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Abstract. A long-standing open question is whether supercompact-
ness provides a lower bound on the consistency strength of the Proper
Forcing Axiom (PFA). In this article we establish a quasi lower bound
by showing that there is a model with a proper class of subcompact car-
dinals such that PFA (indeed the weaker statement that PFA holds for
(2ℵ0)+-linked forcings) fails in all of its proper forcing extensions. Nee-
man obtained such a result assuming the existence of “fine structural”
models containing very large cardinals, however the existence of such
models remains open. We show that Neeman’s arguments go through
for a similar notion of “L-like” model and establish the existence of L-
like models containing very large cardinals. The main technical result
needed is the compatibility of Local Club Condensation with Accept-
ability in the presence of very large cardinals, a result which constitutes
further progress in the outer model programme.

The core model programme (initiated by Jensen, see Steel’s [16] for a
survey) has had considerable success in establishing lower bounds on the
consistency strength of set-theoretic statements, up to the level of Woodin
cardinals. But the consistency strength of the Proper Forcing Axiom (PFA)
is conjectured to be that of a supercompact cardinal, for which no core
model theory is currently available. It is therefore worthwhile to consider
quasi lower bounds on the consistency strength of PFA and the main result
of this paper is that a proper class of subcompact cardinals serves as such a
quasi lower bound:

Theorem 1. Assuming the consistency of a proper class of subcompact car-
dinals, it is consistent that there is a proper class of subcompact cardinals, but
PFA (even restricted to posets which are (2ℵ0)+-linked) holds in no proper
extension1 of the universe.

What exactly is meant by a quasi lower bound?
The necessary ingredients are

• the desired set-theoretic principle ϕ for which we want to obtain a
quasi-lower bound result
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1A proper extension of the universe is an extension of the universe which preserves
the stationarity of S for every stationary S ⊆ [γ]ℵ0 for all γ. In particular, every proper
forcing extension of the universe is a proper extension of the universe.
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• a collection A of assumptions on the ground model (such as being
“L-like”)
• the type of extensions B of the universe to be considered (such as

all proper extensions)
• a large cardinal type C (this will be our quasi-lower bound)
• a (larger) large cardinal type D (an upper bound for the consistency

of ϕ)

The statement that the existence of a large cardinal (or large cardinals) of
type C is a (strict) quasi lower bound for ϕ with respect to extensions of
type B in fact consists of three parts:

(a) If V satisfies the assumptions in A and ϕ holds in an extension of
type B, then V contains a large cardinal larger (in terms of consis-
tency strength) than those of type C.

(b) Assuming large cardinals, the assumptions in A are consistent with
the existence of a large cardinal (or large cardinals) of type D.

(c) An upper bound result: given a universe with a large cardinal (or
large cardinals) of type D, ϕ holds in an extension of type B.

(a) and (b) give the following corollary:

(d) Assuming the consistency of large cardinals, it is consistent that
there is a large cardinal (or there are large cardinals) of type C, but
ϕ fails in all extensions of the universe of type B.2

Theorem 1 is (d) of a result of this form, where ϕ is PFA(2ℵ0)+-linked,
A are some assumptions about being L-like that will later be provided in
full detail, B refers to all proper extensions of the universe, our quasi-lower
bound C is a proper class of subcompacts and D is a supercompact cardinal.
For the proof of this quasi-lower bound result, (a) is a variant of Neeman’s
[14], (b) is the main work of this paper, which constitutes an advance in
the outer model programme and (c) is Baumgartner’s classic result that
if there is a supercompact cardinal, then PFA holds in a proper forcing
extension. Note that in light of (c), (b) rules out the possibility that it is
the assumptions in A that imply ϕ to fail in all extensions of type B, and
not the lack of large cardinals (stronger than those of type C) in V.

The aim of the outer model programme (see [9]) is to show that large car-
dinal properties can be preserved when forcing desirable features of Gödel’s
constructible universe. In [10], Local Club Condensation was shown to be
consistent with the existence of an ω-superstrong cardinal. The main work
(b) of the present paper strengthens this result by demanding that the wit-
nessing predicate for Local Club Condensation be acceptable:

2An additional requirement could be made:
(b*) Assuming a large cardinal (or large cardinals) of type C, the assumptions in A are

consistent with the existence of a large cardinal (or large cardinals) of type C.
We will also verify (b*) for the quasi lower bound result of the present paper. (b*) gives
the stronger corollary
(d*) Assuming the consistency of a large cardinal (or large cardinals) of type C, it is

consistent that there is a large cardinal (or there are large cardinals) of type C, but
ϕ fails in all extensions of the universe of type B.
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Theorem 2. Local Club Condensation and Acceptability are simultaneously
consistent with the existence of an ω-superstrong cardinal.

Acceptability is discussed in Section 1 below, where also the definition of
Local Club Condensation is provided. κ is ω-superstrong iff it is the critical
point of an embedding j : V→M with Vjω(κ) ⊆M.

In [14], Neeman proved the following:

Theorem 3 (Neeman). [14] Suppose V is a proper extension of a fine
structural model M and PFA((2ℵ0)+-linked) holds in V. Then [κ, κ+) is
Σ2

1-indescribable in M, where κ = (ω2)V.

We will not define “fine structural” here as we will not need it. A forcing
P is κ-linked iff there is a function f : P → κ such that p, q are compat-
ible whenever f(p) = f(q). For [κ, κ+) to be Σ2

1-indescribable is a light
strengthening of subcompactness of κ:

Definition 4. [13] [κ, κ+) is Σ2
1-indescribable if for every Q ⊆ Hκ+ and

every first order formula ϕ with one free variable, whenever there exists
B ⊆ Hκ++ such that (Hκ++ ,∈, B) |= ϕ(Q), there exists a cardinal κ̄ < κ
and Q̄ ⊆ Hκ̄+ such that

• ∃B̄ (Hκ̄++ ,∈, B̄) |= ϕ(Q̄) and
• there exists an elementary embedding π : (Hκ̄+ ,∈, Q̄)→ (Hκ+ ,∈, Q)

with π�κ̄ = id.

Definition 5 (Jensen, see [5]). � on the singular cardinals denotes the
principle that there is a sequence 〈Cα : α a singular cardinal 〉, such that
for each α, Cα is club in α consisting only of cardinals and its order-type is
smaller than α, the limit points of Cα are singular cardinals and Cᾱ = Cα∩ᾱ
whenever ᾱ is a limit point of Cα.

As a variant of Neeman’s theorem, we have the following result, which
constitutes part (a) of our quasi-lower bound result :

Theorem 6. If V is a proper extension of a model M, M satisfies Local
Club Condensation, Acceptability, � on the singular cardinals and �λ for
every singular λ and V satisfies PFA((2ℵ0)+-linked), then there is a Σ2

1-
indescribable gap [κ, κ+) in M.

No fine structural models in the sense of [14] containing large cardinals
stronger than Woodin limits of Woodin cardinals have been constructed
so far, reducing the import of Neeman’s theorem. Our work removes this
defect, not by constructing fine structural models in the original sense of
Neeman, but by constructing models containing very large cardinals with
properties sufficiently close to those required by Neeman in [14] for his line
of argument to go through.

Related work has been done independently by Matteo Viale and Chris-
toph Weiß in [17], using completely unrelated techniques:

Definition 7. [17] Let P be a notion of forcing. P is a standard iteration
of length κ if

• P is the direct limit of an iteration 〈Pα : α < κ〉 that takes direct
limits stationarily often.
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• Pα has size less than κ for all α < κ.

Theorem 8 (Viale, Weiß). [17] Suppose that κ is inaccessible and PFA can
be forced by a standard iteration of length κ that collapses κ to ω2. Then κ is
strongly compact. Moreover, if the iteration is proper then κ is supercompact.

In fact, their result applies not to just standard iterations, but to arbi-
trary extensions which satisfy the κ-covering and κ-approximation proper-
ties. Note that these results are incomparable with ours: They obtain full
supercompactness from PFA, whereas we only obtain a Σ2

1-indescribable gap
[κ, κ+) (already from a fragment of PFA), a notion strictly weaker than su-
percompactness. On the other hand, we do not need to assume covering or
approximation properties.

This paper is organised as follows. In Section 1 we discuss binary func-
tional predicates and Acceptability and the relationship of the latter to
GCH. In Section 2 we prove – as a kind of warm-up – that Acceptability
and Stationary Condensation (introduced in [10]) are simultaneously con-
sistent with very large cardinals. The heart of the paper is Section 3, where
we prove the same for Acceptability and Local Club Condensation. After
a discussion of smaller large cardinals and Strong Condensation for ω2 in
Sections 4 and 5, we provide our quasi lower bound result in Section 6.
Sections 7 and 8 show that Local Club Condensation implies certain ♦ prin-
ciples and is strictly stronger than Stationary Condensation. We end with
Open Questions in Section 9.

1. Binary Functional Predicates, Acceptability and the GCH

Definition 9. We say that A is a binary functional predicate (bfp) on the
ordinals if A : Ord×Ord→ Ord is s.t. ∀α ∈ Ord range(A�(α× α)) ⊆ α.

We say that A is a bfp on α if A : α × α → α and for every β < α,
range(A�(β × β)) ⊆ β. If α < β, we let [α, β)q := (β × [α, β)) ∪ ([α, β)× β)
and say that A is a bfp on [α, β) if dom(A) = [α, β)q and for every γ < β,
range(A�(γ × γ)) ⊆ γ. We say that A is a bfp if A is a bfp on Ord, A is a
bfp on α for some ordinal α or A is a bfp on [α, β) for ordinals α < β. For
a bfp A, we write A�α instead of A�(α × α) and we write A�[α, β) instead
of A�[α, β)q. We write A(α) for A�{α} = A�[α, α+ 1). We will sometimes
be sloppy about domains or restrictions of bfps when they are either obvious
from context or irrelevant.

Definition 10. If A is a bfp, we define the hierarchy 〈Lα[A] : α ∈ Ord〉
verbatim as one would do for a standard unary predicate A: L0[A] = ∅,
Lα+1[A] is the set of all y ⊆ Lα[A] which are definable by a first-order
formula using parameters and allowed to refer to A�(α×α) over Lα[A] and
Lα[A] =

⋃
β<α Lβ[A] for limit ordinals α. We let L[A] =

⋃
α∈Ord Lα[A].

Before turning to Acceptability, we now want to introduce the principle of
Local Club Condensation in order to be able to make an important remark
towards the end of this section. If B has domain B and is a substructure of
some structure on Lα[A], we say that B condenses or that B has Conden-
sation iff (B,∈, A) is isomorphic to some (Lᾱ[A],∈, A). We also say that B
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condenses or that B has Condensation in this case. We say that A codes M
iff M = L[A]. For any set X, cardX denotes the cardinality of X. Refor-
mulated in the context of models of the form L[A] for a bfp A, Local Club
Condensation (originally introduced in [10]) is defined as follows:

Local Club Condensation for L[A] is the principle that if α has uncount-
able cardinality κ and A = (Lα[A],∈, A, . . .) is a structure for a countable
language, then there exists a continuous chain 〈Bγ : ω ≤ γ < κ〉 of condens-
ing substructures of A whose domains Bγ have union Lα[A], each Bγ has
cardinality card γ and contains γ as a subset. We say that A witnesses Local
Club Condensation (in V) if A codes V and Local Club Condensation for
L[A] holds.

In the following, we will often use the fact that there is a reasonable
definition of ordered pairs in L[A] which does not increase rank, i.e. an
injective, definable and very absolute operation (. , .) : L[A]2 → L[A] such
that for every ordinal α, a, b ∈ Lα[A] implies (a, b) ∈ Lα[A]. That this
can be done in L is shown in [2]. That this can be generalized to L[A]
is easily observed. When we use ordered pairs in the following, we will
usually assume (tacitly) that they are coded in this way. In particular
when we view functions as sets of ordered pairs, those ordered pairs will
also be coded in such a way. Hence for every ordinal α, A�(α × α) ∈
Lα+1[A]. Another fact which we will use and a proof of which can again be
found in [2] is that a satisfaction predicate for Lα can be defined (uniformly
in α) over Lβ whenever β > α. That this can be generalized to L[A] is
again an easy observation. Yet another fact of importance will be that each
Lα has a canonical definable wellorder thus allowing for Skolem Hulls to
be taken within every Lα. This is again shown in [2] and can easily be
generalized to L[A], giving rise to definable wellorders for each Lα[A] and
thus allowing us to take Skolem Hulls within every Lα[A]. Finally, we will
also use that Gödel’s Condensation Lemma holds not only for limit levels
of the L-hierarchy, but also for it’s successor levels, i.e. for every ordinal
α, if M ≺ (Lα,∈), then M is isomorphic to (Lᾱ,∈) for some ᾱ ≤ α. A
proof of this fact can again be found in [2]. This easily generalizes to the
following: For every ordinal α, if M ≺ (Lα[A],∈, A), then M is isomorphic
to (Lᾱ[Ā],∈, Ā) for some ᾱ ≤ α and some Ā.

Definition 11. If A is a bfp, we say that there is or there appears a new
subset of δ in Lγ+1[A] iff there is x ⊆ δ so that x ∈ Lγ+1[A] \ Lγ [A]. We
say that all subsets of δ appear before ν in M , where M is either L[A] or
Lα[A] for some ordinal α > ν, iff for all x ⊆ δ

x ∈M → x ∈ Lν [A].

