −→ H(θ) is a small embedding for κ if M ∈ H(θ) is transitive, and
j(crit (j)) = κ holds.
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The properties of cardinals κ studied in this paper usually state that for suffi-
ciently large1 cardinals θ, there is a small embedding j : M −→ H(θ) for κ with
certain elements of H(θ) in its range, and with the property that the domain model
M satisfies certain correctness properties with respect to the universe of sets V,2

sometimes in combination with some kind of smallness assumption about M .
A first example of such a characterization can easily be obtained by observing

that the proof of Magidor’s characterization of supercompactness in [8] also directly
yields the equivalence stated below. Note that the requirement that M = H(δ) in
this characterization can easily be interpreted as a correctness property of M (since
V = H(On)), and that δ < κ is a smallness assumption on M .

Theorem 1.2 (Magidor). The following statements are equivalent for every cardi-
nal κ:

(i) κ is supercompact.
(ii) For all sufficiently large cardinals θ, there is a small embedding j : M −→ H(θ)

for κ with the property that M = H(δ) for some cardinal δ < κ.

We will provide small embedding characterizations for various types of large car-
dinals, which will also have the property that small embeddings witnessing certain
large cardinal properties relate in a way that parallels the implication structure of
the corresponding large cardinals notions, that is, whenever there is a direct im-
plication from some large cardinal property A to another large cardinal property
B, then amongst the small embeddings witnessing Property A, we find small em-
beddings witnessing Property B. The verification of these statements is usually a
routine adaption of the proof that the large cardinal property A implies the large
cardinal property B, and we will therefore usually leave those verifications as easy
exercises to the interested reader.

We will now summarize the contents of our paper. In Section 2, we will present
small embedding characterizations for what we call Mahlo-like cardinals, that is
notions of large cardinals that are characterized as being stationary limits of certain
cardinals, in particular covering the cases of inaccessible and of Mahlo cardinals.
Section 3 contains two technical lemmas that will be useful later on. In Section
4, we provide small embedding characterizations for Πm

n -indescribable cardinals for
all 0 < m,n < ω. The results of Section 5 provide such characterizations for
subtle, for ineffable, and for λ-ineffable cardinals. The results of Section 6 provide
small embedding characterizations for various filter based large cardinal notions,
that is for measurable, for λ-supercompact, and for n-huge cardinals. In Section 7,
we discuss some problems arising in the consistency proofs of certain generalized
tree properties that are presented in [15] and [16]. We then use the theory of
small embeddings developed in this paper to eliminate those problems and provide

1Here, θ being a sufficiently large cardinal means that there is an α ≥ κ such that the corre-

sponding statement holds for all cardinals θ > α.
2We usually restrict ourselves to correctness properties mostly to avoid trivial small embed-

ding characterizations. For example, without this requirement, one could propose the following
equivalence: κ is measurable if and only if for all sufficiently large cardinals θ, there is a small

embedding j : M → H(θ) for κ such that crit (j) is measurable in M . However crit (j) will in

general not be measurable in V (consider for example the least measurable cardinal κ), hence this
trivial characterization is ruled out by the above requirement. We will later present a non-trivial

small embedding characterization of measurability (see Lemma 6.2).
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new proofs of these consistency statements. We close the paper with some open
questions in Section 8.

2. Mahlo-like cardinals

In this section, we provide small embedding characterizations for what we call
Mahlo-like cardinals, that is notions of large cardinals that are characterized as
being stationary limits of certain kinds of cardinals. The following lemma will
directly yield these characterizations. Its proof and the corollary following it are
very basic, and are certainly similar to and implicit in earlier results (see for example
[12, Lemma 57] for the case of weakly inaccessible cardinals), and may perhaps be
considered part of the set-theoretic folklore. For the benefit of the reader, and
because they provide a kind of starting point for our later characterizations, we
would nevertheless like to provide a complete proof.

Lemma 2.1. Given an L∈-formula ϕ(v0, v1), the following statements are equiva-
lent for every cardinal κ and every set x:

(i) κ is a regular uncountable cardinal and the set of all ordinals λ < κ such that
ϕ(λ, x) holds is stationary in κ.

(ii) For all sufficiently large cardinals θ, there is a small embedding j : M −→ H(θ)
for κ with ϕ(crit (j), x) and x ∈ ran(j).

Proof. First, assume that (i) holds, and pick a cardinal θ > κ with x ∈ H(θ). Let
〈Xα | α < κ〉 be a continuous and increasing sequence of elementary substructures
of H(θ) of cardinality less than κ with x ∈ X0 and α ⊆ Xα∩κ ∈ κ for all α < κ. By
(i), there is an α < κ such that α = Xα ∩ κ and ϕ(α, x) holds. Let π : Xα −→ M
denote the corresponding transitive collapse. Then π−1 : M −→ H(θ) is a small
embedding for κ with ϕ(crit

(
π−1

)
, x) and x ∈ ran(π−1).

Now, assume that (ii) holds. Then there is a cardinal θ > κ such that the formula
ϕ is absolute between H(θ) and V, and there is a small embedding j : M −→ H(θ)
for κ with the property that ϕ(crit (j), x) holds and there is a y ∈M with x = j(y).
Then κ is uncountable, because elementarity implies that j � (ω + 1) = idω+1.
Next, assume that κ is singular. Then crit (j) is singular in M and there is a cofinal

function c : cof(crit (j))
M −→ crit (j) in M . In this situation, elementarity implies

that j(c) = c is cofinal in κ, a contradiction. Finally, assume that there is a club
C in κ such that ¬ϕ(λ, x) holds for all λ ∈ C. Then elementarity and our choice
of θ imply that, in M , there is a club D in crit (j) such that ¬ϕ(λ, y) holds for all
λ ∈ D. Again, by elementarity and our choice of θ, we know that j(D) is a club
in κ with the property that ¬ϕ(λ, x) holds for all λ ∈ j(D). But elementarity also
implies that crit (j) is a limit point of j(D) and therefore crit (j) is an element of
j(D) with ϕ(crit (j), x), a contradiction. �

By varying the formula ϕ (and only using the empty set as a parameter), we
can use the above lemma to obtain small embedding characterizations of some of
the smallest notions of large cardinals. Moreover, one can also characterize regular
uncountable cardinals in such a way. Using the above lemma, the statements listed
in the next corollary can be easily derived from the fact that weakly inaccessible
cardinals are exactly regular stationary limits of cardinals, and that inaccessible
cardinals are exactly regular stationary limits of strong limit cardinals.

Corollary 2.2. Let κ be a cardinal.
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(i) κ is uncountable and regular if and only if for all sufficiently large cardinals θ,
there is a small embedding j : M −→ H(θ) for κ.

(ii) κ is weakly inaccessible if and only if for all sufficiently large cardinals θ, there
is a small embedding j : M −→ H(θ) for κ with the property that crit (j) is a
cardinal.

(iii) κ is inaccessible if and only if for all sufficiently large cardinals θ, there is a
small embedding j : M −→ H(θ) for κ with the property that crit (j) is a strong
limit cardinal.

(iv) κ is weakly Mahlo if and only if for all sufficiently large cardinals θ, there is
a small embedding j : M −→ H(θ) for κ with the property that crit (j) is a
regular cardinal.

(v) κ is Mahlo if and only if for all sufficiently large cardinals θ, there is a small
embedding j : M −→ H(θ) for κ with the property that crit (j) is an inaccessible
cardinal. �

Note that all of the small embedding characterizations provided by the above
corollary rely on correctness properties. In general however, the characterizations
provided by Lemma 2.1 are not necessarily based on correctness properties, as it
may not be the case that M |= ϕ(crit (j), x). In particular, even though it is
possible to characterize very large cardinals in the above way (e.g. stationary limits
of supercompact cardinals), such characterizations do not satisfy our requirements
(see Section 8 for further discussion).

Remark 2.3. In many important cases, and, in particular, in case of the char-
acterizations provided by Corollary 2.2, the large cardinal properties in question
can also be characterized by the existence of a single elementary embedding. For
each of the above, it suffices to require the existence of a single appropriate small
embedding j : M −→ H(κ+), as can easily be seen from the proof of Lemma 2.1.
For example, a cardinal κ is inaccessible if and only if there is a small embedding
j : M −→ H(κ+) for κ with the property that crit (j) is a strong limit cardinal.
This will in fact be the case for several of the small embedding characterizations
that will follow, however we will not make any further mention of this.

Note that Lemma 2.1 implies that small embedding characterizations as in its
Statement (ii) (i.e. characterizations through the existence of small embeddings
j : M −→ H(θ) with ϕ(crit (j), x) and x ∈ ran(j) for a given formula ϕ(v0, v1)
and a set x) cannot provably characterize any notion of large cardinal that implies
weak compactness, because stationary subsets of weakly compact cardinals reflect
to smaller inaccessible cardinals and therefore for any weakly compact cardinal κ
satisfying Lemma 2.1, (ii) – and hence by Lemma 2.1 also Lemma 2.1 (i) – there
is, by stationary reflection, in fact a smaller cardinal that satisfies Lemma 2.1 (i)
– and hence Lemma 2.1 (ii) – as well. In the remainder of this paper, we will
however provide small embedding characterizations of a different form for many
large cardinal notions that imply weak compactness, and, in particular, also for
weak compactness itself.

