Übungen zur Vorlesung Elemente der Mathematik

ÜBUNGSBLATT 10

Aufgabe 1: (4 Punkte) Zeigen Sie, dass bezüglich der üblichen Anordnung der natürlichen und der rationalen Zahlen gilt:

- (a) Ist $A \subseteq \mathbb{N}$ und $A \neq \emptyset$, so besitzt A ein kleinstes Element.
- (b) Sei $n \in \mathbb{N}$. Dann existiert kein $k \in \mathbb{N}$ mit n < k < n + 1.
- (c) Ist 0 < x < y für $x, y \in \mathbb{Q}$, so gibt es $n \in \mathbb{N}$ mit $n \cdot x > y$.
- (d) Zu jedem $q \in \mathbb{Q}$ gibt es ein eindeutiges $x \in \mathbb{Z}$ mit $x \leq q < x + 1$.

Aufgabe 2: (4 Punkte) Weisen Sie die folgenden Eigenschaften des Absolutbetrags nach:

- (a) $|-x| = |x|, |xy| = |x| \cdot |y|.$
- (b) $||x| |y|| \le |x + y| \le |x| + |y|$.

Aufgabe 3: (5 Punkte) Zeigen Sie:

- (a) Ist $n \in \mathbb{N}$, so existiert die Quadratwurzel von n in \mathbb{N} genau dann wenn n ein Produkt von Quadratzahlen ist.
- (b) Ist $x = \frac{p}{q} \in \mathbb{Q}$ ein gekürzter Bruch (also $p, q \in \mathbb{Z}$, (p, q) = 1), so existiert die Quadratwurzel von x in \mathbb{Q} genau dann wenn sowohl p als auch q ein Produkt von Quadratzahlen sind.

Aufgabe 4: (6 Punkte) Nehmen Sie an, dass es einen vollständigen Körper $K \supseteq \mathbb{Q}$ gibt. Zeigen Sie

- (a) Für jedes $q \in \mathbb{Q}$ gibt es einen kleinsten archimedisch angeordneten Körper J_q mit $\mathbb{Q} \subseteq J_q \subseteq K$ so dass \sqrt{q} in J_q existiert (also ein $x \in J_q$ mit $x^2 = q$).
- (b) Für dieses J_q gibt es $x \in \mathbb{Q}$ so dass \sqrt{x} in J_q nicht existiert.
- (c) Es gibt einen kleinsten archimedisch angeordneten Körper J mit $\mathbb{Q} \subseteq J \subseteq K$ so dass \sqrt{x} in J für jedes $x \in J$ existiert.