Definition 12. If A is a bfp, we say that A is acceptable iff for any ordinals
γ ≥ δ, if there is a new subset of δ in Lγ+1[A], then

HLγ+1[A](δ) = Lγ+1[A].3

3HM (X) denotes the Skolem Hull of X in M . We often write Lξ[A] to denote the

structure (Lξ[A],∈, A�(ξ × ξ)). In particular, Skolem Hulls of the form HLξ[A](x) always
denote Skolem Hulls in the structure (Lξ[A],∈, A�(ξ × ξ)).
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We say that A witnesses Acceptability (for M) iff A is acceptable and codes
M. Acceptability (for M) is the statement that there exists A such that A
witnesses Acceptability.

In the literature, the term Acceptability is usually used for the following,
closely related notion, which we will refer to as strong Acceptability (one
might want to refer to our above defined notion as weak Acceptability; as it
is this notion we are mostly interested in in this article, we will stick to the
shorter term Acceptability):

Definition 13. If A is a bfp, we say that A is strongly acceptable iff for
any ordinals γ ≥ δ, if there is a new subset of δ in Lγ+1[A], then there is a
surjection from δ onto γ in Lγ+1[A].

We say that A witnesses Strong Acceptability (for M) iff A is strongly ac-
ceptable and codes M. Strong Acceptability (for M) is the statement that
there exists A such that A witnesses Strong Acceptability.

If A witnesses Strong Acceptability then A witnesses Acceptability:

Lemma 14. If there is a surjection from β onto γ in Lγ+1[A], then

HLγ+1[A](β) = Lγ+1[A].

Proof. Let β′ be least so that there is a surjection from β′ onto γ in Lγ+1[A].
β′ is definable in Lγ+1[A] and we may assume that β = β′. Let H :=

HLγ+1[A](β). γ ∈ H as γ is the largest ordinal of Lγ+1[A]. Let f be a
surjection from β onto γ in H, which exists by elementarity. Since β ⊆ H,
it follows that γ ⊆ H. Thus H = Lγ+1[A]. �

Lemma 15. ∅ witnesses Acceptability in L.

Proof. Assume δ ≤ γ and there is a new subset x of δ in Lγ+1, but no
surjection from δ to γ. Let N := HLγ+1(δ). We may assume that δ is least
with the above property and hence an element of N using its definability.
By elementarity of N there is an x with the above property in N . Let
N̄ = coll(N); as δ ⊆ N , x ∈ N̄ . By the Condensation properties of L, N̄ is

a level of L, hence N̄ = Lγ+1 by minimality of γ. But HN̄ (δ) = N̄ . �

Lemma 16. Acceptability implies GCH.

Proof. Assume A witnesses Acceptability and for some κ, 2κ > κ+. Since
Lκ+ [A] has cardinality κ+, there is γ ≥ κ+ and a new subset x of κ in

Lγ+1. By Acceptability, HLγ+1[A](κ) = Lγ+1[A], which is absurd as γ has
cardinality greater than κ. �

Definition 17. If κ is an infinite cardinal, we say that a bfp A on [κ, κ+)
is trivially acceptable if for every α ∈ (κ, κ+), there is a surjection from κ
to α in Lα+2[A].

Lemma 18. Assume A is a bfp, κ is a cardinal and α ∈ (κ, κ+) is such
that Lα[A] |= κ is the largest cardinal. Then if there is a new subset of κ in

Lα+1[A] then HLα+1[A](κ) = Lα+1[A].
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Proof. Assume there is a new subset of κ in Lα+1[A] and let x be the

<Lα+1[A]-least such. Let H := HLα+1[A�α](κ), noting that Lα+1[A�α] =
Lα+1[A]. κ and α are both in H. As Lα[A] |= κ is the largest cardinal,
it follows that H is transitive below α. Thus the transitive collapse of H
equals Lγ+1[A�γ] for some γ ≤ α. Since x ∈ collH, it follows that γ = α, i.e.

H = Lα+1[A�α] = Lα+1[A]. The lemma follows as H ⊆ HLα+1[A](κ). �

Corollary 19. Assume A is a bfp so that A�[κ, κ+) is trivially acceptable

and Lκ[A] = Hκ
L[A] for every infinite cardinal κ. Then A is acceptable.

Proof. If α is an ordinal of cardinality κ and λ < κ, no new subsets of λ
appear in Lα+1[A], as Lκ[A] = Hκ

L[A]. The Corollary follows as A�[κ, κ+)
is trivially acceptable, using Lemma 18. �

Corollary 20. GCH implies Acceptability.

Proof. Choose a bfp A such that Lκ[A] = Hκ and A�[κ, κ+) is trivially
acceptable for every infinite cardinal κ. The latter is easy to achieve by
demanding that whenever Lα+1[A�α] |= α is a cardinal, we choose A(α) to
code a surjection f from κ to α in the sense that A(β, α) = γ iff f(γ) = β.
Note that we obtain f ∈ Lα+2[A]. �

To avoid possible confusion, we now want to clarify the exact meaning of
the statement of Theorem 2: In [10], it was shown that Local Club Con-
densation implies the GCH and that Local Club Condensation is consistent
with the existence of an ω-superstrong cardinal. Now by Corollary 20, this
would imply Theorem 2 as it is stated. This is somewhat imprecise though,
because when we say that Local Club Condensation and Acceptability hold,
we actually mean (as was indicated before the statement of Theorem 2)
that Local Club Condensation is witnessed by an acceptable bfp or, to put
it slightly differently, that Local Club Condensation and Acceptability are
witnessed by the same bfp.4 We will see in Claim 24 below that the bfp
constructed in Corollary 20 cannot witness any amount of Condensation.

To be exact, Theorem 2 should be rephrased as follows:

Theorem 21. It is consistent with an ω-superstrong cardinal to have an
acceptable bfp witnessing Local Club Condensation.

The main work of this paper will be to give a proof of this theorem in
Section 3. We close this section with two easy facts about Acceptability
which we present in the context of L for simplicity but which may easily
be generalized. They are not needed for the remainder of the paper, so the
reader who is not interested in these matters may immediately proceed to
Section 2.

Lemma 22. There is a bfp A s.t. ∀κ Lκ = Lκ[A], but A is not acceptable.

Proof. Choose a countable β such that Lβ models ZFC without the power
set axiom and thinks that ω1 exists. Let α be the ω1 of Lβ. Let c be a
real in L which is Cohen-generic over Lβ. Now consider the bfp A which is
empty except that A(α) codes c in a way that c ∈ Lα+2[A]. We don’t have

4Of course it is also this property that we mean in the statement of Theorem 6.
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Acceptability for A because c is a new subset of ω in Lα+2[A], but there is

no collapse of α to ω in Lβ[A] (and hence HLα+2[A](ω) 6= Lα+2[A]), since c
is Cohen generic over Lβ. For infinite cardinals κ, Lκ = Lκ[A] because we
chose c to be constructible (and therefore to belong to Lω1). �

Corollary 23. There is a bfp B that is acceptable but not strongly accept-
able.

Proof. Let A be the bfp constructed in Lemma 22, let α be as in the proof
of Lemma 22. Modify A to A′ by mixing A(α) with a code for a surjection f
from ω to α so that f ∈ Lα+2[A′]. Pass from A′ to B by eliminating further
instances of failures of Acceptability for A′ at larger ordinals in the same way.
B is acceptable, but not strongly acceptable, as Lα+1[B] = Lα+1[A]. �

2. Acceptability and Stationary Condensation

Stationary Condensation was introduced in [10] and is a generalized Con-
densation principle weaker than Local Club Condensation. As we are only
interested in the context of models of the form L[A] here, we will give its
definition restricted to that context.

Stationary Condensation for L[A] is the principle that for each α and infi-
nite cardinal κ ≤ α, any structure (Lα[A],∈, A, . . .) for a countable language
has a condensing substructure (B,∈, A, . . .) with B of size κ, containing κ
as a subset. We say that A witnesses Stationary Condensation (in V) iff A
codes V and Stationary Condensation for L[A] holds.

Claim 24. Assume A ∩ [κ, κ+) is trivially acceptable for some infinite car-
dinal κ. Then A does not witness Stationary Condensation.

Proof. Assume A witnesses Stationary Condensation and take some con-
densing, elementary submodel M of Lκ+++ [A] of size κ. It’s collapse will be
of the form Lγ [A] for some γ ∈ (κ, κ+). Then Lγ [A] has its version of κ++,
contradicting the assumption that A ∩ [κ, κ+) is trivially acceptable. �

We will now take a first step towards proving Theorem 2 by showing how
to extend (by forcing) a ground model V satisfying GCH to a model of the
form L[A] where A is a bfp witnessing Acceptability and Stationary Conden-
sation, while preserving an ω-superstrong cardinal. This is a strengthening
of Theorem 6 of [10].

Definition 25. We refer to p as a κ+-Cohen condition iff p is a bfp on
[κ, |p|), where |p|, the length of p, is an ordinal of size κ. If G is a bfp on
κ, then a κ+-Cohen condition p is acceptable with respect to G if for every
η ∈ [κ, |p|), for every δ ∈ (η, |p|], if there is a new subset of η in Lδ+1[G∪p],
then HLδ+1[G∪p](η) = Lδ+1[G ∪ p]. We say that p is correct with respect to
G iff p = ∅ or L|p|[G ∪ p] |= κ is the largest cardinal.

Definition 26. For an infinite cardinal κ and a bfp G on κ, we define the
forcing

AAdd(κ+, G) :=

{p : p is an acceptable, correct κ+-Cohen condition w.r.t. G},
where conditions are ordered by inclusion.
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Lemma 27. AAdd(κ+, G) is κ+-closed.

Proof. Assume 〈pi : i < α〉 is a strictly descending sequence of conditions
in AAdd(κ+, G) of limit length α < κ+. Let q :=

⋃
i<α pα. We show

that q is acceptable and correct w.r.t. G. Correctness of q w.r.t. G follows
immediately from the correctness of the pi w.r.t. G. Now assume there is a
new subset of κ in L|q|+1[G∪ q] and let x be the <L|q|+1[G∪q]-least such. Let

H = HL|q|+1[G∪q](κ). κ ∈ H and H is transitive below |q|. But this means
that coll(H) = Lγ+1[G ∪ q] for some γ ≤ |q|. But as x ⊆ κ, it follows that
x ∈ Lγ+1[G ∪ q] and hence γ = |q|. Finally if κ < η < |q| and there is a
new subset of η in L|q|+1[G ∪ q], then since there is a bijection from η to κ
in L|q|[G ∪ q], it follows that there is a new subset of κ in L|q|+1[G ∪ q]. �

Lemma 28. For every α < κ+, any condition in AAdd(κ+, G) can be
extended to one of length at least α.

Proof. Assume p ∈ AAdd(κ+, G) and α < κ+ are given. As p is correct
w.r.t. G, we may extend p to a condition q of length α in the same way that
we constructed trivially acceptable bfps in Corollary 20. �

Theorem 29. Assume GCH. There is a cofinality-preserving forcing exten-
sion of the universe of the form L[A] where A is an acceptable bfp witnessing
Stationary Condensation. Moreover we may preserve a given large cardinal
of any of the following kinds: superstrong, hyperstrong and n-superstrong
for any n ≤ ω.5

Proof. Let P be the class-sized reverse Easton iteration with Easton support
of AAdd(κ+, Gκ) over all infinite cardinals κ, where for each κ, Gκ denotes
the generic bfp on κ obtained by forcing with Pκ, the iteration below κ.
Let A be the generic bfp on Ord obtained by forcing with P . By an easy
density argument, VP = L[A]. The following is a standard claim, using
that we work with a reverse Easton iteration where at stage κ, we apply a
κ+-closed forcing of size κ+ (see for example [8]):

Fact 30. If κ is regular, Pκ has a dense subset of size κ. Each Pκ pre-
serves cofinalities and hence P preserves cofinalities. After forcing with Pκ,
Lλ[Gκ] = Hλ for all infinite cardinals λ ≤ κ. Therefore after forcing with
P, GCH holds.

Claim 31. A witnesses Acceptability in L[A].

Proof. Assume γ > δ are ordinals and there is a new subset of δ in Lγ+1[A].

Since Lλ[A] = Hλ
L[A] for all cardinals λ, it follows that δ ≥ card γ. Thus

Acceptability follows directly from the fact that A is built up from acceptable
Cohen conditions. �

Lemma 32. A witnesses Stationary Condensation in L[A].

Proof. Let κ be an infinite cardinal ≤ α and Ṡ = (Lα[A],∈, A, . . .) a name

for a structure in L[A] for a countable language. We may assume that Ṡ is
Skolemized. Work in a Pκ-generic extension with generic bfp Gκ. By the

5ω-superstrong cardinals were defined in the introduction of this paper. Definitions of
the other large cardinal notions may be found in [9].
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closure properties of our iteration, we may assume that Ṡ has a P [κ, α+)-
name in that model. We claim that below any condition p ∈ P [κ, α+), there
is q∗∗ which forces Condensation for the universe X of some substructure of
Ṡ of size κ which contains κ as a subset, i.e. q∗∗(X,∈, A) is isomorphic to
some (Lᾱ[A],∈, A).