3. Two lemmas

Before we continue with further small embedding characterizations, we need to
interrupt for the sake of presenting two technical lemmas that will be of use in
many places throughout our paper.
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Lemma 3.1. The following statements are equivalent for every small embedding
j : M −→ H(θ) for a cardinal κ:

(i) κ is a strong limit cardinal.
(ii) crit (j) is a strong limit cardinal.

(iii) crit (j) is a cardinal and H(crit (j)) ⊆M .

Proof. Assume that (i) holds and pick a cardinal ν < crit (j). Since crit (j) is a
strong limit cardinal in M , we have (2ν)M < crit (j). But then

2ν = j((2ν)M ) = (2ν)M < crit (j)

and this shows that (ii) holds. In the other direction, assume (i) fails. By elemen-
tarity, there is a cardinal ν < crit (j) and an injection of crit (j) into P(ν) in M .
Then this injection witnesses that (ii) fails.

Now, again assume that (i) holds. Then elementarity implies that, in M , there
is a bijection s : crit (j) −→ H(crit (j)) with the property that H(δ) = s[δ] holds
for every strong limit cardinal δ < crit (j). Since we already know that (i) implies
(ii), we have H(crit (j)) = j(s)[crit (j)]. Fix x ∈ H(crit (j)) and α < crit (j) with
j(s)(α) = x. Since crit (j) is a strong limit cardinal inM , we have j � H(crit (j))M =
idH(crit(j))M and this allows us to conclude that x = j(s)(α) = j(s(α)) = s(α) ∈M ,
and hence that (iii) holds.

Finally, assume for a contradiction that (iii) holds and (i) fails. Then, by elemen-
tarity, there is a minimal cardinal ν < crit (j) such that either (2ν)M ≥ crit (j) or
such that P(ν) does not exist in M . By (iii), P(ν) ⊆M . By elementarity, we may
pick an injection ι : crit (j) −→ P(ν) in M . Define x = j(ι)(crit (j)) ∈ P(ν) ⊆ M .
Then j(x) = x, and elementarity yields an ordinal γ < crit (j) with ι(γ) = x. But
then j(ι)(γ) = x = j(ι)(crit (j)), contradicting the injectivity of ι. �

Next, we isolate a property of small embedding characterizations, that will be
important throughout this paper.

Definition 3.2. Let Φ(v0, v1) be an L∈-formula and let x be a set. We call the
pair (Φ, x) restrictable if for every cardinal κ, there is an ordinal α such that if

• j : M −→ H(θ) is a small embedding for κ with Φ(j, x) and x ∈ ran(j), and
• ν is a cardinal in M with ν > crit (j) and j(ν) > α,

then Φ(j � H(ν)M , x) holds.

Note that the small embedding characterizations (i) – (v) provided by Corollary
2.2 are given by pairs (Φ, x) such that x = ∅ and Φ(j, ∅) states that ϕ(crit (j)) holds
for some formula ϕ(v). In particular, these pairs (Φ, x) are trivially restrictable.
Next, note that the small embedding formulation of Magidor’s characterization of
supercompactness in Theorem 1.2 is given by the pair (Φ, x) with x = ∅ and

Φ(v0, v1) ≡ “∃δ dom(v0) = H(δ)”,

and this pair is obviously restrictable as well. Finally, we remark that the pairs
(Φ, x) used in the small embedding characterizations provided in the remainder of
this paper will all be restrictable. The verification of restrictability will be trivial
in each case, and is thus left for the interested reader to check throughout. The
following lemma will be the key consequence of restrictability.

Claim 3.3. Let (Φ, x) be restrictable and assume that κ is a cardinal with the
property that for sufficiently large cardinals θ, there is a small embedding j : M −→
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H(θ) for κ with Φ(j, x) and x ∈ ran(j). Then for all sets z and sufficiently large
cardinals θ, there is a small embedding j : M −→ H(θ) for κ with Φ(j, x) and
z ∈ ran(j).

Proof. By our assumptions, there is an ordinal α > κ such that the following
statements hold:

(i) For all cardinals θ > α, there is a small embedding j : M −→ H(θ) for κ with
Φ(j, x) and x ∈ ran(j).

(ii) If j : M −→ H(θ) is a small embedding for κ such that Φ(j, x) holds, ν > crit (j)
is a cardinal in M , x ∈ ran(j) and j(ν) > α, then Φ(j � H(ν)M , x) holds.

Assume for a contradiction that the conclusion of the lemma does not hold. Pick
a strong limit cardinal θ > α with the property that H(θ) is sufficiently absolute
in V and fix a small embedding j : M −→ H(θ) for κ with the property that
Φ(j, x) holds, and fix y ∈M with j(y) = x. In this situation, our assumptions, the
absoluteness of H(θ) in V and the elementarity of j imply that there are β, ϑ, z ∈M
such that the following statements hold in M :

(a) If k : N −→ H(η) is a small embedding for crit (j) such that Φ(k, y)
holds, ν > crit (k) is a cardinal in N , y ∈ ran(k) and k(ν) > β, then
Φ(k � H(ν)N , y) holds.

(b) ϑ > β is a cardinal with y, z ∈ H(ϑ) and there is no small embedding
k : N −→ H(ϑ) for crit (j) with Φ(k, y) and z ∈ ran(k).

By elementarity and our absoluteness assumptions on H(θ), the above implies
that the following statements hold in V:

(a)′ If k : N −→ H(η) is a small embedding for κ and crit (k) < ν ∈ N is a
cardinal in N such that Φ(k, x) holds, x ∈ ran(k) and k(ν) > j(β), then
Φ(k � H(ν)N , x) holds.

(b)′ j(ϑ) > j(β) is a cardinal with x, j(z) ∈ H(j(ϑ)) and there is no small
embedding k : N −→ H(j(ϑ)) for κ with Φ(k, x) and j(z) ∈ ran(k).

Since j(ϑ) > j(β), we can apply the statement (a)′ to j : M −→ H(θ) and ϑ to
conclude that Φ(j � H(ϑ)M , x) holds in V. But we also have j(z) ∈ ran(j � H(ϑ)M )
and together these statements contradict (b)′. �

We now show that the above claim implies a somewhat stronger statement,
essentially allowing us to switch the quantifiers on z and on θ.

Lemma 3.4. Let (Φ, x) be restrictable and assume that κ is a cardinal with the
property that for sufficiently large cardinals θ, there is a small embedding j : M −→
H(θ) for κ with Φ(j, x) and x ∈ ran(j). Then for all sufficiently large cardinals θ
and for all z ∈ H(θ), there is a small embedding j : M −→ H(θ) for κ with Φ(j, x)
and z ∈ ran(j).

Proof. Fix a sufficiently large cardinal θ and some z ∈ H(θ). By Claim 3.3, there
is a cardinal θ′ and a small embedding j′ : M ′ −→ H(θ′) for κ with Φ(j′, x)

and z, θ ∈ ran(j′). Let j be the restriction of j′ to M = H((j′)−1(θ))M
′
. Then

j : M −→ H(θ) is a small embedding for κ with Φ(j, x) and z ∈ ran(j). �

4. Indescribable Cardinals

In this section, we provide small embedding characterizations for indescribable
cardinals. Recall that, given 0 < m,n < ω, a cardinal κ is Πm

n -indescribable if for
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every Πm
n -formula ϕ(A0, . . . , An−1) whose parameters A0, . . . , An−1 are subsets of

Vκ, the assumption Vκ |= ϕ(A0, . . . , An−1) implies that there is a δ < κ such that
Vδ |= ϕ(A0 ∩ Vδ, . . . , An−1 ∩ Vδ) (see for example [4, p. 295] for a definition of
the concepts used). Moreover, remember that, given an uncountable cardinal κ, a
transitive set M of cardinality κ is a κ-model if κ ∈ M , <κM ⊆ M and M is a
model of ZFC−. Our small embedding characterizations of indescribable cardinals
build on the following embedding characterization of these cardinals by Kai Hauser
(see [3, Theorem 1.3]).

Theorem 4.1 (Hauser). The following statements are equivalent for every inac-
cessible cardinal κ and all 0 < m,n < ω:

(i) κ is Πm
n -indescribable.

(ii) For every κ-model M , there is a transitive set N and an elementary embedding
j : M −→ N with crit (j) = κ such that the following statements hold:
(a) N has cardinality im−1(κ), <κN ⊆ N and j,M ∈ N .
(b) If m > 1, then im−2(κ)N ⊆ N .
(c) We have

Vκ |= ϕ ⇐⇒ (Vκ |= ϕ)N

for all Πm
n−1-formulas ϕ whose parameters are contained in N ∩Vκ+m.3

Note that, in case m > 1, the statement j,M ∈ N in (a) is a direct consequence
of (b). It is not explicitly mentioned, but easy to observe from the proof provided
in [3] that this can also be equivalently required in case m = 1 (for weakly compact
cardinals, this is in fact what became known as their Hauser characterization).
The above theorem allows us to characterize indescribable cardinals through small
embeddings, in two ways.

Lemma 4.2. Given 0 < m,n < ω, the following statements are equivalent for
every cardinal κ:

(i) κ is Πm
n -indescribable.

(ii) For all sufficiently large cardinals θ, there is a small embedding j : M −→ H(θ)
for κ with the property that

(Vcrit(j) |= ϕ)M =⇒ Vcrit(j) |= ϕ

for every Πm
n -formula ϕ whose parameters are contained in M ∩Vcrit(j)+1.