Choose some large (w.r.t. α), regular ν. Let p0 = p. Let M0≺Hν such

that M0 ⊇ κ + 1, has size κ and contains p0 and Ṡ as elements. Given
pi and Mi, choose p̄i ≤ pi such that p̄i hits every dense subet of P [κ, α+)
of Mi, which is possible as P [κ, α+) is κ+-closed. Choose pi+1 ≤ p̄i such

that pi+1 decides both α ∩ (Ṡ-closure of (Mi ∩ α)) and A�(α ∩ (Ṡ-closure
of (Mi ∩ α)))2 and forces that |pi+1(κ)| ≥ Mi ∩ κ+. Let Mi+1 be such that

pi+1Mi+1 ⊇ α∩(Ṡ-closure of (Mi∩α)), Mi+1 has size κ and contains pi+1

and Mi as elements. Continue like this for ω-many steps. Let q :=
⋃
i<ω p

i

and let M :=
⋃
i<ωMi. Then the following hold:

• cardM = κ, κ ⊆M .
• |q(κ)| = M ∩ κ+.

• M∩α = α∩
⋃
i<ω Ṡ-closure of (Mi∩α) = α∩(Ṡ-closure of (M∩α)).

• q decides A�(M ∩ α)2.
• q generates a generic G for P [κ, α+) over M in the sense that for

every dense subset D of P [κ, α+) in M , there is t ≥ q such that
t ∈ D ∩M .

Let π denote the collapsing map of M . Let M̄ = π′′M , Ḡ = π′′G and
Ā = π′′A. Let q∗ ⊇ q such that for every γ0 ∈ M ∩ [κ+, α) and all γ1 ≤ γ0

in M ,

• q∗(κ)(π(γ0), π(γ1)) = π(q(card γ0)(γ0, γ1)) and
• q∗(κ)(π(γ1), π(γ0)) = π(q(card γ0)(γ1, γ0)).

We need to show that we can extend q∗(κ) to an acceptable, correct κ+-
Cohen condition. We start by showing that q∗(κ) is acceptable: If ξ <

(κ++)M̄ [Ḡ], then q(κ+)�π−1(ξ) ∈M , M |= 1P [κ,κ+) q(κ
+)�π−1(ξ) is accept-

able w.r.t. Gκ+ , so M̄ [Ḡ] |= q∗(κ)[(κ+)M̄ , ξ) is acceptable w.r.t. Ḡ�(κ+)M̄ .
Furthermore, M̄ [Ḡ] |= For all infinite cardinals λ, all bounded subsets of λ
appear in Lλ[A], which implies that q∗(κ)�ξ is indeed acceptable w.r.t. Gκ
and then by Lemma 27, q∗(κ)�(κ++)M̄ is acceptable w.r.t. Gκ. Continuing
similarly, we may show that whenever λ ≤ α is a cardinal in M , q∗(κ)�π(λ)
is acceptable w.r.t. Gκ. If α∈| Card, we may assume that |p0(cardα)| ≥ α,
hence q(cardα)�α ∈ M and elementarity yields that q∗(κ) is acceptable
w.r.t. Gκ in this case.

Finally we extend q∗(κ) to an acceptable, correct κ+-Cohen condition: Any
bfp on [κ, π(α)+1) extending q∗(κ) is acceptable w.r.t.Gκ using elementarity
of M̄ . We may thus extend q∗(κ) to q∗∗(κ) as desired by having q∗∗(κ)(α)
code a surjection from κ to α as described in the proof of Corollary 20.
Obviously, q∗∗ forces Condensation for the Ṡ-closure of M ∩ α. �

By exactly the same arguments as for the GCH forcing in [9], we may
force with P preserving a given large cardinal of one of the following kinds:
superstrong, hyperstrong or n-superstrong for any n ≤ ω. In fact, using
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the closure properties of the iteration, many other large cardinals may be
preserved while forcing with P . �

By a slight enhancement of the proof of Lemma 32, it is easily seen that A
in fact witnesses a stronger generalized Condensation principle in L[A]:
Fat Stationary Condensation. for L[A] is the principle that for each α, each
infinite cardinal κ < cardα and ordinal ξ < κ+, any club in [Lα[A]]κ con-
tains a continous chain of length ξ of condensing models. We say that A
witnesses Fat Stationary Condensation (in V) iff A codes V and Fat Sta-
tionary Condensation for L[A] holds.

Instead of providing a proof of the above, we will now turn towards our
main object of interest, the stronger principle of Local Club Condensation.

3. Forcing Acceptability and Local Club Condensation

Acceptability and Local Club Condensation were defined in Section 1. We
now turn to the proof of Theorem 2: We show how to obtain, starting with a
ground model V |= GCH, a generic extension of the form L[A] such that A
is a bfp witnessing both Local Club Condensation and Acceptability while
preserving (very) large cardinals.6 We will force with a class forcing P which
will be the direct limit of Pα for α ∈ Ord, the Pα will be defined inductively.
We will also define P⊕α inductively with the property that Pα is a complete
subforcing of P⊕α , which in turn is a complete subforcing of Pα+1. We will
show that each Pα preserves cofinalities and the GCH. We also allow for
α = Ord here and later on, where we let POrd = P . P is not any kind of
standard iteration, but similar to a reverse Easton iteration. Conditions p in
Pα will be α-sequences and each p(β) will be of the form (p(β)(0), p(β)(1)).
p(β)(0) will be a Pβ-name for a condition in some forcing Q(β)(0) of V Pβ ,

p(β)(1) will be a P⊕β -name for a condition in some forcing Q(β)(1) of V P⊕β .

Elements of P⊕β are of the form p�β_p(β)(0) with p�β ∈ Pβ. We write p�β⊕

for p�β_p(β)(0).

Definition 33. We say that s is an α+-Cohen condition with collapsing
information if s is of the form s = (c, F ) where c is an α+-Cohen condition
(in the sense of Definition 25) of length |s|, F is of the form F = 〈fγ : γ ∈
[cardα, |s|)〉 and each fγ is a bijection from cardα to γ. We refer to F as
the collapsing information of s.

For any notion of forcing in some forcing extension, we let 1̌ denote the
standard name for its weakest condition 1. If β < ω, p(β) = (1̌, 1̌) for any
p ∈ P , i.e. Pω is trivial. If cardβ is ω or singular, p(β)(1) = 1̌, i.e. Q(β)(1) is
trivial. Given Pα, the forcing below α, and Gα, a generic for that forcing, we
will define Q(α)(0) := S(Gα), where S(Gα) will consist of a collection of α+-
Cohen conditions with collapsing information which we set to be pairwise
incompatible in S(Gα), together with a weakest condition 1. An S(Gα)-
generic filter will simply choose one such condition. The exact collection
will be defined later on. We write p(β)(0) as (pβ, F

p
β ), where pβ denotes the

6If one doesn’t require large cardinal preservation, this is achieved by Jensen Coding
(see [1], [8]).
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α+-Cohen condition and F pβ denotes the collapsing information specified by

p(β)(0). The underlying set of P⊕α will be a proper suborder of Pα ∗Q(α)(0)
which we will only define later on inductively (see Theorem 49, Clause 4).
A careful choice of this underlying set will be of central importance to our
proof. Given two conditions p = (p�α, p(α)(0)) and q = (q�α, q(α)(0)) in
P⊕α , we let q ≤ p iff

• q�α ≤ p�α and
• p(α)(0) = 1̌ or q(α)(0) = p(α)(0).7

Assume we are given a Pα-generic Gα. If β0 < β1 both have the same
cardinality, are less than α and p is a condition in Pα with pβ0 6= 1̌ 6=
pβ1 , pβ

Gα
1

will properly extend pβ
Gα
0

and F pβ1
Gα will properly extend F pβ0

Gα .

We may thus define a bfp gα by letting gα(γ0, γ1) = γ2 iff ∃p ∈ Gα ∃δ <
α p�δ pδ(γ0, γ1) = γ2. Note that we may define gα+1 already given a
generic G⊕α for P⊕α . |gα| = α if α is a cardinal and α ≤ |gα| < α+ otherwise.
If p ∈ P⊕α and γ ∈ [cardβ, |pβ|) for some infinite β ≤ α, then F pβ (γ) specifies

a bijection fpγ from card γ to γ in V. Note that if q ≤ p, f qγ = fpγ . To
simplify notation, we usually suppress mention of p and write fγ instead of
fpγ . We will be in a similar situation given a generic G⊕α for P⊕α and write

fγ instead of fG
⊕
α

γ . It should always be clear from context which condition
or which generic gave rise to the particular choice of fγ . Assuming such a
context, we define

πη(γ) =

{
γ if γ < η
ot fγ [η] otherwise.

Given a generic G⊕α for P⊕α which specifies a generic bfp g = gα+1 on β for
some β < α+ and fγ for γ < β and α is of regular cardinality, let C(G⊕α )
denote the following forcing poset to add a club to cardα:

If cardα = θ+ is a successor cardinal, p = (p∗, p∗∗) ∈ C(G⊕α ) iff

• p∗ is a subset of [cardα, β) of size less than cardα and
• p∗∗ is a closed, bounded subset of [θ, cardα).

If cardα is inaccessible, p = (p∗, p∗∗) is a condition in C(G⊕α ) iff

• p∗ is a subset of [cardα, β) of size less than cardα and
• p∗∗ is a closed, bounded set of cardinals below cardα.

In both cases, q = (q∗, q∗∗) extends p = (p∗, p∗∗) in C(G⊕α ) iff

• q∗ ⊇ p∗,
• q∗∗ end-extends p∗∗ and
• ∀γ0 ∈ p∗ ∀η ∈ q∗∗ \ p∗∗ ∀γ1 ≤ γ0 in η ∪ p∗

– g(πη(γ0), πη(γ1)) = πη(g(γ0, γ1)) and
– g(πη(γ1), πη(γ0)) = πη(g(γ1, γ0)).

7In the second disjunct, the names should be equal, not just forced to be equal. This
is one of the reasons that P is not a standard iteration. (Another is the use of thinned-
out supports at limits; see below.) Note also that this means that a generic for Q(α)(0)
doesn’t just pick a Cohen condition (with collapsing information), it does a little more -
it actually picks a name for one.
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We let Q(α)(1) = C(G⊕α ) and Pα+1 = P⊕α ∗ Q(α)(1), a standard two step
iteration with the standard ordering.8

Claim 34. Assume (c∗, c∗∗),(d∗, d∗∗) are compatible conditions in C(G⊕α ).
Then (c∗ ∪ d∗, c∗∗ ∪ d∗∗) is stronger than both.

Proof. It is immediate that (c∗ ∪ d∗, c∗∗ ∪ d∗∗) is a condition in C(G⊕α ).
Let (e∗, e∗∗) witness that (c∗, c∗∗) and (d∗, d∗∗) are compatible. Then e∗ ⊇
c∗ ∪ d∗ and e∗∗ end-extends c∗∗ ∪ d∗∗. Assume for a contradiction that
(c∗∪d∗, c∗∗∪d∗∗) does not extend (c∗, c∗∗). Then ∃γ0 ∈ c∗ ∃δ ∈ d∗∗\c∗∗ ∃γ1 ≤
γ0 such that γ1 ∈ δ ∪ c∗ and either gα+1(πδ(γ0), πδ(γ1)) 6= πδ(gα+1(γ0, γ1))
or gα+1(πδ(γ1), πδ(γ0)) 6= πδ(gα+1(γ1, γ0)). But this implies that (e∗, e∗∗)
does not extend (c∗, c∗∗), a contradiction. �

Assume we have defined Pξ for ξ < γ, γ a limit ordinal and p is a condition
in P ∗γ , the inverse limit of 〈Pξ : ξ < γ〉. We write (p∗α, p

∗∗
α ) instead of p(α)(1).

We call {γ : p(γ)(0) 6= 1̌} the string support of p and denote it by S-supp(p),
we call {γ : p(γ)(1) 6= 1̌} the club support of p and denote it by C-supp(p);
we let I-supp(p) =

⋃
γ∈C-supp(p) p

∗
γ . 9

For every limit ordinal γ and p ∈ P ∗γ , we let p ∈ Pγ iff:

(1) If γ is regular, S-supp(p) is bounded below γ.
(2) S-supp(p) ∩ [card γ, γ) = [card γ, ξ) for some ξ ≤ γ.
(3) If card γ is regular, card(C-supp(p)) < card γ.
(4) There is ζ < γ so that for all ξ ≥ ζ, p�ξ⊕ forces that p(ξ)(1) has a

Pβ-name for some β < card γ.

We equip Pγ with the natural ordering: q ≤ p if for all β < γ, q�β ≤ p�β
in Pβ. The limit stages of our forcing are thus restricted inverse limits
of the earlier stages. What is missing to complete the definition of the
forcing is to define P⊕α given Pα. This will be done in Clause 4 of Theorem
49 inductively. We will usually assume our conditions p to satisfy (A0):
∀β 1P⊕β

 p(β)(1) ∈ C(G⊕β ) and (A1): ∀β 1Pβ  p(β)(0) ∈ S(Gβ).

Definition 35 (upper part of a condition). Given a cardinal η < α and
p ∈ Pα, we define uη(p) ∈ Pα as follows:

• (uη(p))(γ)(0) =

{
1̌ if γ < η
p(γ)(0) otherwise

• (uη(p))(γ)(1) =

{
1̌ if γ < η+

p(γ)(1) otherwise

and call uη(p) the η+-strategically closed part of p. Let uη(Pα):= {uη(p) : p ∈
Pα} with the induced ordering.

Note:

• We may think of uη(p) as the condition extracting from p its Cohen
and collapsing information in the interval [η, η+) and everything at
and above η+.

8q ≤ p iff q�α⊕ ≤ p�α⊕ and q�α⊕ forces q(α)(1) ≤ p(α)(1).
9Note that S-supp(p) and C-supp(p) are ground model objects while I-supp(p) is not.
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• A similar definition of course applies to p ∈ P⊕α . It will usually
be the case in the following that definitions, statements and facts
about Pα will have natural analogues for P⊕α , which we will usually
not mention (or prove) explicitly.
• uω(Pα) = Pα.
• uη(p) ∈ Pα uses (A0) and (A1).

The careful reader may observe that at some points later on, we will obtain
conditions q that do not satisfy (A0) as lower bounds of decreasing sequences
of conditions in our forcing. But it will be the case that we may replace such
a q by an η+-strategically equivalent q′ which satisfies (A0), for suitable η,
where we call q and q′ η+-strategically equivalent iff uη(q) ≤ uη(q

′) and
uη(q

′) ≤ uη(q). We will tacitly assume such replacement a couple of times
in the following.

Definition 36 (lower part of a condition).
If η < α is a cardinal and p ∈ Pα, we define lη(p) as follows:

• (lη(p))(γ)(0) =

{
1̌ if α > γ ≥ η
p(γ)(0) otherwise

• (lη(p))(γ)(1) =

{
1̌ if α > γ ≥ η+

p(γ)(1) otherwise

and call lη(p) the η-sized part of p. Note that lη(p) complements uη(p) in the
sense that it carries exactly all information about p not contained in uη(p).

Notation: Assume 〈pi : i < δ〉 is a decreasing sequence of conditions in Pα
of limit length δ and γ < α. Then 〈piγ : i < δ〉 is eventually constant and we

denote its limit by
⋃
i<δ p

i
γ . Similar for 〈F p

i

γ : i < δ〉. We say that r is the

componentwise union of 〈pi : i < δ〉 iff for every γ < α,

rγ =
⋃
i<δ

piγ , F rγ =
⋃
i<δ

F p
i

γ , r∗γ =
⋃
i<δ

(pi)∗γ and r∗∗γ =
⋃
i<δ

(pi)∗∗γ .

r is usually not a condition in Pα, but the supports of r can be calcu-
lated as if r were a condition by letting S-supp(r) := {γ : r(γ)(0) 6= 1̌} =⋃
i<δ S-supp(pi), C-supp(r) := {γ : r(γ)(1) 6= 1̌} =

⋃
i<δ C-supp(pi) and

I-supp(r) =
⋃
γ∈C-supp(r) r

∗
γ =

⋃
i<δ I-supp(pi).

Definition 37 (stable below η+). Assume 〈pi : i < δ〉 is a decreasing se-
quence of conditions in Pα of limit length δ < η+, η < α a cardinal. We say
that 〈pi : i < δ〉 is stable below η+ iff

• 〈lη(pi) : i < δ〉 is eventually constant or
• η is singular and for every cardinal µ < η, 〈lµ(pi) : i < δ〉 is eventu-

ally constant.

Fact 38. If 〈pi : i < δ〉 is a decreasing sequence of conditions in Pα of limit
length δ < η+ which is stable below η+ where η < α is a cardinal, then
the componentwise union of 〈pi�η+ : i < δ〉 is a greatest lower bound for
〈pi�η+ : i < δ〉.

Proof. It suffices to observe that
⋃
i<δ S-supp(pi) is bounded below η+. �
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If p ∈ Pα and κ ≤ α is a cardinal, let

|p|κ :=
⋃

γ ∈ S-supp(p)∩κ+
|pγ |.

In case S-supp(p) ∩ [κ, κ+) = ∅, we let |p|κ = κ. In particular, this is the
case if α = κ. Our iteration will be defined (see Clause 4 of Theorem 49) in
such a way that each |pγ | is a ground model object and thus |p|κ is a ground
model object. Given any ordinals γ0 and γ1 and a condition p ∈ Pα, we want
to construct a name p@(γ0, γ1): choose β minimal so that (γ0, γ1) ∈ dom pβ
if possible and let p@(γ0, γ1) = pβ(γ0, γ1), let it be undefined otherwise.

Fact 39. Given a cardinal η < α and a decreasing sequence 〈pi : i < δ〉
of conditions in Pα of limit length δ < η+ which is stable below η+, form
their componentwise union r. Observe that S-supp(r) is bounded below every
regular cardinal and C-supp(r) ∩ θ+ has size less than θ for every regular
θ. We would like to obtain a condition q ∈ Pα with the following properties
for every γ ∈ C-supp(r), γ ≥ η+, every δ0 ∈ r∗γ and every δ1 < δ0 with
δ1 ∈ sup r∗∗γ ∪ r∗γ:

(1) q q@(πsup r∗∗γ (δ0), πsup r∗∗γ (δ1)) = πsup r∗∗γ (r@(δ0, δ1)).

(2) q q@(πsup r∗∗γ (δ1), πsup r∗∗γ (δ0)) = πsup r∗∗γ (r@(δ1, δ0)).
(3) q∗∗γ = r∗∗γ ∪ {sup r∗∗γ }.10

(4) qξ = rξ and F qξ = F rξ for every ξ ∈ S-supp(r), q∗ξ = r∗ξ for all ξ and

q∗∗ξ = r∗∗ξ for every ξ < η+.

If such q exists as a condition in Pα, q is a lower bound for 〈pi : i < δ〉, i.e.
q ≤ pi for each i < δ.

Definition 40 (reducing dense sets). If D is a dense subset of Pα and
η < α is a cardinal, we say that q reduces D below η if for every r ∈ Pα with
uη(r) ≤ uη(q), there is s ≤ r with uη(s) = uη(r) and s meets D in the sense
that ∃d ∈ D s ≤ d.

Definition 41 (suitable pre-genericity). Let p ∈ Pα, ζ ≤ α, θ < ζ regular,
M of size less than θ, transitive below θ. Let ζ̄ := min(ζ, θ+). We say q ≤ p
is suitably pre-generic for Pζ at θ over M if the following hold:

0. sup(S-supp(q) ∩ θ) ≥ cardM and ≥M ∩ θ.
1a. If ζ̄ < α, then q�ζ̄ reduces every dense subset of Pζ̄ in M below

cardM .
1b. If ζ = ζ̄ = α, then for every ξ < α, q�ξ⊕ reduces every dense subset

of P⊕ξ in M below cardM .

Definition 42 (suitable genericity). Under the assumptions of Def. 41, we
say q ≤ p is suitably generic for Pζ at θ over M if q ≤ p is suitably pre-
generic for Pζ at θ over M and if θ = cardα and α = ζ = β + 1 is a
successor ordinal, ucardM (q�β⊕) forces that

2a. sup(q∗∗β ) ≥M ∩ θ and

2b. q∗β ⊇M ∩ [|q�β|κ, |qβ|).

10More exactly, we want to set q∗∗γ = r∗∗γ ∪ {(sup r∗∗γ ,1)} so that 1 q∗∗γ = r∗∗γ ∪
{sup r∗∗γ }.
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Remarks:

• If α is a limit ordinal or ζ < α, the notions of suitable genericity and
suitable pre-genericity coincide.
• If q is suitably (pre)generic for Pζ at θ over M and q′ ≤ q, then q′ is

suitably (pre)generic for Pζ at θ over M .
• If q is suitably (pre)generic for Pζ at θ over M , θ < ζ ′ < ζ and M is

closed under the operation which takes any dense subset D of Pζ′ in
M to D∗ := {t ∈ Pζ : t�ζ ′ ∈ D}, then q is suitably (pre)generic for
Pζ′ at θ over M . This is because if q reduces D∗ below cardM then
q�ζ ′ reduces D below cardM .

Definition 43. If p is a condition in Pα, we say that p is fully string
supported iff S-supp(p) ⊇ [cardα, α). If α is a cardinal, any condition p ∈
Pα is fully string supported. We say that p ∈ Pα is a top string condition iff
p is fully string supported and p = ucardα(p), i.e. iff S-supp(p) = [cardα, α)
and C-supp(p) = ∅. For any fully string supported condition p ∈ Pα, we
define the top string of p as ts(p) := ucardα(p).

Definition 44. If Q is any notion of forcing and D ⊆ Q we say that D is
an equivalent dense subset of Q iff for any q ∈ Q there is d ∈ D such that
q ≤ d and d ≤ q.

Definition 45. We say that 〈Mi : i < γ〉 is an increasing chain iff for all
i < γ and all j < i, Mj ⊆Mi and 〈Mk : k ≤ i〉 ∈Mi+1.

Definition 46. If P is a notion of forcing and η is a cardinal, we say that P
is η+-strategically closed iff Player I has a winning strategy in the following
two player game of perfect information: Player I and Player II alternately
make moves in which they play a condition in P . Player I has to start and
play 1P in the first move. Player II is allowed to play any condition stronger
than the condition just played by Player I in each of his moves. Player I has
to play a condition stronger than all previously played conditions in each
move, Player I has to make a move at every limit step of the game. We
say that Player I wins if he can find conditions to play in any such game of
length η+ (arriving at η+, the game ends and no further condition has to be
played).

The central technical theorem of our paper at its core will establish that
our iteration P is ∆-distributive. Before stating that theorem, we will pro-
vide the reader with the definition of ∆-distributivity, which is originally
given in [8] and restated here in a less general version, slightly adapted to
our iteration P :

Definition 47. We say Pα is ∆-distributive if whenever 〈Di : i < cardα〉
are dense subsets of Pα and p ∈ Pα, there is q ≤ p which reduces Di below
i+ for every i, where we let i+ = ω for finite i.

Now we adapt this definition to the context of class forcing:

Definition 48. We say that P is ∆-distributive at κ if whenever 〈Di : i < κ〉
is a definable sequence of dense classes of P and p ∈ P , then there is q ≤ p
which reduces Di below i+ for every i. We say that P is ∆-distributive if P
is ∆-distributive at κ for every uncountable cardinal κ.
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Definition and Theorem 49. Suppose ω ≤ η ≤ κ = cardα, η ∈ Card.
Suppose Pα is defined.

(1) [A nice dense subset]
Pα has a dense subset Dα of conditions p which are fully string sup-
ported such that C-supp(p) ⊆ S-supp(p) and p�i⊕ forces (in P⊕i ) that
p∗i and p∗∗i have a Psup S-supp(p)∩card i-name for each i ∈ C-supp(p).

(2) [Smallness of the iteration]
If α is regular, Dα has an equivalent dense subset Eα of size α.
Otherwise Dα has an equivalent dense subset Eα of size α+. If κ is
regular, Eα(p), the forcing Eα below p, has size κ for any fully string
supported condition p ∈ Eα.

(3) [Definition of the top string code, tsc(p)]
Given below.

(4) [Definition of P⊕α ]
Given below.

(5) [Definability of the Forcing]
If α is regular, Eα is uniformly definable over Hα.

(6) [Definability of Eα(p)]
• Assume α is a limit ordinal and s ∈ Eα is a top string con-

dition. If δ ≥ |s|κ is such that |s|κ collapses definably over
Lδ[tsc(s)], then an isomorphic copy of Eα(s) is definable over
Lδ[tsc(s)]. Moreover, a bijection from κ to Eα(s) is definable
over Lδ[tsc(s)].
• Assume s ∈ E⊕α is a top string condition, let χ := |s�α|κ + 1

and M ⊇ Lχ[tsc(s)]. If α is a successor ordinal, an isomorphic
copy E of Eα(s�α) and a bijection from κ to E are uniformly
definable from tsc(s)�χ over M .

(7) [Definition of String Choice Coding]
Given below.

(8) [String Extendibility]
For ξ < α+, Q(α)(0) is forced to contain a condition s = (c, F ) with
|c| ≥ ξ.

(9) [Chain Condition]
Assume η is regular. If J is an antichain of Pα such that whenever
p and q are in J , uη(p) ‖ uη(q), then |J | ≤ η.

(10) [Strategic Closure]
uη(Pα) and uη(P

⊕
α ) are both η+-strategically closed.

(11) [Reducing dense sets]
• Assume η is regular and 〈Di : i < η〉 is a collection of dense

subsets of Pα. Then any condition in Pα can be strengthened to
a conditon q with the same η-sized part so that for every i < η,
q reduces Di below η.
• Assume η is singular and 〈Di : i < η〉 is a collection of dense

subsets of Pα. Then for any ζ < η, any condition in Pα can be
strengthened to a condition q with the same ζ-sized part so that
for every i < η, there exists ηi < η so that q reduces Di below
ηi.
• Pα is ∆-distributive.
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(12) [Club Extendibility]
If I ⊆ α is such that card(I ∩ θ+) < θ for every regular θ, I ⊆⋃
θ regular[θ, θ

+) and 〈δ̄i : i ∈ I〉 is s.t. δ̄i < card i for every i ∈ I,

then for every p ∈ Pα, there is q ≤ p s.t. ∀i ∈ I q�i⊕max q∗∗i ≥ δ̄i.
Moreover if η < card min I, we can assure that lη(q) = lη(p).

(13) [Early names]

• Assume η is regular and ḟ is a Pα-name for an ordinal-val-
ued function with domain η. Then any condition in Pα can be
strengthened to a condition q with the same η-sized part forcing
that for every i < η, there is a maximal antichain of size at
most η below q deciding ḟ(i), where for every element a of that

antichain, uη(a) = uη(q). In particular, q forces that ḟ has a
Pγ-name for some γ < η+.