(iii) For all sufficiently large cardinals θ and all x ∈ Vκ+1, there is a small embed-
ding j : M −→ H(θ) for κ with x ∈ ran(j) and with the property that

(Vcrit(j) |= ϕ)M =⇒ Vcrit(j) |= ϕ

for every Πm
n -formula ϕ using only j−1(x) as a parameter.

Proof. First, assume that (i) holds. Pick a cardinal θ > im(κ) and a regular
cardinal ϑ > θ with H(θ) ∈ H(ϑ). Since κ is inaccessible, there is an elementary
submodel X of H(ϑ) of cardinality κ with κ + 1 ∪ {θ} ⊆ X and <κX ⊆ X. Let
π : X −→ M denote the corresponding transitive collapse. Then M is a κ-model
and Theorem 4.1 yields an elementary embedding j : M −→ N with crit (j) = κ
that satisfies the properties (a)–(c) listed in the Statement (ii) of Theorem 4.1.
Note that the assumption <κN ⊆ N implies that κ is inaccessible in N .

3Note that we write (Vκ |= ϕ)N to denote satisfaction for the higher order formula ϕ in the
model Vκ in N , i.e. k-th order variables are interpreted as elements of VNκ+k.
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Claim. We have

(Vκ |= ϕ)M =⇒ (Vκ |= ϕ)N

for all Πm
n -formulas ϕ whose parameters are contained in M ∩Vκ+1.

Proof of the Claim. Assume that (Vκ |= ϕ)M holds. This assumption implies that
Vκ |= ϕ holds, because π−1 � Vκ+1 = idVκ+1

and Vκ+m ∈ H(ϑ). By Statement (c)

of Theorem 4.1, we can conclude that (Vκ |= ϕ)N holds. �

Set θ∗ = π(θ), M∗ = H(θ∗)
M and j∗ = j � M∗. Since j,M ∈ N , we also have

j∗,M∗ ∈ N . Moreover, in N , the map j∗ : M∗ −→ H(j(θ∗))
N is a small embedding

for j(κ). If ϕ is a Πm
n -formula with parameters in M∗∩Vκ+1 such that (Vκ |= ϕ)M∗

holds, then θ > im(κ) implies that (Vκ |= ϕ)M holds, and we can use the above
claim to conclude that (Vκ |= ϕ)N holds. By elementarity, this shows that, in M ,
there is a small embedding j′ : M ′ −→ H(θ∗) for κ such that crit (j′) is inaccessible
and Vcrit(j′) |= ϕ holds for every Πm

n -formula ϕ with parameters in M ′ ∩Vcrit(j)+1

with the property that (Vcrit(j) |= ϕ)M
′

holds. Since Vκ+m ∈ H(ϑ), we can conclude

that π−1(j′) is a small embedding for κ witnessing that (ii) holds for θ.
Next, Lemma 3.4 shows that (iii) is a consequence of (ii). Hence, assume, towards

a contradiction, that (iii) holds and that there is a Πm
n -formula ϕ(x) with x ∈ Vκ+1,

Vκ |= ϕ(x) and Vδ |= ¬ϕ(x ∩ Vδ) for all δ < κ. Pick a regular cardinal θ > im(κ)
such that there is a small embedding j : M −→ H(θ) for κ that satisfies the
statements listed in (iii) with respect to x. Since Vκ+m ∈ H(θ), elementarity yields
that (Vcrit(j) |= ϕ(j−1(x)))M . Thus our assumptions on j allow us to conclude that

Vcrit(j) |= ϕ(j−1(x)), contradicting the above assumption. �

In the case m = 1, the equivalence between Statements (i) and (ii) in Lemma 4.2
can be rewritten in the following way, using the fact that we can canonically identify
Σn-formulas using parameters in H(crit (j)

+
) with Σ1

n-formulas using parameters

in Vcrit(j)+1, such that the given Σn-formula holds true in H(crit (j)
+

) if and only

if the corresponding Σ1
n-formula holds in Vcrit(j).

Corollary 4.3. Given 0 < n < ω, the following statements are equivalent for every
cardinal κ:

(i) κ is Π1
n-indescribable.

(ii) For all sufficiently large cardinals θ, there is a small embedding j : M −→ H(θ)

for κ such that H(crit (j)
+

)M ≺Σn H(crit (j)
+

). �

Lemma 4.2 directly shows that small embeddings witnessing Πm
n -indescribabili-

ty also witness all smaller degrees of indescribability. The following is also easy to
verify, which we leave for the interested reader to check.

Observation 4.4. Let κ be weakly compact cardinal. Any collection of small embed-
dings witnessing the Π1

1-indescribability of κ as in Corollary 4.3 (ii) also witnesses
the Mahloness of κ as in Statement (v) of Corollary 2.2. �

5. Subtle, Ineffable and λ-Ineffable Cardinals

In this section, we provide small embedding characterizations for ineffable, for
subtle, and for λ-ineffable cardinals. These large cardinal notions were introduced
in [5] and in [9]. They all rely on the following definition.
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Definition 5.1. Given a set A, a sequence 〈da | a ∈ A〉 is an A-list if da ⊆ a holds
for all a ∈ A.

An uncountable regular cardinal κ is subtle if for every κ-list 〈dα | α < κ〉 and
every club C in κ, there are α, β ∈ C with α < β and dα = dβ ∩ α.

Lemma 5.2. The following statements are equivalent for every cardinal κ:

(i) κ is subtle.

(ii) For all sufficiently large cardinals θ, for every κ-list ~d = 〈dα | α < κ〉 and for
every club C in κ, there is a small embedding j : M −→ H(θ) for κ such that
~d, C ∈ ran(j) and dα = dcrit(j) ∩ α for some α ∈ C ∩ crit (j).

Proof. First, assume first that κ is subtle. Pick a cardinal θ > κ, a club C in κ and

a κ-list ~d = 〈dα | α < κ〉. Let 〈Xα | α < κ〉 be a continuous and increasing sequence

of elementary substructures of H(θ) of cardinality less than κ with ~d, C ∈ X0 and
α ⊆ Xα ∩ κ ∈ κ for all α < κ. Set D = {α ∈ C | α = Mα ∩ κ}. Then D is a club
in κ and the subtlety of κ yields α, β ∈ D ⊆ C with α < β and dα = dβ ∩ α. Let
π : Xβ −→ M denote the transitive collapse of Xβ . Then π−1 : M −→ H(θ) is a

small embedding for κ with crit
(
π−1

)
= β, ~d, C ∈ ran(π−1) and dα = dcrit(π−1)∩α.

Now, assume that (ii) holds. Then Corollary 2.2 implies that κ is uncountable

and regular. Fix a κ-list ~d = 〈dα | α < κ〉 and a club C in κ. Let θ be a sufficiently
large cardinal such that there is a small embedding j : M −→ H(θ) for κ such that
~d, C ∈ ran(j) and dα = dcrit(j) ∩ α for some α ∈ C ∩ crit (j). Since C ∈ ran(j),
elementarity implies that crit (j) is a limit point of C and hence crit (j) ∈ C. �

Remark 5.3. Note that, unlike all other small embedding characterizations that
we provide in this paper, the above characterization of subtle cardinals is not based
on a correctness property between the domain model M and V. However, we think
that the above characterization is still useful. This will be supported by the results
of Section 7.

Adapting the proof of [1, Theorem 3.6.3], it is easy to verify the following. Since
we will make use of this result in Section 7, we will provide a proof for the sake of
completeness.

Lemma 5.4. Let κ be a subtle cardinal. Then there is a κ-list ~d and a club subset
C of κ with the property that whenever θ is a sufficiently large cardinal such that
there is a small embedding j : M −→ H(θ) for κ witnessing the subtlety of κ with

respect to ~d and C, as in Statement (ii) of Lemma 5.2, then crit (j) is a totally
indescribable cardinal.

In particular, any family of small embeddings witnessing the subtlety of κ as
in Statement (ii) of Lemma 5.2 witnesses that κ is a stationary limit of totally
indescribable cardinals, as in Statement (ii) of Lemma 2.1.

Proof. Let C be the club {α < κ | |Vα| = α} and let h : Vκ −→ κ be a bijection
with h[Vα] = α for all α ∈ C. Let ≺·, ·� denote the Gödel pairing function and let
~d = 〈dα | α < κ〉 be a κ-list with the following properties:

(i) If α ∈ C is not totally indescribable, then there is a Πm
n -formula ϕ and a

subset A of Vα such that these objects provide a counterexample to the Πm
n -

indescribability of α. Then dα = {≺0, dϕe�} ∪ {≺1, h(a)� | a ∈ A}, where
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dϕe ∈ ω is the Gödel number of ϕ in some fixed Gödelization of mth order set
theory.

(ii) Otherwise, dα is the empty set.