• Assume η is singular and ḟ is a Pα-name for an ordinal-valued
function with domain η. Then for any ζ < η, any condition in
Pα can be strengthened to a condition q with the same ζ-sized
part, forcing that for every i < η, there is a maximal antichain
of size less than η below q deciding ḟ(i), where for every element
a of that antichain, uη(a) = uη(q). In particular, q forces that

ḟ has a Pη-name.
(14) [Coding Hη]

Hη = Lη[gη] in the generic extension after forcing with Pα.
(15) [Preservation of the GCH]

After forcing with Pα, GCH holds.
(16) [Covering, Preservation of Cofinalities]

For every cardinal θ, for every p ∈ Pα and every Pα-name ẋ for a set
of ordinals of size θ there is a set X in V of size θ and an extension
q of p such that q ẋ ⊆ X.

Therefore forcing with Pα preserves all cofinalities.

Proof. We will provide definitions and proofs by induction on α. To start
the induction, note that Pω was defined to be trivial.

Proof of 1 - A nice dense subset: We may assume that α has regular car-
dinality. 1 is clear at successor ordinal stages using 1, 8, and 13 inductively.
If α is a limit ordinal, by the definition of the limit stages of our forcing there
exists ζ < α so that for all ξ ≥ ζ, p�ξ⊕ forces that p(ξ)(1) has a Pβ-name
for some β < cardα. So 1 follows using 1 inductively at stage ζ. Note that
we use here that if β < α and p ∈ Pα, q ∈ Pβ and q ≤ p�β, then p′ ∈ Pα
where p′�β = q and p′[β, α) = p[β, α); also p′ ≤ p. This will become clear
(inductively) from the definition of Pα.

Proof of 2 - Smallness of the iteration: For any i < α, the number of
possible choices for p(i)(0) is limited to i+ by the definition of P⊕i given in 4
below inductively. Assume Eξ is given inductively for ξ < α as desired. Let
Eα be the equivalent dense subset of conditions p ∈ Dα so that p∗i and p∗∗i
are nice Eξ(ts(p�ξ))-names for some ξ < sup(S-supp(p)∩card i) for every i ∈
C-supp(p), in the sense that each of them is represented by δ < card i-many
functions 〈Aj : j < δ〉 each with domain a maximal antichain of Eξ(ts(p�ξ))
and range |p|card i. If Aj is such a function, Aj(a) = ν should be interpreted
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as “a forces that the jth element of p∗i (or p∗∗i ) equals ν. Using 9 and 2
inductively, this gives κ-many possibilities for {(p∗i , p∗∗i ) : i ∈ C-supp(p)}. It
follows that Eα has size α+. Note that if α0 < α, then Eα0 = {p�α0 : p ∈
Eα}. For the last statement of the claim, note that Eα has size α+ only
because there are α+-many possible top strings of conditions in Eα. Those
possibilities are “eliminated” by passing to Eα(p) for a fully string supported
condition p ∈ Eα.

3 - Definition of the top string code, tsc(p): If p ∈ Pα is fully string
supported, we say t = tsc(p) is the top string code for p if t is a bfp on
[κ, |p|κ) and for every γ ∈ [κ, α),

• t�[|p�γ|κ, |pγ |) codes pγ in the sense (inductively) of 7 and
• t(|p�γ|κ, |p�γ|κ) = γ.

Note that the latter requirement doesn’t contradict the former as the code
for pγ does not use the diagonal (see 7).

4 - Definition of P⊕α : Let Gα be generic for Pα and let gα be the generic
bfp obtained fromGα. Let s denote gα�[κ, |gα|). Note that s is an acceptable,
correct κ+-Cohen condition by Lemma 27. Let Fold = 〈fγ : γ ∈ [κ, |gα|)〉 be
the collapsing information above κ specified by (conditions in) Gα.

If κ is regular and α = β + 1 is a successor ordinal, let t be a fully string
supported condition in Gα and let Q(α)(0) = S(Gα) denote the forcing
poset consisting of a weakest condition 1 and incompatibly to each other,
all κ+-Cohen conditions q with collapsing information F which obey the
following conditions:

• q ⊇ s, F ⊇ Fold,
• q is acceptable and correct w.r.t. gκ,
• q(|s|) codes f|s| and fγ for each γ ∈ [κ, |s|) so that fγ ∈ L|s|+2[gκ

_q]

for γ ≤ |s|,11

• q(|s|+ 1) codes an Eβ(ts(t))-name ẋ ∈ L|q|[tsc(t)] for L|gβ |[s] so that
ẋ is an element of any admissible structure containing that code
for ẋ. The existence of ẋ follows (by choosing |q| sufficiently large)
from 6 inductively and the fact that s�|gβ| has an Eβ(ts(t))-name in
L[tsc(t)].
• ∃δ ∈ (|s|, |q|) Lδ[s] is admissible,
• q(|s|+ κ, |s|+ κ) = β,
• q�[|s|+ |gβ|, |s|+ |s|)) codes tβ in the sense of 7 for some t ∈ Gα with

β ∈ S-supp(t) and 12

• if γ 6= |s|+ κ, γ ≥ |s|, then q(γ, γ) = 0.

If α > ω is a regular cardinal, let Q(α)(0) = S(Gα) denote the forcing
poset consisting of a weakest condition 1 and incompatibly to each other, all
acceptable, correct (both w.r.t. gα) α+-Cohen conditions q with collapsing
information F for which

• q(α+ γ0, γ1) = gα(γ0, γ1) for all γ0, γ1 < α,

11Code f|s| as in Claim 20, but only into {q(ξ, |s|) : ξ even}. Now using f|s| and a

bijection from κ to κ× κ, we may code all fγ for γ ∈ [κ, |s|) into {q(ξ, |s|) : ξ odd}.
12The code we obtain from 7 is actually a bfp on [|gβ |, |s|), but can easily be placed

within the above, larger area, avoiding the diagonal.
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• |q| ≥ α · α and
• ∀γ ∈ [α, |q|) q(γ, γ) = 0.

If α > κ > ω, κ is regular and α is a limit ordinal, let Q(α)(0) = S(Gα) de-
note the forcing poset consisting of a weakest condition 1 and incompatibly
to each other, all acceptable, correct (both w.r.t. gκ) κ+-Cohen conditions
q with collapsing information F which obey the following conditions:

• q ) s, F ⊇ Fold,
• if γ is not a multiple of κ · ω, γ ≥ |s|, then q(γ, γ) = 0.

If κ is singular or ω, let Q(α)(0) = S(Gα) denote the forcing poset consist-
ing of a weakest condition 1 and incompatibly to each other, all acceptable,
correct (both w.r.t. gκ) κ+-Cohen conditions q with collapsing information
F so that q ) s and F ⊇ Fold.

We let P⊕α be the set of all p⊕α = (p�α, pα, F
p
α) such that

• p�α ∈ Pα.
• Let s := ts(p�α).
• pα = 1̌ or pα ⊇ pξ for all ξ ∈ [κ, α) and pα is a nice Eα(s)-name for a

nontrivial condition in Q(α)(0) so that s decides |pα| and pα is rep-
resented by a collection of functions 〈Aγ0,γ1 : (γ0, γ1) ∈ [κ, |pα|)q〉 s.t.
each domAγ0,γ1 is a maximal antichain of Eα(s) and rangeAγ0,γ1 =
max(γ0, γ1) with the intended meaning that if Aγ0,γ1(t) = γ2 then t
forces pα(γ0, γ1) = γ2.
• If 1Eα(s) forces pα(γ0, γ1) = γ2 for some γ2, then domAγ0,γ1 = {1}.
• s decides F ∈ V.
• We may assume that any condition in Pα incompatible to s forces
p(α)(0) = 1̌ and therefore 1Pα  p(α)(0) ∈ Q(α)(0).

Proof of 5 - Definability of the Forcing: If α = ω1, this is immediate from
the definition of Pω1 . If α is inaccessible, this is immediate inductively. If
α = λ+ for some regular λ, Eλ is uniformly definable over Hλ inductively
and hence also over Hα. We want to show by induction that for β ∈ (λ, α],
Eβ is uniformly definable over Hα. If α = λ+ for some singular cardinal λ,
we proceed similarly but start by noting that conditions in Eλ are elements
of Hα and that Eλ is uniformly definable from λ over Hα using inductive
uniform definability of Eν for ν < λ.

Assume now that Eγ is uniformly definable over Hα for γ < β of cardinality
λ. We want to show that Eβ is uniformly definable over Hα. Assume
first that β = γ + 1 is a successor ordinal: Elements of Eβ are of the
form p�γ_(pγ , F

p
γ )_p(γ)(1), where p�γ ∈ Eγ , (pγ , F

p
γ ) is as described in

4 and p(γ)(1) may be identified with a collection of < λ-many antichains
of Eξ(ts(p�ξ)) for some ξ < λ, each of size ≤ λ, elementwise paired with
ordinals < α. Therefore the underlying set of Eβ may be identified with
a subset of Hα. We have to argue that this set and the extension relation
on this set are (uniformly) definable over Hα - we first consider (pγ , F

p
γ ):

instead of giving a detailed proof, we just remark that the main point is
that all objects possibly relevant for deciding whether or not (pγ , F

p
γ ) is

such that p�γ⊕ is an element of P⊕γ are either ground model objects in
Hα or objects in the Hα of an Eγ(ts(p�γ))-generic forcing extension. As
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Eγ(ts(p�γ)) is a forcing in Hα, they have names in the Hα of the ground
model and thus whether p�γ⊕ ∈ E⊕γ may be decided within Hα. That the

extension relation for E⊕γ is definable is obvious, as it is very simple. Using
very similar arguments, we may treat p(γ)(1) and thus show that Eβ and its
extension relation are (uniformly) definable over Hα. If β is a limit ordinal,
the above is immediate.

Proof of 6 - Definability of Eα(p): We may assume α has regular cardinal-
ity. If α is a limit ordinal and s ∈ Eα is a top string condition, inductively by
6 we know that for every ξ ∈ [κ, α), Eξ(s�ξ) is definable in L|s|κ [tsc(s)] using
ξ as parameter. Note that conditions in Eα(s) are (basically) sequences of
length α with < κ nontrivial sequence elements, all of which are in Hκ, thus
given a bijection from κ to α, they may be represented using this bijection;
the first part of the claim thus follows. This also implies the following:

Corollary 50. Assume s ∈ E⊕α is a top string condition, let χ := |s�α|κ+ 1
and M ⊇ Lχ[tsc(s)]. If α = γ+1 and γ is a limit ordinal, then an isomorphic
copy E of Eγ(s�γ) and a bijection from κ to E are uniformely definable from
tsc(s)�χ over M .

Assume now α = β + 1 is a successor ordinal, s ∈ E⊕α is a top string
condition, χ = |s�α|κ + 1 and Lχ[tsc(s)] ⊆M . α is (uniformly) definable in
M from tsc(s)�χ as α is the maximal value on the diagonal of tsc(s)�χ. Also,
〈fγ : γ ≤ |s�α|κ〉 is (uniformly) definable over M from tsc(s)�χ. Inductively
by 6 or by invoking Corollary 50, Eβ(s�β) is uniformly definable in M and
there is a bijection from κ to Eβ(s�β) in M . This allows us to decode sβ
from tsc(s�α) in M . Note that Hκ ⊆ M and this implies (using induction)
that the underlying set of Eα(s�α) is definable over M .13 To argue that the
extension relation of Eα(s�α) is uniformly definable over M from tsc(s)�χ,
note that (similar to 5) all objects involved in the definition of extension are
either sβ or elements of Hκ and thus elements of M ; moreover the formulas
involved in the definition of the extension relation are sufficiently absolute
so that their validity may be recognized within M . Finally, the existence of
the desired bijection is easy to observe using the fact that Hκ only has size
κ, which can be seen in M .

7 - Definition of String Choice Coding: Let p ∈ P⊕α , β ∈ S-supp(p) ∩
[κ, α]. Let pβ be represented by a collection of functions 〈Aγ0,γ1 : (γ0, γ1) ∈
[κ, |pβ|)q〉 as in 4. We say that c codes pβ if c is a bfp on [|p�β|, |pβ|) so that
for all γ0 ∈ [|p�β|, |pβ|) , c(γ0) codes 〈Aγ0,γ1 : γ1 ≤ γ0〉 and 〈Aγ1,γ0 : γ1 ≤ γ0〉
as follows: given γ0 and γ1, we code the domain of Aγ0,γ1 as a subset dγ0,γ1
of κ using the L[tsc(p)�(|p�α|κ + 2)]-least bijection between κ and Eβ(p�β),
which exists by 6. Now we code Aγ0,γ1 by a function with domain dγ0,γ1
and range γ0 in the obvious way. Using now the L-least bijection between
κ× (γ0 + 1) and γ0 enables us to perform a coding as desired, by mixing the
dγ0,γ1 ⊆ κ for γ1 ≤ γ0 into γ0 and similarly for the dγ1,γ0 . This also ensures
that we may keep the diagonal free from information.

13p ∈ Eα(s�α) iff p�β ∈ Eβ(s�β), pβ = sβ , F pβ = spβ , ∃ξ < κ sup S-supp(p) ∩ ξ+ ≥ ξ

and p∗β , p
∗∗
β are nice Eξ(ts(p�ξ))-names (note that the latter are elements of Hκ).
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Proof of 8 - String Extendibility: Use Lemma 28 and easy observations
showing that all requirements from 4 can be satisfied (simultaneously).

Proof of 9 - Chain Condition: Assume J is an antichain of Pα such that
whenever p and q are in J , uη(p) ‖ uη(q). We may assume that all conditions
in J are from Eα. Assume for a contradiction that J has size at least η+.
Then p�η is the same for η+-many conditions in J and thus we may assume
it is the same for all conditions in J . By GCH and a ∆-system argument,
there is W ⊆ J of size η+ and a size less than η subset A of η+ such that
C-supp(p) ∩ C-supp(q) ∩ [η, η+) = A whenever p 6= q are both in W . But
using that GCH holds after forcing with Pη by 15 inductively, it follows
that for η+-many conditions p in W , 〈p(i)(1) : i ∈ A〉 is the same (modulo
equivalence). But - using the assumption that uη(p) ‖ uη(q) - any two such
conditions are compatible, thus W (and hence also J) is not an antichain.

10 (Strategic Closure) implies 11 (Reducing dense sets):

Claim 51. Assume p ∈ Pα, D is a dense subset of Pα and ν < α is regular.
Then there is q ≤ p such that lν(q) = lν(p) and q reduces D below ν.

Proof. Build a decreasing sequence of conditions in Pα below p as follows:
Let p0 = p. Choose q0 so that q0 ≤ p0 and q0 ∈ D. By possibly passing to
an equivalent condition, we may also ensure that uν(q0) ≤ uν(p0). At stage
j+1, let pj+1 ≤ p0 be any condition incompatible to all qk, k ≤ j, such that
uν(pj+1) = uν(qj) if such exists and choose qj+1 such that:

• qj+1 ≤ pj+1,
• qj+1 ∈ D and
• uν(qj+1) is chosen according to the strategy for ν+-strategic closure

below 〈uν(qk) : k ≤ j〉.
At limit stages j < ν+, let pj ≤ p0 be a condition which is incompatible
to all qk, k < j so that for all k < j, uν(pj) ≤ uν(qk) if such exists. Note
that a pj satisfying the latter condition can always be found by the strategic
choice of the uν(qk). Choose qj ≤ pj so that qj ∈ D and uν(qj) ≤ uν(pj).
Proceed until at some stage j no condition pj as above can be chosen. By
9, this will be the case for some j < ν+. We can then find q ∈ Pα so that
uν(q) ≤ uν(qk) for every k < j and lν(q) = lν(p). By our construction, q
reduces D below ν. �

Using the claim for ν = η, the case of regular η follows immediately,
applying 10 once more. For the case of η ≤ α singular, choose a continuous,
cofinal in η, increasing sequence 〈ηi : i < cof η〉 of cardinals where each ηi+1

is regular. Build a sequence of conditions 〈qi : i < cof η〉 so that qi+1 = qi

for limit ordinals i and otherwise qi+1 reduces the first ηi-many given dense
sets below ηi, lηi(q

i+1) = lηi(q
i) and uηi(q

i+1) is chosen according to the
strategy for (ηi)

+-strategic closure of uηi(Pα) for each i < cof η. At limit
stages i ≤ cof η, we may take lower bounds of the conditions obtained so far
using stability of the obtained sequence of conditions below ηi together with
(ηi)

+-strategic closure of uηi(Pα) provided by 10. One needs to observe that
strategies for strategic closure cohere nicely between different cardinals, i.e.
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if θ0 < θ1 are cardinals and 〈uθ0(pj) : j < i〉 follows the strategy for θ0
+-

strategic closure of uθ0(Pα), then 〈uθ1(pj) : j < i〉 follows the strategy for
θ1

+-strategic closure of uθ1(Pα).

∆-distributivity is easily inferred using the above.

Proof of 10 (Strategic Closure), 11 (Reducing dense sets) and 12 (Club
Extendibility): We distinguish several cases according to α:

α line of argument
Case 1 the trivial cases trivial
Case 2 succ. ord. of reg. card. prove 12, then 10
Case 3 sing. card. or inacc. prove 10 similar to Case 2
Case 4 succ. of a reg. card. prove 11, then 10
Case 5 lim. ord. of inacc. card. prove 10, building on Case 2
Case 6 lim. ord. of succ. card. prove 10, building on Case 2
Finally lim. ord. prove 12, using 10

Case 1: κ = ω, κ is singular and α > κ, α = ω1 or α = λ+ for some
singular cardinal λ: If α = ω, Pα denotes the trivial forcing and therefore
10 is trivially valid. If κ is singular or ω and α is not a cardinal, 10 is clear
inductively. If α = ω1, 10 is clear. If α = λ+ for some singular cardinal λ,
10 is clear using 10 inductively (at stage λ). 12 is clear inductively in all
cases.

Case 2: α = β + 1 for some β, κ is regular: This case already introduces
many of the ideas that will turn up in the proofs of 10, 11 and 12. The main
issue in the proofs to follow is reducing dense sets related to ts(p) for some
fully string supported p ∈ Pα. In Case 2, ts(p) is a Pβ-name and we will
make use of the fact that the properties of Pβ that were already established
inductively allow us to treat issues at the top cardinal κ exactly like issues
at smaller cardinals θ < κ. We will show how to handle those θ < κ first
(exactly the same treatment needs to be done in all subsequent cases at all
θ < κ) and remark in the end why κ may be treated in the same way. What
makes Case 3 simpler is the fact that ts(p) = 1 or to put it differently, that
we only have to treat cardinals θ < κ exactly as in Case 2; nothing has to
be done at κ here. In the hardest Cases 5 and 6, we will have to draw upon
the fact that ts(p) is a union of Pβ-names for β < α when we want to treat
issues at the top cardinal κ. Now we turn to the actual proof of Case 2:

The proofs of 10 and 12 will be very similar to each other in this case. We
proceed by first giving the proof of 10 assuming 12 and then give a sketch of
how to prove 12 in a similar way. The basic difference is that while we use
the notion of suitable genericity in the proof of 10 and need to use 12 there
to find suitably generic conditions, we will use the weaker notion of suitable
pre-genericity to prove 12, making use of the fact that suitably pre-generic
conditions are easier to find than suitably generic ones (in particular without
using 12 itself).

The proof of 10 proceeds in two steps: First we show that if we build a
decreasing sequence of conditions alongside an increasing sequence of models
and ensure enough suitable genericity of our conditions at successor stages
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over the current model in our sequence of models, we can ensure that at
limit stages lower bounds for our decreasing sequence of conditions do exist
as long as this is not ruled out by obviously blowing the support restraints.
The second step will be to show that we can always choose suitably generic
successive conditions. This basic scheme of proof will also be employed in
Cases 5 and 6.

Claim 52. [Lower Bounds at Successor Stages]
Assume 〈pi : i < γ〉 is a decreasing sequence of conditions in Pα of limit
length γ < η+ which is stable below η+. Assume that for every θ ∈ [η+, α):
if j < γ is least such that C-supp(pj ∩ [θ, θ+)) 6= ∅, then 〈M i

θ : j ≤ i <
γ〉 is an increasing chain of domains of elementary submodels of Hν for
some large (w.r.t. α), regular ν with union Mθ =

⋃
j≤i<γM

i
θ, each M i

θ has

cardinality < θ, is transitive below θ, contains pi and θ as elements and for
each i ∈ [j, γ), pi+1 is suitably generic for Pmin{θ+,α} at θ over M i

θ.

Then the sequence 〈pi : i < γ〉 has a lower bound.

Proof. Assume 〈pi : i < γ〉 is as in the statement of the claim, using models
M i
θ. We want to show by induction on δ that 〈pi�δ : i < γ〉 has a lower bound.

Fix some δ ∈ (η+, α] and assume that qξ denotes an inductively obtained
lower bound of 〈pi�ξ : i < γ〉, (qξ)⊕ denotes an inductively obtained lower
bound of 〈pi�ξ⊕ : i < γ〉 for ξ < δ. It is easy to see that the existence of
qξ implies the existence of (qξ)⊕. Let r be the componentwise union of the
pi�δ. Let |r|θ :=

⋃
i<γ |pi�δ|θ. We will only treat the hardest case when

δ = α = β + 1 is a successor ordinal - the case that δ < α is similar and
easier. We will next establish a notion of coherence that will be central in
what follows:

Definition 53. Assume 〈pi : i < γ〉 is a decreasing sequence of conditions in
Pα of limit length γ < η+ which is stable below η+ and let r be the componen-
twise union of 〈pi : i < γ〉. Assume M = 〈Mθ : C-supp(r) ∩ [θ, θ+) 6= ∅〉 is
a sequence where each Mθ has cardinality < θ, is transitive below θ and
contains θ as element. We say that r matches M iff for every θ with
C-supp(r) ∩ [θ, θ+) 6= ∅,

(1) If θ is inaccessible, cardMθ = sup(S-supp(r) ∩ θ) = Mθ ∩ θ.
(2) If θ is a successor cardinal, θ = λ+, |r|λ = sup(S-supp(r) ∩ θ) =

Mθ ∩ θ.
(3) If θ < cardα, C-supp(r) ∩ [θ, θ+) = Mθ ∩ [θ, θ+). If θ = cardα,

C-supp(r) ∩ [θ, α) = Mθ ∩ [θ, α).
(4) If ξ ∈ C-supp(r) has cardinality θ and 〈pi�ξ⊕ : i < γ〉 has a lower

bound, then this lower bound forces that r∗ξ = Mθ ∩ [θ, |rξ|).
(5) If θ < cardα and 〈pi�θ+ : i < γ〉 has a lower bound, then this lower

bound forces that I-supp(r) ∩ [θ, θ+) = Mθ ∩ [θ, θ+). If θ = cardα
and 〈pi : i < γ〉 has a lower bound, then this lower bound forces that
I-supp(r) ∩ [θ, θ+) = Mθ ∩ [θ, |r|θ).

(6) If D is a dense subset of Emin{θ+,ζ} for some ζ ∈ [cardα, α) in Mθ,

then there is i < γ so that pi reduces D below λ for some λ < θ.
(7) If ξ ∈ C-supp(r), ξ ≥ η+ and 〈pi�ξ⊕ : i < γ〉 has a lower bound, then

this lower bound forces that sup r∗∗ξ = sup(S-supp(r) ∩ θ).



A QUASI LOWER BOUND 25

As might be expected, it is the case that if we construct a decreasing
sequence of conditions alongside an increasing sequence of models as in the
statement of Claim 52, the above-defined coherence notion applies to the
componentwise union of our conditions and the unions of our models, which
is shown in the following claim:

Claim 54. r matches 〈Mθ : C-supp(r) ∩ [θ, θ+) 6= ∅〉.

Proof. Proof of 1: By Clause 0 of suitable genericity, sup(S-supp(pi+1)∩θ) ≥
cardM i

θ and ≥ M i
θ ∩ θ, implying that sup(S-supp(r) ∩ θ) ≥ cardMθ and

≥Mθ ∩ θ. As pi ∈M i
θ, θ ∈M i

θ and M i
θ is transitive below θ, it follows that

Mθ ∩ θ and cardMθ are both ≥ sup(S-supp(r) ∩ θ).

Proof of 2: Since λ ∈ M0
θ , |pi|λ ∈ M i

θ, hence |r|λ ≤ Mθ ∩ θ. For the other
direction, |pi|λ ≥ sup(S-supp(pi) ∩ θ), hence |r|λ ≥ sup(S-supp(r) ∩ θ).

Proof of 3: Since θ ∈ M0
θ , card(C-supp(pi) ∩ [θ, θ+)) ∈ M i

θ and hence
C-supp(pi) ∩ [θ, θ+) ⊆ M i

θ, hence C-supp(r) ∩ [θ, θ+) ⊆ Mθ. For the other
direction, assume ξ ∈ M i

θ ∩ [θ,min(θ+, α)). If α = ξ + 1, by clause 2 of
suitable genericity we obtain that ξ ∈ C-supp(p1). If α 6= ξ + 1, then
D = {t ∈ Pξ+1 : ξ ∈ C-supp(t)} is dense in Pξ+1 and definable in M i

θ and
hence reduced below cardM i

θ by pi+1. But this means that ξ ∈ C-supp(pi+1).
Hence Mθ ∩ [θ, θ+) ⊆ C-supp(r) ∩ [θ, θ+).

Proof of 4: Choose i < γ so that ξ ∈ C-supp(pi). By suitable genericity,
pi+1 decides |piξ| = |rξ|. Let ζ be an element of Mθ ∩ [θ, |rξ|) and choose

j < γ greater than i so that ζ ∈ C-supp(pj). Then {t ∈ Pξ+1 : t�ξ⊕ ζ ∈ t∗ξ}
is dense and definable in M j

θ , hence by suitable genericity, pj+1�ξ⊕ forces

that ζ ∈ (pj+1)∗ξ . For the other direction, by suitable genericity and clause
16 of theorem 49 inductively, there exists x ∈ V of size < θ such that
pi+1�ξ⊕ r∗ξ ⊆ x and hence M i+1

θ ⊇ x by elementarity of M i+1
θ .

5 is immediate from 4. 6 is immediate using suitable genericity of the pi.

Proof of 7: If α = β + 1 is a successor ordinal and ξ = β, sup r∗∗ξ ≥
sup(S-supp(r) ∩ θ) follows using clause 2 of suitable genericity. Otherwise,
sup r∗∗ξ ≥ sup(S-supp(r) ∩ θ) follows by easy density arguments and clause

1 of suitable genericity. sup(S-supp(r) ∩ θ) ≥ sup r∗∗ξ also follows by easy
density arguments and clause 1 of suitable genericity. �

We now turn back to the proof of Claim 52. We want to define a condition
q constituting a lower bound of 〈pi : i < γ〉. It will be immediate from the
definition of q that it extends each pi as soon as we know that q actually
is a valid condition. To prove the latter will then finish the proof of Claim
52. We will make constant and usually tacit use of the coherence properties
obtained in Claim 54.