Let θ be a sufficiently large cardinal and let j : M −→ H(θ) be a small embedding

for κ that witnesses the subtlety of κ with respect to ~d and C, as in Lemma
5.2. Then crit (j) ∈ C. Assume for a contradiction that crit (j) is not totally
indescribable. Then there is a Πm

n -formula ϕ and a subset A of Vα such that
dα = {≺0, dϕe�} ∪ {≺1, h(a)� | a ∈ A}, Vcrit(j) |= ϕ(A) and Vα |= ¬ϕ(A ∩ Vα)
for all α < crit (j). By our assumptions, there is an α ∈ C ∩ crit (j) with dα =
dcrit(j) ∩ α. In this situation, our definition of dα ensures that the formula ϕ and
the subset A∩Vα of Vα provide a counterexample to the Πm

n -indescribability of α.
In particular, we know that Vα |= ϕ(A ∩Vα) holds, a contradiction. �

Next, we consider small embedding characterizations of λ-ineffable cardinals.
Remember that, given a regular uncountable cardinal κ and a cardinal λ ≥ κ, the

cardinal κ is λ-ineffable if for every Pκ(λ)-list ~d = 〈da | a ∈ Pκ(λ)〉, there exists a
subset D of λ such that the set {a ∈ Pκ(λ) | da = D ∩ a} is stationary in Pκ(λ).
Many of the ideas and techniques used in the remainder of this section are already
well-known and appear in the work of Magidor, Viale, Weiß and others (see for
example [9] and [14]). Nevertheless, these results fit nicely into the framework of
this paper and their formulation in terms of small embeddings will lead to new
applications presented in Section 7.

Lemma 5.5. The following statements are equivalent for all cardinals κ ≤ λ:

(i) κ is λ-ineffable.

(ii) For all sufficiently large cardinals θ and every Pκ(λ)-list ~d = 〈da | a ∈ Pκ(λ)〉,
there is a small embedding j : M −→ H(θ) for κ and δ ∈ M ∩ κ such that

j(δ) = λ, ~d ∈ ran(j) and j−1[dj[δ]] ∈M .4

Proof. Assume first that κ is λ-ineffable. Fix a Pκ(λ)-list ~d = 〈da | a ∈ Pκ(λ)〉 and
a cardinal θ with Pκ(λ) ∈ H(θ). Then the λ-ineffability of κ yields a subset D of
λ such that the set S = {a ∈ Pκ(λ) | da = D ∩ a} is stationary in Pκ(λ). In this

situation, we can find X ≺ H(θ) of cardinality less than κ such that ~d,D ∈ X,
X ∩ κ ∈ κ and X ∩ λ ∈ S. Let π : X −→ M denote the corresponding transitive
collapse. Then π(λ) < κ and π−1 : M −→ H(θ) is a small embedding for κ with
~d ∈ ran(π−1). Moreover, we have

π[dπ−1[π(λ)]] = π[dX∩λ] = π[D ∩X] = π(D) ∈M.

Now, assume that (ii) holds, and let ~d = 〈da | a ∈ Pκ(λ)〉 be a Pκ(λ)-list. Pick

a small embedding j : M −→ H(θ) for κ and δ ∈ M ∩ κ with j(δ) = λ, ~d ∈ ran(j)
and d = j−1[dj[δ]] ∈ P(δ)M . We define S = {a ∈ Pκ(λ) | da = j(d) ∩ a} ∈ ran(j).
Assume for a contradiction that the set S is not stationary in Pκ(λ). Then there is
a function F : Pω(λ) −→ Pκ(λ) with ClF ∩ S = ∅, where ClF denotes the set of all
a ∈ Pκ(λ) with F (b) ⊆ a for all b ∈ Pω(a). Since S ∈ ran(j), elementarity yields
a function F0 : Pω(δ) −→ Pcrit(j)(δ) in M with Clj(F0) ∩ S = ∅. Pick b ∈ Pω(j[δ]).

4Note that requiring δ < κ below should be seen as a smallness requirement on the domain
model M of the embedding. It can be read off from the proof below that we could equivalently

require that |M | is less than κ.
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Then b ∈ ran(j), and hence j−1(b) = j−1[b] ∈ M , and there is a ∈ ClMF0
with

j−1[b] ⊆ a ∈ Pcrit(j)(δ)
M . In this situation, we have

j(F0)(b) = j(F0(j−1[b])) ⊆ j(a) = j[a] ⊆ j[δ].

These computations show that j[δ] ∈ Clj(F0). But we also have

j(d) ∩ j[δ] = j[d] = dj[δ],

and this shows that j[δ] ∈ Clj(F0) ∩ S, a contradiction. �

A regular uncountable cardinal κ is ineffable if for every κ-list ~d = 〈dα | α < κ〉,
there exists a subset D of κ such that the set {α < κ | dα = D ∩ α} is stationary
in κ. Since κ is a club in Pκ(κ) for every uncountable regular cardinal κ, it is easy
to see that a cardinal κ is ineffable if and only if it is κ-ineffable. The above thus
in particular yields the following small embedding characterization of ineffability.

Corollary 5.6. The following statements are equivalent for every cardinal κ:

(i) κ is ineffable.

(ii) For all sufficiently large cardinals θ and for every κ-list ~d = 〈dα | α < κ〉, there

is a small embedding j : M −→ H(θ) for κ with ~d ∈ ran(j) and dcrit(j) ∈M . �

The following two observations are again easy to check. Note that the least
ineffable cardinal is not Π1

3-indescribable.

Observation 5.7. Assume that κ is ineffable, and that J is a family of small
embeddings witnessing the ineffability of κ, as in Statement (ii) of Corollary 5.6.
Then J witnesses that κ is subtle, as in Statement (ii) of Lemma 5.2, and that κ
is Π1

2-indescribable, as in Statement (iii) of Lemma 4.2. �

Observation 5.8. Assume that κ is λ-ineffable, and that κ ≤ λ̄ < λ. Then any
family of small embeddings witnessing that κ is λ-ineffable also witnesses that κ is
λ̄-ineffable, both in the sense of Statement (ii) of Lemma 5.5. �

The next result reformulates the proof of [14, Proposition 3.2] to derive a strength-
ening of Lemma 3.1 for many small embeddings witnessing λ-ineffability. We will
make use of this in Section 7 below.

Lemma 5.9. Let κ be a λ-ineffable cardinal. If λ = λ<κ, then there is a Pκ(λ)-list
~d and a set x with the property that whenever θ is a sufficiently large cardinal such
that there is a small embedding j : M −→ H(θ) for κ and δ ∈ M ∩ κ witnessing

the λ-ineffability of κ with respect to ~d, as in Statement (ii) of Lemma 5.5, then
x ∈ ran(j) implies that crit (j) is an inaccessible cardinal and Pcrit(j)(δ) ⊆M .

Proof. Fix a bijection f : Pκ(λ) −→ λ. Then Lemma 5.4 yields a club C in κ and
a κ-list ~e = 〈eα | α < κ〉 with the property that whenever θ is a sufficiently large
cardinal such that there is a small embedding j : M −→ H(θ) for κ witnessing
the subtlety of κ with respect to ~e and C as in Statement (ii) of Lemma 5.2, then
crit (j) is an inaccessible cardinal.

Let A denote the set of all a ∈ Pκ(λ) with the property that there is a cardinal
ϑa > λ and an elementary submodelXa of H(ϑa) such that f ∈ Xa, αa = Xa∩κ ∈ C
is inaccessible and Pαa(Xa ∩ λ) * Xa. Given a ∈ A, pick xa ∈ Pαa(Xa ∩ λ) \Xa.

Next, let ~d = 〈da | a ∈ Pκ(λ)〉 denote the unique Pκ(λ)-list such that da = xa for
all a ∈ A, da = ea∩κ for all a ∈ Pκ(λ) \A with a ∩ κ ∈ C, and da = ∅ otherwise.



12 PETER HOLY, PHILIPP LÜCKE, AND ANA NJEGOMIR

Now, let θ be a sufficiently large cardinal such that there is a small embedding

j : M −→ H(θ) and δ ∈M ∩ κ witnessing the λ-ineffability of κ with respect to ~d,
as in Statement (ii) of Lemma 5.5, such that f , ~e and C are contained in ran(j).
Assume for a contradiction that either crit (j) is not inaccessible or Pcrit(j)(δ) *M .

Next, assume also that j[δ] /∈ A. Since j[δ] ∩ κ = crit (j) ∈ C, j−1[dj[δ]] ∈ M
implies that ecrit(j) ∈ M . In this situation, the combination of Lemma 5.4 and
Observation 5.7 yields that crit (j) = j[M ]∩κ is inaccessible. Since our assumptions
imply that Pcrit(j)(j[M ] ∩ λ) * j[M ], we can conclude that j[M ] witnesses that
j[δ] ∈ A, a contradiction.

Hence j[δ] ∈ A. Since we know that crit (j) = αj[δ] and j−1[dj[δ]] ∈M , we know
that xj[δ] ∈ j[M ]. But this allows us to conclude that f(xj[δ]) ∈ λ ∩ j[M ] ⊆ Xj[δ]

and hence xj[δ] ∈ Xj[δ], a contradiction. �

6. Filter-based large cardinals

Next, we show that several large cardinal notions defined through the existence
of certain normal filters can also be characterized through the existence of small
embeddings. As for Section 2, most of the ideas used in the proofs of the results
presented in this section are quite elementary and are already present in earlier work
(see for example [13, Section 3]). However, in our present setting, these arguments
show that many more large cardinal notions fit into our uniform framework of small
embedding characterizations. We start by considering λ-supercompact cardinals.

Lemma 6.1. The following statements are equivalent for all cardinals κ ≤ λ:

(i) κ is λ-supercompact.
(ii) For all sufficiently large cardinals θ, there is a small embedding j : M −→ H(θ)

for κ and δ ∈M ∩ κ such that j(δ) = λ and

{A ∈ P(Pcrit(j)(δ))
M | j[δ] ∈ j(A)} ∈ M.