Assume η+ ≤ ξ < α, ξ ∈ C-supp(r), card ξ = θ and (qξ)⊕ forces ρ ∈
r∗ξ . Then fρ is a bijection between θ and ρ, by elementarity of Mθ thus

fρ�(Mθ∩θ) is a bijection between Mθ∩θ and Mθ∩ρ. Thus if we let πθ denote

the collapsing map of Mθ, it follows that (qξ)⊕ forces πθ(ρ) = ot(fρ[sup r∗∗ξ ]).

If θ is inaccessible, πθ(ρ) ≥Mθ ∩ θ = sup(S-supp(r)∩ θ) = cardMθ; thus for
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any ρ0 6= ρ1 in I-supp(r), πcard ρ0(ρ0) 6= πcard ρ1(ρ1). Let θ̄ := πθ(θ) and let
M̄θ = πθ

′′Mθ. We want to build q out of r as follows:

• for every regular θ ≥ η+ with C-supp(r) ∩ [θ, θ+) 6= ∅, construct a
Pθ̄-name sθ for a θ̄+-Cohen condition and let qθ̄ = sθ as follows:

– Let |sθ|− := supπθ
′′(Mθ ∩ |r|θ). If θ is inaccessible, let |sθ| =

|sθ|−; if θ is a successor cardinal, let |sθ| = |sθ|− + 2.
– Choose F q

θ̄
to be 〈fγ : γ ∈ [card θ̄, |sθ|)〉 with fγ chosen freely as

a bijection from card θ̄ to γ for γ ≥ θ̄ and equal to the fγ picked
by r otherwise.

– If (ρ0, ρ1) ∈ [card θ̄, θ̄)q, then sθ(ρ0, ρ1) = r@(ρ0, ρ1).
– For all (ρ0, ρ1) ∈ ([θ, θ+)q∩Mθ

2), sθ(πθ(ρ0), πθ(ρ1)) is such that
it is forced by qξ to be equal to πθ(r@(ρ0, ρ1)) whenever ξ is so
that both ρ0 and ρ1 are either forced by (qξ)⊕ to belong to r∗ξ
or are smaller than θ̄.

– If θ is a successor cardinal, qθ̄ forces that sθ(|sθ|−) codes f|sθ|− .

• for all ξ ∈ C-supp(r), ξ ≥ η+, q∗∗ξ = r∗∗ξ ∪ {sup r∗∗ξ },
• qξ = rξ and F qξ = F rξ for all ξ ∈ S-supp(r), q∗ξ = r∗ξ for all ξ and

q∗∗ξ = r∗∗ξ for all ξ < η+.

This will be possible once we know that

(a) Whenever θ ≥ η+, (ρ0, ρ1) ∈ ([θ, θ+)q ∩Mθ
2) and ξ is so that both

ρ0 and ρ1 are either forced by (qξ)⊕ to belong to r∗ξ or are smaller

than θ̄, then qξ forces that r@(ρ0, ρ1) has a Pθ̄-name.
(b) If ρ is not a multiple of θ and qξ forces ρ ∈ r∗ξ , then qξ forces

r@(ρ, ρ) = 0. This implies that if θ = λ+ is a successor cardinal

and ρ̄ ≥ |r|λ is not a multiple of ω · λ, qθ̄ forces sθ(ρ̄, ρ̄) = 0.

(c) qθ̄ forces that sθ is an acceptable, correct θ̄+-Cohen condition.

Proof of (a): Choose i < γ and ξ s.t. pi�ξ⊕ forces (ρ0, ρ1) ∈ [θ, θ+)q ∩
(θ̄ ∪ (pi)∗ξ). The set of conditions deciding pi@(ρ0, ρ1) is dense in Pξ and

an element of M i
θ. It follows by suitable genericity of pi+1 for Pξ at θ over

M i
θ that pi+1 pi@(ρ0, ρ1) has a Psup(S-supp(pi+1)∩θ)-name and (a) follows as

sup(S-supp(pi+1) ∩ θ) < θ̄.

Proof of (b): The first statement is obvious from the definition of the forcing.
The second statement follows from the first one, noting that multiples of θ
will be collapsed to multiples of θ̄ under πθ and that θ̄ is a multiple of ω · λ.

Proof of (c): As we may show this separately for every relevant θ, fix some
such θ. Assume first that θ < cardα. If ξ ∈ C-supp(r) ∩ [θ, θ+), rξ ∈
Mθ is a Pξ-name for an acceptable, correct θ+-Cohen condition. Let s =⋃
ξ∈C-supp(r)∩[θ,θ+) rξ. Let r̄ξ := πθ(rξ) and let s̄ =

⋃
ξ∈C-supp(r)∩[θ,θ+) r̄ξ. Let

sξθ := sθ�πθ(|r�ξ|θ).

Claim 55. If Ḡ 3 qθ̄ is generic for Pθ̄, then 〈pi�θ+ : i < γ〉 together with
Ḡ generates a generic G∗∗ for Pθ+ over Mθ. Let G∗ = πθ”G

∗∗. Then

(sθ�|sθ|−)Ḡ = s̄G
∗
.
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Proof. Each pi is compatible with Ḡ and thus 〈pi�θ+ : i < γ〉 together with Ḡ
generates a filterG∗∗ ⊆ Pθ+ . AssumeD ∈Mθ is an open dense subset of Pθ+ .
As D is an element of some M i

θ, i < γ, pi+1�θ+ reduces D below cardM i
θ

by suitable genericity, which implies D∗ = {q ∈ Pθ̄ : q_pi+1[θ̄, θ+) ∈ D} is
dense below pi+1�θ̄ and thus hit by some condition q ∈ Ḡ. Let p̄i denote
πθ(p

i). For the second statement, if ξ0, ξ1 < |sθ|−,

sθ
Ḡ(ξ0, ξ1) = ξ2 iff
∃p ∈ Ḡ p sθ(ξ0, ξ1) = ξ2 iff
∃p ∈ Ḡ ∃i < γ p_pi[θ̄, θ+) pi@(πθ

−1(ξ0), πθ
−1(ξ1)) = πθ

−1(ξ2) iff
∃p∗ ∈ G∗ p∗ p̄i@(ξ0, ξ1) = ξ2 iff
s̄G
∗
(ξ0, ξ1) = ξ2.

�

Let P̄ξ = πθ(Pξ). If θ is inaccessible, θ̄ is a (singular) cardinal and thus
by elementarity, each r̄ξ is a P̄ξ-name for an acceptable, correct θ̄+-Cohen

condition w.r.t. gcard θ̄. By the above claim, we thus know that qθ̄ forces

that each sξθ is an acceptable, correct θ̄+-Cohen condition w.r.t. gcard θ̄. By

Lemma 27, this implies that qθ̄ forces that sθ is an acceptable, correct θ̄+-
Cohen condition w.r.t. gcard θ̄ and hence we are done in that case.

If θ is a successor cardinal, θ = λ+, θ̄ ∈ (λ, θ) is not a cardinal (of V).

Claim 56. qθ̄ forces that sθ is correct w.r.t. gλ.

Proof. qθ̄ forces that f|sθ|− ∈ L|sθ|[g
_
λ sθ] by the definition of sθ. �

It remains to show that sθ is an acceptable θ-Cohen condition:

Claim 57. qθ̄ forces that all subsets of λ in L|sθ|−+1[gλ
_sθ] appear before

θ̄.

Proof. Let Ḡ 3 qθ̄ be generic for Pθ̄. 〈pi : i < γ〉 together with Ḡ generates
a generic G∗∗ for Pθ+ over Mθ. Therefore G∗ := πθ”[G∗∗] is generic for P̄θ+
over M̄θ and we get an elementary embedding jθ from M̄θ[G

∗] to Mθ[G
∗∗] in

V [Ḡ]. Mθ |= 1Pθ+  ”L[gθ+ ] |= all subsets of λ appear before θ” inductively,

hence Mθ[G
∗∗] |= ”L[gθ+ ] |= all subsets of λ appear before θ”. Applying

elementarity, M̄θ[G
∗] |= ”L[jθ

−1(gθ+)] |= all subsets of λ appear before θ̄”,

but jθ
−1(gθ+) = gλ

_(sθ�|sθ|−)Ḡ and since M̄θ is transitive and satisfies a

large fragment of ZFC, absoluteness yields that LOrd(M̄θ)[g
_
λ (sθ�|sθ|−)Ḡ] |=

all subsets of λ appear before θ̄, which proves the claim. �

Claim 58. qθ̄ forces that sξθ is an acceptable θ-Cohen condition w.r.t. gλ and

L|sξθ|
[gλ

_sξθ] |= θ̄ is the largest cardinal. We abbreviate the latter by saying

that sξθ is correct relative to θ̄.

Proof. By elementarity, using the properties of r̄ξ and Claim 55. �

We will finish showing that sθ is acceptable w.r.t. gλ by the following:

Claim 59. qθ̄ forces that sθ is acceptable w.r.t. gλ for subsets of θ̄, in the

sense that qθ̄ forces that whenever |sθ| ≥ ν > ρ ≥ θ̄ and there is a new subset

of ρ in Lν+1[gλ
_sθ], then HLν+1[gλ

_sθ](ρ) = Lν+1[gλ
_sθ].
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Proof. Using claim 58, it follows as in the proof of Lemma 27 that qθ̄ forces
that sθ�|sθ|− is an acceptable w.r.t. gλ for subsets of θ̄, correct relative to θ̄,

θ-Cohen condition. The claim follows as qθ̄  f|sθ|− ∈ L|sθ|[g
_
λ sθ]. �

To finish the proof of (c) and thus of Claim 52, we finally have to consider
the case θ = cardα. We omit a detailed proof as this is very similar to
(but easier than) the case θ < cardα, letting s = rβ ∈ Mθ, s̄ = πθ(s) and
using the facts that if Ḡ is generic for Pθ̄, then 〈pi : i < γ〉 together with Ḡ
generates a generic G∗∗ for P⊕β over Mθ and that gα can already be read off

from the P⊕β -generic. �

We now come to what we described as the second part of proof in the
paragraph before the statement of Claim 52 - the next claim, together with
Claim 52, finally establishes 10 in Case 2 (except that we still have to prove
12 in this case without using 10):

Claim 60. If p ∈ Pα and for every θ ∈ [η+, α) with C-supp(p)∩ [θ, θ+) 6= ∅,
Mθ is of cardinality < θ and transitive below θ, then there is q ≤ p which is
suitably generic for Pα at θ over Mθ for all such θ.

Proof. By 11 inductively and by 12, which we need for suitable genericity
at κ. Note that we may successively extend p to q, at each step ensuring
suitable genericity of q at θ for one particular cardinal θ. We may do this
at every particular θ without changing our condition below cardMθ or at
or above θ+, thus no problems arise to obtain q as a lower bound of those
successive extensions in the end. �

Now we turn to the proof of 12: Using 12 inductively, we may assume
that I = {β} and it thus suffices to show that for any given δ < κ, we can
extend any given p ∈ Pα to q ≤ p so that q sup(q∗∗β ) ≥ δ. Let such δ and p

be given. We want to build a decreasing sequence of conditions 〈pi : i < ω〉
as in Claim 52. At κ though, we only demand that each pi+1 is suitably
pre-generic for Pα at κ over M i

κ. Choose M0
κ so that M0

κ ∩ κ ≥ δ. Choose
each pi+1 so that (pi+1)∗∗β = (pi)∗∗β . Let r be the componentwise union of

the pi. 〈pi�β : i < ω〉 is as desired for Claim 52 to go through at stage β
and hence we may inductively obtain a lower bound q̄ of 〈pi�β : i < ω〉. Let
M = 〈Mν : C-supp(r) ∩ [ν, ν+) 6= ∅〉. Similar to Claim 54, r matches M,
except that item 7 of definition 53 does not hold for ξ = β. It is not hard
to see that we may still, additional to obtaining the lower bound q̄, add
Mκ ∩ κ ≥ δ to r∗∗β (as we do for all other r∗∗ξ when ξ is of cardinality κ) and

obtain a lower bound q of 〈pi : i < ω〉 as we would have done in Claim 52.

Case 3: α is a singular cardinal or inaccessible: The analogue of Claim
60 is immediate inductively, the analogue of Claim 52 then follows as in
Case 2 (but easier, as we only have to consider θ < κ), yielding 10.

Case 4: α is a successor of a regular cardinal: Let λ be so that α = λ+.
It is immediate that uλ(Pα) is α-closed. But this allows us to prove 11 in the
case η = λ. We use this to prove 11 in the general case: Given a collection
〈Di : i < η〉 of dense subsets of Pα and η < λ, we can reduce each Di below
λ by a single condition p ∈ Pα by the above. But then p ∈ Pβ for some
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β < α and we may use 11 at stage β inductively to extend p to q (with p
and q equal at and above β) so that q reduces each Di below η. Now 11
suffices to prove 10 as it allows us to find suitably generic conditions, i.e.
prove the analogue to Claim 60. The analogue to Claim 52 then follows as
in Case 2 above.