Proof. Assume that there is a normal ultrafilter U on Pκ(λ) witnessing the λ-
supercompactness of κ. Let jU : V −→ Ult(V, U) denote the corresponding ultra-
power embedding. Then λ < jU (κ). Fix a cardinal θ with U ∈ H(θ) and an elemen-
tary submodel X of H(θ) of cardinality λ with {U}∪ (λ+1) ⊆ X. Let π : X −→ N
denote the corresponding transitive collapse. Then the closure of Ult(V, U) under
λ-sequences in V implies that the map k = jU ◦ π−1 : N −→ H(jU (θ))Ult(V,U) is an
element of Ult(V,U), and this map is a small embedding for jU (κ) with crit (k) = κ
and k(λ) = jU (λ) in Ult(V, U). Then k[λ] = jU [λ] and therefore we have

k[λ] ∈ k(A) ⇐⇒ jU [λ] ∈ jU (π−1(A)) ⇐⇒ π−1(A) ∈ U ⇐⇒ A ∈ π(U)

for all A ∈ P(Pκ(λ))N . These computations show that

π(U) = {A ∈ P(Pκ(λ))N | k[λ] ∈ k(A)} ∈ N.

In this situation, we can use elementarity between V and Ult(V, U) to find a small
embedding j : M −→ H(θ) for κ and δ ∈ M such that δ < κ, j(δ) = λ and
{A ∈ P(Pcrit(j)(δ))

M | j[δ] ∈ j(A)} ∈M .
Now, assume that (ii) holds. Fix a cardinal θ such that P(Pκ(λ)) ∈ H(θ) and

such that there is a small embedding j : M −→ H(θ) for κ and δ ∈M ∩κ as in (ii).
Then the set U of all A ∈ P(Pcrit(j)(δ))

M with j[δ] ∈ j(A) is an element of M and
the assumption δ < κ implies that this set is a normal ultrafilter on Pcrit(j)(δ) in
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M . Since P(Pκ(λ)) ∈ H(θ), we can conclude that j(U) is a normal filter on Pκ(λ)
that witnesses the λ-supercompactness of κ. �

In particular, the above easily yields the following small embedding characteri-
zation of measurable cardinals.

Corollary 6.2. The following statements are equivalent for every cardinal κ:

(i) κ is measurable.
(ii) For all sufficiently large cardinals θ, there is a small embedding j : M −→ H(θ)

for κ with
{A ∈ P(crit (j))M | crit (j) ∈ j(A)} ∈ M. �

The following two observations are again based on well-known implications be-
tween the relevant large cardinals, and easy to verify.

Observation 6.3. Assume that κ is measurable.

(i) Every embedding j witnessing the measurability of κ as in Statement (ii) of
Corollary 6.2 also witnesses that κ is a stationary limit of Ramsey cardinals,
as in Statement (ii) of Lemma 2.1.

(ii) Assume that for every z ∈ Vκ+1, Jz is a family of small embeddings j wit-
nessing the measurability of κ as in Statement (ii) of Corollary 6.2, with
z ∈ ran(j).5 Then the family J =

⋃
{Jz | z ∈ Vκ+1} witnesses that κ is

Π2
1-indescribable, as in Statement (iii) of Lemma 4.2, and that κ is ineffable,

as in Statement (ii) of Corollary 5.6. �

Observation 6.4. Let κ be a λ-supercompact cardinal, and assume that κ ≤ λ̄ < λ.

(i) If j is a small embedding witnessing the λ-supercompactness of κ, as in State-
ment (ii) of Lemma 6.1, and with λ̄ ∈ ran(j), then j witnesses the λ̄-super-
compactness of κ, again as in Statement (ii) of Lemma 6.1.

(ii) Assume that for every z ∈ Vκ+1, Jz is a family of small embeddings j wit-
nessing the λ-supercompactness of κ, as in Statement (ii) of Lemma 6.1, and
with z ∈ ran(j). Then J =

⋃
z∈Vκ+1

Jz witnesses the λ-ineffability of κ, as in

Statement (ii) of Lemma 5.5. �

The next proposition shows that the domain models of small embeddings witness-
ing λ-supercompactness possess certain closure properties. These closure proper-
ties connect the characterization of supercompactness provided by Lemma 6.1 with
Magidor’s characterization of supercompactness mentioned in the introduction to
this paper.

Proposition 6.5. Let κ be a λ-supercompact cardinal and let j : M −→ H(θ) be a
small embedding for κ witnessing the λ-supercompactness of κ, as in Statement (ii)
of Lemma 6.1. If δ ∈M ∩κ with j(δ) = λ and x ∈ P(crit (j))M , then j(x)∩δ ∈M .
Moreover, if λ is a strong limit cardinal, then δ is a strong limit cardinal and
H(δ) ∈M .

Proof. Fix some x ∈ P(crit (j))M . Given γ < δ, set

Aγ = {a ∈ Pcrit(j)(δ)
M | γ ∈ a, otp (a ∩ γ) ∈ x}.

Then
j[δ] ∈ j(Aγ) ⇐⇒ otp (j[δ] ∩ j(γ)) ∈ j(x) ⇐⇒ γ ∈ j(x)

5This latter additional assumption is harmless by Lemma 3.4.
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for all γ < δ. By our assumptions, these equivalences imply that the subset j(x)∩δ
is definable in M .

Now, assume that λ is a strong limit cardinal. Fix a sequence s = 〈sα | α < crit (j)〉
in M such that sα : (2|α|)M −→ P(α)M is a bijection for every α < crit (j). Define

x = {≺α,≺β, γ�� | α < crit (j), β < 2|α|, γ ∈ sα(β)} ∈ P(crit (j))M .

Elementarity implies that δ is a strong limit cardinal in M , and the above com-
putations show that j(x) ∩ δ is an element of M . Assume for a contradiction that
δ is not a strong limit cardinal. Pick a cardinal ν < δ with 2ν ≥ δ. Then the
injection j(s)ν � δ : δ −→ P(ν) can be defined from j(x) ∩ δ, and therefore this
function is contained in M , a contradiction. Since the above computations show
that the sequence 〈j(s)α | α < δ〉 can be defined from the subset j(x)∩ δ of δ, and
this subset is contained in M , it follows that H(δ) is an element of M . �

Next, we turn our attention to huge cardinals and their generalizations. Remem-
ber that, given 0 < n < ω, an uncountable cardinal κ is n-huge if there is a sequence
κ = λ0 < λ1 < . . . < λn of cardinals and a κ-complete normal ultrafilter U on P(λn)
with {a ∈ P(λn) | otp (a ∩ λi+1) = λi} ∈ U for all i < n. A cardinal is huge if it
is 1-huge. Note that, if λ0 < λ1 < . . . < λn and U witness the n-hugeness of κ
and jU : V −→ Ult(V, U) is the induced ultrapower embedding, then crit (jU ) = κ,
jU (λi) = λi+1 for all i < n, U = {A ∈ P(P(λn)) | jU [λn] ∈ jU (A)} and Ult(V, U)
is closed under λn-sequences. In particular, each λi is measurable. Moreover, since
U concentrates on the subset [λn]λn−1 of all subsets of λn of order-type λn−1, we
may as well identify U with an ultrafilter on this set of size λn.

The proof of the next lemma is essentially as the proof for the analogous state-
ment about λ-supercompactness above, and will thus be omitted.

Lemma 6.6. Given 0 < n < ω, the following statements are equivalent for all
cardinals κ:

(i) κ is n-huge.
(ii) For all sufficiently large cardinals θ, there is a small embedding j : M −→ H(θ)

for κ such that ji(crit (j)) ∈M for all i ≤ n and

{A ∈ P(P(jn(crit (j))))M | j[jn(crit (j))] ∈ j(A)} ∈ M. �

The next lemma shows that the domain models of small embeddings witnessing
n-hugeness also possess certain closure properties. These closure properties will
directly imply that these embeddings also witness weaker large cardinal properties
in the observation below.

Lemma 6.7. Let 0 < n < ω, let κ be an n-huge cardinal and let j : M −→ H(θ)
be a small embedding for κ witnessing the n-hugeness of κ, as in Statement (ii)
of Lemma 6.6. Then P(jn(crit (j))) ∩ ran(j) is contained in M . In particular,
H(jn(crit (j))) is an element of M .

Proof. Fix A ∈ P(jn−1(crit (j)))M . Given γ < jn(crit (j)), define

Aγ = {a ∈ P(jn(crit (j)))M | γ ∈ a, otp (a ∩ γ) ∈ A}.
For each γ < jn(crit (j)), we then have

Aγ ∈ U ⇐⇒ j[jn(crit (j))] ∈ j(Aγ) ⇐⇒ otp (j(γ) ∩ j[jn(crit (j))]) ∈ j(A)

⇐⇒ otp (j[γ]) ∈ j(A) ⇐⇒ γ ∈ j(A).
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This shows that j(A) is equal to the set {γ < jn(crit (j)) | Aγ ∈ U}. Since the
sequence 〈Aγ | γ < jn(crit (j))〉 is an element of M , this shows that j(A) ∈M .

The final statement of the lemma follows from the fact that elementarity im-
plies that there is a subset of jn(crit (j)) in ran(j) that codes all elements of
H(jn(crit (j))). �

Observation 6.8. Let 0 < n < ω, let κ be an n-huge cardinal, and let j be a
small embedding witnessing the n-hugeness of κ, as in Statement (ii) of Lemma
6.6. If 0 < m < n, then j also witnesses the m-hugeness of κ, as in Statement
(ii) of Lemma 6.6. If κ ≤ λ < j(κ) and λ ∈ ran(j), then j also witnesses the
λ-supercompactness of κ, as in Statement (ii) of Lemma 6.1. �

7. On a theorem by Christoph Weiß

In the remainder of this paper, we use the theory developed above to study the
consistency of certain generalized tree properties at small cardinals. These proper-
ties are obtained by restricting the large cardinal properties defining λ-ineffable and
subtle cardinals through the notion of slenderness to obtain strong combinatorial
principles that can consistently be valid at smaller cardinals. The concept of slen-
derness originates from work of Saharon Shelah, and was isolated and studied by
Christoph Weiß in [15] and [16]. The following definition contains the formulations
of the relevant concepts used in this section.

Definition 7.1. Let κ be an uncountable regular cardinal and let λ ≥ κ be a
cardinal.

(i) A κ-list 〈dα | α < κ〉 is slender if there is a club C in κ with the property that
for every γ ∈ C and every α < γ, there is a β < γ with dγ ∩ α = dβ ∩ α.

(ii) SSP(κ) is the statement that for every slender κ-list 〈dα | α < κ〉 and every
club C in κ, there are α, β ∈ C such that α < β and dα = dβ ∩ α.

(iii) A Pκ(λ)-list 〈da | a ∈ Pκ(λ)〉 is slender if for every sufficiently large cardinal
θ, there is a club C in Pκ(H(θ)) with b ∩ dX∩λ ∈ X for all X ∈ C and all
b ∈ X ∩ Pω1

(λ).
(iv) ISP(κ, λ) is the statement that for every slender Pκ(λ)-list 〈da | a ∈ Pκ(λ)〉,

there exists D ⊆ λ such that the set {a ∈ Pκ(λ) | da = D ∩ a} is stationary in
Pκ(λ).

The following theorem summarizes the upper bounds for the consistency strength
of the principles SSP(κ) and ISP(κ, λ) presented in [15] and [16]. Remember that,
given transitive classes M ⊆ N , the pair (M,N) satisfies the ω1-approximation
property if A ∈M holds for all A ∈ N with A ⊆M and A∩x ∈M for every x ∈M
which is countable in M . Moreover, such a pair (M,N) satisfies the ω1-covering
property if whenever A ∈ N is countable in N and A ⊆M , then there is a B ∈M
which is countable in M and satisfies A ⊆ B.

Theorem 7.2 (Weiß, [15, Theorem 2.3.1] & [16, Theorem 5.4]). Let τ < κ ≤ λ be

cardinals with τ uncountable and regular, and let ~P = 〈〈~P<α | α ≤ κ〉, 〈Ṗα | α < κ〉〉
be a forcing iteration such that the following statements hold for all inaccessible
cardinals η ≤ κ:
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(i) ~P<η ⊆ H(η)6 is the direct limit of 〈〈P<α | α < η〉, 〈Ṗα | α < η〉〉 and satisfies
the η-chain condition.

(ii) If G is ~P<κ-generic over V and Gη is the filter on ~P<η induced by G, then
the pair (V[Gη],V[G]) satisfies the ω1-approximation property.

(iii) If α < η, then P<α is definable in H(η) from the parameters τ and α.

Then the following statements hold:

(1) If κ is a subtle cardinal, then 1~P<κ  SSP(κ̌).

(2) If κ is an ineffable cardinal, then 1~P<κ  ISP(κ̌, κ̌).

(3) Assume that ~P also satisfies the following statement for all inaccessible cardi-
nals η ≤ κ:

(iv) If Gη is ~P<η-generic over V, then the pair (V,V[Gη]) satisfies the ω1-
covering property.

Then, if κ is λ<κ-ineffable for some cardinal λ ≥ κ, then 1~P<κ  ISP(κ̌, λ̌).

As pointed out in [16, Section 5], William Mitchell’s classical proof of the consis-
tency of the tree property at successors of regular cardinals in [10] shows that for
every uncountable regular cardinal τ and every inaccessible cardinal κ > τ , there

is a forcing iteration ~P satisfying the Statements (i)-(iv) listed in Theorem 7.2 such

that 1~P<κ  “ κ̌ = τ̌+ ” and forcing with ~P<κ preserves all cardinals less than or

equal to τ .
In the following, we discuss what appears to be a serious problem in the argu-

ments used to derive the above statements in [15] and [16]. Afterwards, we present
new proofs for (slight strengthenings of) the statements listed in Theorem 7.2.
These arguments will make heavy use of the small embedding characterizations of
subtlety and of λ-ineffability from Section 5.

We would first like to point out where the problematic step in Weiß’s proof of
Statements (2) and (3) seems to be, and argue that it is indeed a problem, for
Weiß’s proof would in fact yield a stronger result, one that is provably wrong. Let

κ be a λ-ineffable cardinal with λ = λ<κ, let ~P = 〈〈~P<α | α ≤ κ〉, 〈Ṗα | α < κ〉〉
be a forcing iteration satisfying Statements (i)-(iv) listed in Theorem 7.2, let G

be ~P<κ-generic over V, and let ~d = 〈da | a ∈ Pκ(λ)V[G]〉 be a slender Pκ(λ)-list
in V[G]. The proofs of [15, Theorem 2.3.1] and [16, Theorem 5.4] then claim that
there is a stationary subset T of Pκ(λ) in V and d ∈ P(λ)V[G] such that da = d∩ a
holds for all a ∈ T . Since ~P<κ satisfies the κ-chain condition in V and therefore
preserves the stationarity of T , this argument would actually yield a strengthening
of ISP(κ, λ) stating that every instance of the principle is witnessed by a stationary
subset of Pκ(λ) contained in the ground model V. In particular, this conclusion

would imply that if G is ~P<κ-generic over V and 〈dα | α < κ〉 is a κ-list in V[G],
then there is a stationary subset S of κ in V such that dα = dβ ∩ α holds for all
α, β ∈ S with α < β. The following proposition shows that this statement provably

fails if forcing with ~P<κ destroys the ineffability of κ.

Proposition 7.3. Let 〈〈~P<α | α ≤ κ〉, 〈Ṗα | α < κ〉〉 be a forcing iteration with the

property that κ is an uncountable regular cardinal, ~P<κ is a direct limit and ~P<κ
satisfies the κ-chain condition. Let G be ~P<κ-generic over V and, given α < κ, let

6Following [16], we make use of the convention that conditions in forcing iterations are only
defined on their support.
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Gα denote the filter on ~P<α induced by G. Then one of the following statements
holds:

(i) There is an α < κ such that for all α ≤ β < κ, the partial order ṖGββ is trivial.

(ii) There is a slender κ-list 〈dα | α < κ〉 in V[G] with the property that for every
stationary subset S of κ in V, there are α, β ∈ S with α < β and dα 6= dβ ∩α.

Proof. Pick a sequence 〈〈q̇0
α, q̇

1
α〉 | α < κ〉 in V such that the following statements

hold for all α < κ:

(i) q̇α,0 and q̇α,1 are both ~P<α-names for a condition in Ṗα.

(ii) If H is ~P<α-generic over V, then the conditions q̇Hα,0 and q̇Hα,1 are compatible

in ṖHα if and only if the partial order ṖHα is trivial.

Now, assume that (i) fails, and work in V[G]. Let g : κ −→ κ denote the unique
function with the property that for all β < κ, g(β) is the minimal ordinal greater

than or equal to supα<β g(α) such that ṖGg(β)g(β) is a non-trivial partial order. Since

~P<κ satisfies the κ-chain condition, there is a club subset C of κ in V with g(α) < β

for all α < β whenever β ∈ C. Let ~d = 〈dα | α < κ〉 denote the unique κ-list with
the property that

dα = 0 ⇐⇒ dα 6= 1 ⇐⇒ q̇
Gg(α)

g(α),0 ∈ G
g(α)

holds for every α < κ, where Gβ denotes the filter on ṖGββ induced by G for all

β < κ. Then ~d is a slender κ-list.
Assume for a contradiction that there is a stationary subset S of κ in V such that

dα = dβ ∩ α holds for all α, β ∈ S with α < β. Then there is an i < 2 with dα = i

for all α ∈ S. Let ġ be a ~P<κ-name for a function from κ to κ with g = ġG and let ḋ

be a ~P<κ-name for a κ-list with ~d = ḋG. Let p be a condition in G forcing all of the

above statements. Pick a condition q in ~P<κ below p. Then there is α ∈ C ∩S with

q ∈ ~P<α. By density, we can find a condition s ∈ G below q, and α ≤ β < κ with

g(α) = β, s ∈ ~P<β+1 and s(β) = q̇β,1−i. But then ṖGββ is non-trivial, q̇
Gβ
β,1−i ∈ Gβ

and dα = 1− i, a contradiction. �

In the argument that is supposed to prove Theorem 7.2 (2) and (3), Weiß con-
structs a club C in Pκ(λ) in V such that da ∈ V[Ga∩κ] holds for every a ∈ C with
the property that a∩ κ is an inaccessible cardinal in V. The problematic step then
seems to be his conclusion that there exists a sequence 〈ḋa | a ∈ C〉 in V with the

property that for all a ∈ C with a∩ κ inaccessible in V, ḋa is a ~P<(a∩κ)-name with

da = ḋGa . Assuming the existence of such a sequence of names in V, it is easy to

code the name ḋa as a subset of a and then use the λ-ineffability of κ in V to obtain
a stationary subset of Pκ(λ) in V that witnesses the strengthening of ISP(κ, λ)
formulated above. Therefore, the above proposition shows that such a sequence
cannot exist in the ground model V. The same kind of problematic step is used in
the proof of Statement (1) of Theorem 7.2 presented in [15].

In the following, we will use the theory of small embeddings developed in this
paper to present a different proof of Theorem 7.2. In fact, our results will yield a
slight strengthening of the statements listed in Theorem 7.2, because, in contrast
to these statements, our proofs do not rely on any kind of definability assumption
and, in the case of λ-ineffable cardinals, we will not need to assume any kind of
covering property of our iteration.
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The following result shows how the consistency of SSP(κ) at a successor cardinal
κ can be established from a subtle cardinal – by the results of [10], there are forcing
iterations with the properties listed below, and which turn an inaccessible cardinal
into the successor of an uncountable regular cardinal.

Theorem 7.4. Let ~P = 〈〈~P<α | α ≤ κ〉, 〈Ṗα | α < κ〉〉 be a forcing iteration with
κ an uncountable and regular cardinal, such that the following statements hold for
all inaccessible ν ≤ κ:

(i) ~P<ν ⊆ H(ν) is the direct limit of 〈〈~P<α | α < ν〉, 〈Ṗα | α < ν〉〉 and satisfies
the ν-chain condition.

(ii) If G is ~P<κ-generic over V and Gν is the filter on ~P<ν induced by G, then the
pair (V[Gν ],V[G]) satisfies the ω1-approximation property.

Then, if κ is a subtle cardinal, 1~P<κ  SSP(κ̌).

Proof. Let ḋ be a ~P<κ-name for a slender κ-list, let Ċ0 be a ~P<κ-name for a club

in κ that witnesses the slenderness of ḋ, and let Ċ1 be a ~P<κ-name for a club in

κ. Since ~P<κ satisfies the κ-chain condition, there is a club C ⊆ Lim in κ such
that 1~P<κ  “ Č ⊆ Ċ0 ∩ Ċ1 ”, and such that all elements of C are closed under the

Gödel pairing function ≺·, ·�. Given α < κ, let ḋα be a ~P<κ-nice name for the α-th

component of ḋ. Pick a regular cardinal θ > 2κ with ḋ, C, Ċ0, Ċ1, ~P ∈ H(θ), which
is sufficiently large with respect to Statement (ii) in Lemma 5.2. Define A to be
the set of all inaccessible cardinals ν < κ with the property that there is a small

embedding j : M −→ H(θ)V for κ with crit (j) = ν and ḋ, C, Ċ0, Ċ1, ~P ∈ ran(j).
Note that elementarity implies that A is a subset of C.

Claim. If ν ∈ A and G is ~P<κ-generic over V, then ḋGν ∈ V[Gν ].

Proof of the Claim. Fix a countable set x in V[Gν ]. By our assumptions on ~P, the
cardinal ν is uncountable and regular in V[Gν ]. Hence, there is an α < ν with

x ∩ ν ⊆ α. Since ν ∈ C ⊆ ĊG0 , the slenderness of ḋG in V[G] yields a β < ν

with ḋGν = ḋGβ ∩ α. Let j : M −→ H(θ)V be a small embedding for κ in V that

witnesses that ν is an element of A. Since ḋ ∈ ran(j) and β < ν = crit (j), we know

that ḋβ ∈ M is a ~P<ν-name with j(ḋβ) = ḋβ . Next, note that our assumptions

on ~P imply that ~P<ν ∈ M , j(~P<ν) = ~P<κ and j � ~P<ν = id~P<ν . In particular,

if we define jG(ẋGν ) = j(ẋ)G for all ~P<ν-names ẋ in M , then the resulting map
jG : M [Gν ] −→ H(θ)V[G] is a small embedding for κ in V[G] that extends j and

satisfies ḋG, ĊG ∈ ran(jG). But this allows us to conclude that

ḋGβ = j(ḋβ)G = jG(ḋGνβ ) = ḋGνβ ∈ M [Gν ] ⊆ V[Gν ]

and hence ḋGν ∩x = ḋGβ ∩x = ḋGνβ ∩x ∈ V[Gν ]. Since the pair (V[Gν ],V[G]) satisfies

the σ-approximation property, the above computations show that ḋGν ∈ V[Gν ]. �

Now, work in V, fix a condition p in ~P<κ, and let A∗ denote the set of all ν ∈ A
with p ∈ ~P<ν . With the help of the above claim and the fact that ~P<κ satisfies
the κ-chain condition, we find a function g : A∗ −→ κ and sequences 〈qν | ν ∈ A∗〉,
〈ṙν | ν ∈ A∗〉 and 〈ėν | ν ∈ A∗〉, such that the following statements hold for all
ν ∈ A∗:
(1) g(ν) > ν and ḋν is a ~P<g(ν)-name.
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(2) qν is a condition in ~P<ν below p.

(3) ṙν is a ~P<ν-name for a condition in the corresponding tail forcing Ṗ[ν,g(ν)).
7

(4) ėν is a ~P<ν-name for a subset of ν with the property that

〈qν , ṙν〉 ~P<ν∗Ṗ[ν,g(ν))
“ ḋν = ėν ”.

Given ν ∈ A∗, let Eν denote the set of all triples 〈s, β, i〉 ∈ ~P<ν × ν × 2 ⊆ H(ν)
satisfying

s ~P<ν “ β̌ ∈ ėν ←→ i = 1”.

Using Lemma 5.4, we find a κ-list ~c = 〈cα | α < κ〉 and a club C∗ in κ with the
property that crit (j) is a totally indescribable cardinal whenever j : M −→ H(θ)
is a small embedding for κ witnessing the subtlety of κ with respect to ~c and C∗,
as in Statement (ii) of Lemma 5.2. Fix a bijection f : κ −→ H(κ) with f [ν] = H(ν)

for every inaccessible cardinal ν < κ. Let ~d = 〈dα | α < κ〉 be the unique κ-list
such that the following statements hold for all α < κ:

(a) If α ∈ A∗, then

dα = {≺0, 0�} ∪ {≺f−1(qα), 1�} ∪ {≺f−1(e), 2� | e ∈ Eα} ⊆ α.

(b) If ω ⊆ α /∈ A∗ and α is closed under ≺·, ·�, then

dα = {≺1, 0�} ∪ {≺β, 1� | β ∈ cα} ⊆ α.

(c) Otherwise, dα is the empty set.

Let j : M −→ H(θ) be a small embedding for κ witnessing the subtlety of

κ with respect to ~d and C ∩ C∗, as in Statement (ii) of Lemma 5.2, such that

~c, ḋ, f, g, p, C,C∗, Ċ0, Ċ1, ~P ∈ ran(j). Set ν = crit (j) and pick α ∈ C ∩ C∗ ∩ ν with
dα = dν ∩ α. Then ω ≤ α < ν and both α and ν are closed under ≺·, ·�.

Claim. ν ∈ A∗.

Proof of the Claim. Assume for a contradiction that ν /∈ A∗. This implies that
≺1, 0� ∈ dα and therefore α /∈ A∗. But then cα = cν ∩ α, and j witnesses the
subtlety of κ with respect to ~c and C∗, as in Statement (ii) of Lemma 5.2. By the
choices of ~c and C∗, this implies that ν is inaccessible, and hence j witnesses that
ν is an element of A∗, a contradiction. �

The above claim shows that ν ∈ A∗, ≺0, 0� ∈ dν ∩ α = dα, α ∈ A∗, g(α) < ν,

qα = qν ∈ ~P<α and Eα ⊆ Eν . Pick a condition u in ~P<κ such that the canonical

condition in ~P<α ∗ Ṗ[α,ν) corresponding to u � ν is stronger than 〈qα, ṙα〉 and the

canonical condition in ~P<ν ∗ Ṗ[ν,κ) corresponding to u is stronger than 〈u � ν, ṙν〉.
Let G be ~P<κ-generic over V with u ∈ G. Then we have ḋGα = ėGαα ∈ V[Gα], and

ḋGν = ėGαν ∈ V[Gν ]. If β ∈ ḋGα , then there is s ∈ Gα ⊆ Gν with 〈s, β, 1〉 ∈ Eα ⊆ Eν ,

and this implies that β ∈ ḋGν . In the other direction, if β ∈ α \ ḋGα , then there

is s ∈ Gα with 〈s, β, 0〉 ∈ Eα, and hence β /∈ ḋGν . Therefore we have α < ν,

α, ν ∈ A∗ ⊆ C ⊆ ĊG1 and ḋGα = ḋGν ∩ α. Through a standard density argument,
these computations now imply the conclusion of the theorem. �

7Let us point out that the problematic argument in Weiß’s original proof can be seen as him
assuming that the name ṙν is just the name for the trivial condition in the corresponding tail

forcing.
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A variation of the above proof, using Lemma 5.9, allows us to establish the
consistency of the principle ISP(κ, λ) for accessible cardinals κ with the help of small
embeddings. Note that since λ<κ = (λ<κ)<κ and ISP(κ, λ<κ) implies ISP(κ, λ)
(see [16, Proposition 3.4]), the following result implies Statements (2) and (3) of
Theorem 7.2. Moreover, note that results of Chris Johnson in [6] show that if κ is
λ-ineffable and cof(λ) ≥ κ, then λ = λ<κ (see also [15, Proposition 1.5.4]).

Theorem 7.5. Let κ be a cardinal, and let ~P = 〈〈~P<α | α ≤ κ〉, 〈Ṗα | α < κ〉〉 be a
forcing iteration satisfying the statements listed in Theorem 7.4. If κ is a λ-ineffable
cardinal with λ = λ<κ, then 1~P<κ  ISP(κ̌, λ̌).

Proof. Let ḋ be a ~P<κ-name for a slender Pκ(λ)-list, let θ > 2λ be a cardinal

and let Ḟ be a ~P<κ-name for a function from Pω(H(θ)) to Pκ(H(θ)) such that the

club ClḞ in Pκ(H(θ)) witnesses the slenderness of ḋ. Given a ∈ Pκ(λ), let ḋa be

a ~P<κ-nice name for the a-th component of ḋ. Fix a bijection f : κ −→ H(κ)
with f [ν] = H(ν) for every inaccessible cardinal ν < κ. Pick a regular cardinal

ϑ > θ with ḋ, Ḟ , ~P ∈ H(ϑ), which is sufficiently large with respect to Statement
(ii) in Lemma 5.5. Define A to be the set of all a ∈ Pκ(λ) with the property that
there is a small embedding j : M −→ H(ϑ) for κ and an ordinal δ ∈ M ∩ κ such
that j(δ) = λ, a = j[δ], ν(a) = a ∩ κ is an inaccessible cardinal, crit (j) = ν(a),

Pν(a)(δ) ⊆M and ḋ, f, Ḟ , ~P ∈ ran(j).

Claim. If a ∈ A and G is ~P<κ-generic over V, then ḋGa ∈ V[Gν(a)].

Proof of the Claim. Fix a countable set x in V[Gν(a)]. Pick a small embedding

j : M −→ H(ϑ)V for κ in V and an ordinal δ ∈ M ∩ κ that witness that a is an
element of A. Then elementarity yields an ordinal η ∈M with j(η) = θ. Moreover,

we have ~P<ν(a) ∈ M , j(~P<ν(a)) = ~P<κ, j � ~P<ν(a) = id~P<ν(a) and hence there is a

canonical small embedding jG : M [Gν(a)] −→ H(ϑ)V[G] for κ in V[G] that extends

j. Set y = j−1[a ∩ x] ∈ Pω1(δ)V[Gν(a)]. Since Pν(a)(δ)
V ⊆ M and ~P<ν(a) satisfies

the ν(a)-chain condition in V, we also know that Pν(a)(δ)
V[Gν(a)] ⊆ M [Gν(a)] and

therefore y ∈ Pν(a)(δ)
M [Gν(a)]. Moreover, we have ḞG ∈ ran(jG) and, as in the

proof of Lemma 5.5, this implies that jG[H(η)M [Gν(a)]] ∈ ClḞG . Since

a ∩ x = j[y] = jG(y) ∈ jG[H(η)M [Gν(a)]] ∩ Pω1(λ)V[G],

the slenderness of ḋG in V[G] yields a d ∈ Pω1(δ)M [Gν(a)] with jG(d) = ḋGa ∩x. But

this allows us to conclude that ḋGa ∩ x = jG(d) = j[d] ∈ V[Gν(a)]. Since the pair
(V[Gν(a)],V[G]) satisfies the σ-approximation property, these computations show

that ḋGa is an element of V[Gν(a)]. �

In the following, we work in V. Fix a condition p in ~P<κ and let A∗ denote the

set of all a ∈ A with q ∈ ~P<ν(a). Then all elements of A∗ are closed under ≺·, ·�
and, with the help of the above claim and the fact that ~P<κ satisfies the κ-chain
condition, we find sequences 〈qa | a ∈ A∗〉, 〈ṙa | a ∈ A∗〉 and 〈ėa | a ∈ A∗〉 such that
the following statements hold for all a ∈ A∗:
(1) q(a) is a condition in ~P<ν(a) below p.

(2) ṙa is a ~P<ν(a)-name for a condition in the corresponding tail forcing Ṗ[ν(a),κ).

(3) ėa is a ~P<ν(a)-nice name for a subset of a with 〈qa, ṙa〉 ~P<ν(a)∗Ṗ[ν(a),κ)
“ ḋa = ėa ”.
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Let ~c = 〈ca | a ∈ Pκ(λ)〉 be the Pκ(λ)-list given by an application of Lemma 5.9

and define ~d = 〈da | a ∈ Pκ(λ)〉 to be the unique Pκ(λ)-list with

da = {≺f−1(s), β� | 〈β̌, s〉 ∈ ėa} ⊆ a

for all a ∈ A∗ and da = ca for all a ∈ Pκ(λ) \ A∗. Pick a small embedding
j : M −→ H(ϑ) for κ and δ ∈ M ∩ κ that witness the λ-ineffability of κ with

respect to ~d, as in Statement (ii) of Lemma 5.5, such that ~c, ḋ, f, Ḟ , p, ~P ∈ ran(j).

Claim. j[δ] ∈ A∗.

Proof of the Claim. Assume for a contradiction that j[δ] /∈ A∗. Then dj[δ] = cj[δ]
and therefore j−1[cj[δ]] ∈M . This shows that j and δ witness the λ-ineffability of κ
with respect to ~c. By the definition of ~c, this implies that crit (j) is an inaccessible
cardinal and Pcrit(j)(δ) ⊆M . But this shows that the embedding j and the ordinal
δ witness that j[δ] is an element of A∗, a contradiction. �

Set ν = crit (j) = j[δ]∩ κ = ν(j[δ]), and pick a condition u in ~P<κ such that the

canonical condition in ~P<ν ∗ Ṗ[ν,κ) corresponding to u is stronger than 〈qj[δ], ṙj[δ]〉.
Let G be ~P<κ-generic over V with u ∈ G and set S = j−1[ḋGj[δ]] ⊆ δ.

Claim. S ∈M [Gν ].

Proof of the Claim. Since j[δ] ∈ A∗, an earlier claim yields ḋGj[δ] = ė
Gj
j[δ] ∈ V[Gν ].

Given γ < δ, we know that j(γ) ∈ ḋGj[δ] if and only if there is an s ∈ Gν with

≺f−1(s), j(γ)� ∈ dj[δ]. Since f � ν ∈ M with j(f � ν) = f and j � Gν = idGν ,
this shows that S is equal to the set of all γ < δ with the property that there is an
s ∈ Gν with ≺(f � ν)−1(s), γ� ∈ j−1[dj[δ]]. Since j−1[dj[δ]] ∈ M , we can conclude
that S is an element of M [Gν ]. �

Now, work in V[G] and let jG : M [Gν ] −→ H(ϑ)V[G] denote the canonical small
embedding for κ extending j. Assume, towards a contradiction, that there is a
function F : Pω(λ) −→ Pκ(λ) with the property that for every element a of ClF ,

the corresponding entry of ḋG is different from a∩jG(S). By elementarity, there is a
function F0 : Pω(δ) −→ Pν(δ) in M [Gν ] with the property that j(F0) is a function
with the properties listed above. But then elementarity implies j[δ] ∈ Clj(F0) with

j[δ] ∩ jG(S) = j[δ] ∩ jG(j−1[ḋGj[δ]]) = ḋGj[δ],

a contradiction. A density argument now yields the conclusion of the theorem. �

8. Open Questions and concluding remarks

Clearly, our paper suggests the task to characterize further important types of
large cardinals through the existence of certain small embeddings. For example,
one may consider large cardinals defined through stronger partition properties.

Question 8.1. Is there a small embedding characterization for Ramsey cardinals?

Moreover, it would be interesting to obtain small embedding characterizations for
large cardinal notions whose first-order definitions rely on the existence of certain
extenders.

Question 8.2. Is there a small embedding characterization for strong cardinals?
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Another important type of large cardinals usually defined through the existence
of certain extenders are Woodin cardinals. By combining Lemma 2.1 with a theorem
of Woodin (see [7, Theorem 26.14]) stating that a cardinal κ is Woodin if and only if
for any A ⊆ Vκ, the set {α < κ | α is γ-strong for A for every γ < κ} is stationary
in κ, we directly obtain the following characterization of Woodinness.

Corollary 8.3. The following statements are equivalent for every cardinal κ:

(i) κ is a Woodin cardinal.
(ii) For all sufficiently large cardinals θ and any A ⊆ Vκ, there is a small embedding

j : M −→ H(θ) for κ with the property that A ∈ ran(j), and that for every
γ < κ, crit (j) is γ-strong for A.8 �

Note that the above characterization is not based on a correctness property, be-
cause the first Woodin cardinal is not even weakly compact. Therefore, we naturally
arrive at the following question.

Question 8.4. Is there a small embedding characterization of Woodinness that
relies on a correctness property?

Among the large cardinal properties characterized through small embeddings in
this paper, subtlety is the only property whose characterization does not rely on a
correctness property. This motivates the following question.

Question 8.5. Is there a small embedding characterization of subtlety that relies
on a correctness property?
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