Case 5: α is a singular limit ordinal, κ is inaccessible
We proceed similar to Case 2 here. First we show that we may take lower
bounds at limit stages of decreasing sequences of conditions in our forcing
as long as we ensure enough suitable genericity along the sequence. In the
second step, we show that we may always ensure enough suitable genericity
along the sequence. With the methods of Case 2 available, this case will be
quite easy:

Claim 61. [Lower Bounds at Singular Limit Stages of Inaccessible Cardi-
nality]
Assume 〈pi : i < γ〉 is a decreasing sequence of conditions in Pα of limit
length γ < η+ which is stable below η+. Assume that for every θ ∈ [η+, α):
if j < γ is least such that C-supp(pj ∩ [θ, θ+)) 6= ∅, then 〈M i

θ : j ≤ i < γ〉
is an increasing chain of domains of elementary submodels of Hν for some
large (w.r.t. α), regular ν with union Mθ =

⋃
j≤i<γM

i
θ, each M i

θ has cardi-

nality < θ, is transitive below θ, contains pi and θ as elements and for each
i ∈ [j, γ), pi+1 is suitably generic for Pmin{θ+,α} at θ over M i

θ. Then the

sequence 〈pi : i < γ〉 has a lower bound.

Proof. Assume 〈pi : i < γ〉 is as in the statement of the claim, using models
M i
θ. Let r be the componentwise union of the pi. We want to show by

induction on ξ that 〈pi�ξ : i < γ〉 has a lower bound. Let ξ ≤ α and assume
that qζ denotes the inductively obtained lower bound of 〈pi�ζ : i < γ〉, (qζ)⊕

denotes the inductively obtained lower bound of 〈pi�ζ⊕ : i < γ〉 for ζ < ξ.
Cardinals θ < κ are handled as in Case 2. We will thus basically ignore them
for the rest of this argument and focus solely on handling κ. We will only
treat the hardest case when ξ = α - other cases are handled as in Case 2.
Similar to Claim 54 in Case 2, we obtain that r matches 〈Mθ : C-supp(r) ∩
[θ, θ+) 6= ∅〉. Assume ν ∈ [κ, α) and (qν)⊕ forces ρ ∈ r∗ν . Let πκ denote the
collapsing map of Mκ. Then (qν)⊕ forces that πκ(ρ) = ot(fρ[sup r∗∗ν ]) as in
Case 2 above. Let κ̄ = πκ(κ) and let M̄κ = πκ

′′Mκ.
We want to build q out of r similar than we did in Case 2, in particular,

we will do the same at cardinals less than κ, which we will ignore during the
rest of this argument. At κ, we do the following:

• Construct a Pκ̄-name sκ for a κ̄+-Cohen condition and let qκ̄ = sκ
as follows:

– Let |sκ| = supπκ
′′(Mκ ∩ |r|κ).

– For all (ρ0, ρ1) ∈ ([κ, κ+)q ∩ Mκ
2), sκ(πκ(ρ0), πκ(ρ1)) is such

that it is forced by qξ to be equal to πκ(r@(ρ0, ρ1)) whenever ξ
is so that both ρ0 and ρ1 are either forced by (qξ)⊕ to belong
to r∗ξ or are smaller than κ̄.

• Choose arbitrary collapsing information F qκ̄ .
• For all ν ∈ C-supp(r), ν ≥ κ, q∗∗ν = r∗∗ν ∪ {sup r∗∗ν }.
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• qν = rν and F qν = F rν for all ν ≥ κ, q∗ν = r∗ν for all ν ≥ κ.

This will be possible once we know that

(a) Whenever (ρ0, ρ1) ∈ ([κ, κ+)q ∩Mκ
2) and ξ is so that both ρ0 and

ρ1 are either forced by (qξ)⊕ to belong to r∗ξ or are smaller than κ̄,

then qξ forces that r@(ρ0, ρ1) has a Pκ̄-name.
(b) qκ̄ forces that sκ is an acceptable, correct κ̄+-Cohen condition.

(a) is shown exactly as in Case 2. For (b), it follows as in case 2 that qκ̄ forces
that every restriction of sκ is an acceptable, correct κ̄+-Cohen condition
w.r.t. gκ̄ by elementarity (the key point here is that κ̄ is a cardinal, this
saves us from all the hard work that has to be done in Case 6 below). Thus
by Lemma 27, qκ̄ forces that sκ is an acceptable, correct κ̄+-Cohen condition
w.r.t. gκ̄, as desired. �

We are now done with the first step of our proof in Case 5. A new
ingredient for the second step will be a slightly refined version of our usual
claim about obtaining lower bounds of sequences of conditions (Claim 61
in this case), which we will need to invoke to construct suitably generic
conditions in Claim 63 below in case α has “small cofinality”:

Claim 62. Assume α has cofinality γ < κ and 〈pi : i < γ〉 is a decreasing
sequence of conditions in Eα of limit length γ < η+ which is stable below η+.
Assume that for every θ ∈ [η+, κ): if j < γ is least such that C-supp(pj ∩
[θ, θ+)) 6= ∅, then 〈M i

θ : j ≤ i < γ〉 is an increasing chain of domains
of elementary submodels of Hν for some large (w.r.t. α), regular ν with
union Mθ =

⋃
j≤i<γM

i
θ, each M i

θ has cardinality < θ, is transitive below θ,

contains pi and θ as elements and for each i ∈ [j, γ), pi+1 is suitably generic
for Pθ+ at θ over M i

θ. Assume further that 〈αi : i < cof α〉 is continuous,
increasing and cofinal in α with α0 > κ. Assume that 〈M i

κ : i < γ〉 is an
increasing chain of domains of elementary submodels of Hν with union Mκ,
each M i

κ has cardinality < κ, is transitive below κ, contains pi and κ as
elements and for each i < γ, pi+1 is suitably generic for Pαi at κ over M i

κ

and pi+1�[αi, α) = pi�[αi, α).

Then the sequence 〈pi : i < γ〉 has a lower bound.

Proof. Our current assumptions suffice to perform exactly the same proof
that we gave for Claim 61. �

We finish the proof in Case 5 by the following:

Claim 63. If p ∈ Pα and Mθ is of cardinality < θ for every θ ∈ [η+, α) with
C-supp(p)∩ [θ, θ+) 6= ∅, then there is q ≤ p which is suitably generic for Pα
at θ over Mθ for all such θ.

Proof. First use inductive distributivity to obtain a condition q∗ which is
suitably generic for Pα at θ over Mθ for all θ < κ. If α has cofinality ≥ κ,
then Mκ is bounded in α and therefore we may use inductive distributivity
from stage sup(Mκ∩α) to obtain suitable genericity. If α has cofinality < κ,
construct a decreasing sequence of conditions 〈pi : i < cof α〉 with p0 = q∗

as in Claim 62 while additionally making sure that for each i < γ, pi+1

reduces all dense subsets of Pαi in Mκ below cardMκ (which is possible by
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11 inductively) and note that the resulting lower bound is suitably generic
for Pα at κ over Mκ. �

Case 6: α is a singular limit ordinal, κ = λ+ is a successor cardinal:
Assume p0 is a condition in Eα. Work in some Pα-generic extension with
generic Gα and let s = gα�[κ, |gα|).

Case 6 is the hardest case. It is only for the proof in this case to go through
that the somewhat intricate definition of P⊕α in 4 is required. Although
the proof structure in this case is basically the same two-step construction
we used in Case 2 and Case 5, what actually follows is a long chain of
preliminaries culminating in the central preliminary result (Claim 75) that
no new subset of λ appears at the top of s (i.e. in L|s|+1[s]). This was easily
seen in all other cases, but requires a careful proof in the present case, which
mainly involves establishing “definable versions” of Step 1 and Step 2. With
Claim 75 established, we may then proceed with the usual two-step proof
as in Case 2 and Case 5. Instead of giving the detailed argument for Steps
1 and 2 by mostly repeating once more what we did in Case 2 and Case
5 (we will also go through a somewhat similar line of argument once more
in the “definable versions” below), we decided to avoid too much repetition
and just hint at necessary changes to those cases in the proof of Claim 76
below, which will then finish the proof in Case 6. This presentation should
be more agreeable to the reader.

Claim 64. For β ∈ [κ, α), tsc(p0�β) is uniformly definable in L|s|[s] from
β.

Proof. For every γ ∈ [κ, β), p0
γ is coded (in the sense of 7) by s in the

interval (|p0
γ+1|+ |p0

γ |, |p0
γ+1| · 2). Let ν be the unique successor multiple of

κ s.t. s(ν, ν) = γ. If γ is a limit ordinal, |p0
γ | equals the least ξ s.t. for no

successor multiple ζ of κ in [ξ, ν), s(ζ, ζ) 6= 0 and equals the least ξ s.t.
s(ξ + κ, ξ + κ) = ζ if γ = ζ + 1 is a successor ordinal. |p0

γ | is definable

in L|s|[s] and hence our claim follows, as tsc(p0�β) is obtained by putting

together, one after another, the codes (in the sense of 7) of the p0
γ , γ < β,

additionally letting tsc(p0�β)(|p0�γ|κ, |p0�γ|κ) = γ for all γ < β. �

Corollary 65. L|s|[tsc(p0)] is a definable class of L|s|[s], therefore

L|s|+1[tsc(p0)] ⊆ L|s|+1[s].

Claim 66. L|s|[s] and L|s|[tsc(p0)] both think that κ is the largest cardinal,

i.e. s and tsc(p0) are both correct w.r.t. ∅.

Proof. By 4, because s and tsc(p0) both code fγ for γ < |s| in a way that
each such fγ is an element of both L|s|[s] and L|s|[tsc(p0)]. �

If α has definable cofinality < κ, note that the definable cofinality of |s|
over L|s|[tsc(p0)] equals that of α and as Hκ ⊆ L|s|[tsc(p0)] it is equal to the

actual cofinality of α in V. An isomorphic copy of Eα(ts(p0)) is definable
over L|s|[tsc(p0)] by 6. For a condition t ∈ Eα(ts(p0)), let c(t) denote its

counterpart in that isomorphic copy. We say that a dense D ⊆ Eβ(ts(p0))
is coded in M0 if it is a dense subset of the version of Eβ(ts(p0)) in that
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isomorphic copy and definable over M0. We have been somewhat vague in 6
about the exact way to obtain the isomorphic copy of Eα(ts(p0)), but we will
need a rigorous definition of c(t) in the following, which we will give now:
Note that by 5, t�κ ∈ Lκ·2+1[tsc(p0)], so we will take c(t) to be of the form
(c(t)κ, c(t)

κ) where c(t)κ simply equals t�κ. Let f be the L[tsc(p0)]-least
bijection from κ to α, note that f ∈ L|s|+1[tsc(p0)] and apply f−1 pointwise

to the indices of t�[κ, α) to obtain t′ = 〈(f−1(δ), t(δ)(1)) : t(δ)(1) 6= 1̌, δ ∈
[κ, α)〉. Now obtain t′′ from t′ by replacing each t(δ)(1) by a code for t(δ)(1)
in Hκ, obtained as follows: By 2, t(δ)(1) is represented by ρ < κ-many
functions 〈Aj : j < ρ〉 each with domain a maximal antichain of Eκ of size
< κ and range |s|. Let g be the L[tsc(p0)]-least bijection from κ to |s|. We
modify each Aj to A′j by letting A′j(x) = g−1(Aj(x)). Now each A′j is an

element of Hκ and we let 〈A′j : j < ρ〉 ∈ Hκ be our desired code for t(δ)(1).

Let c(t)κ = t′′.

The next preliminary result will be the existence of what might be called
“definably suitably generic” conditions (those will actually be called “suit-
ably generic for codes” in Definition 70 below):

Claim 67. If p0 ∈ Pα is fully string supported and M0 ⊇ λ+ 1 is definable
over L|s|[tsc(p0)] and has size λ, then there is q ≤ p0 so that for all β < α,

q reduces all dense subsets of Pβ which are coded in M0 below λ.

Proof. Let 〈αi : i < cof α〉 be an increasing sequence with limit α, Σn-
definable over L|s|[tsc(p0)]. We may assume that n is s.t. M0 is Σn-definable

over L|s|[tsc(p0)]. Also choose n sufficiently large for the argument to come.

We construct a decreasing sequence of conditions 〈pi : i < cof α〉 so that
pi+1 reduces all dense subsets of Pαi which are coded in M0 below λ and
〈pi : i < cof α〉 has a lower bound q which will be as desired. We do this by
constructing an increasing, continuous sequence of models 〈M i : i ≤ cof α〉,
each of size λ so that each M i+1 is the Σn-Skolem Hull in L|s|[tsc(p0)] of

(M i ∩ κ) ∪ {c(pi),M i ∩ κ} and choosing each pi+1 to have the least code in
the canonical well-ordering of L[tsc(p0)] so that it reduces all dense subsets
of Pαi which are coded in M i below λ and to agree with pi at and above
αi. It remains to show that for each limit ordinal γ ≤ cof α, we obtain
a lower bound pγ of the conditions chosen so far. Choose pγ to have the
least-possible code in the canonical well-ordering of L[tsc(p0)] in that case.

We will only treat the hardest case when γ = cof α. Let r be the compo-
nentwise union of the pi. We want to show by induction on ξ ≤ α that
〈pi�ξ : i < γ〉 has a lower bound. Let ξ ≤ α and assume that qζ denotes
the inductively obtained lower bound of 〈pi�ζ : i < γ〉, (qζ)⊕ denotes the
inductively obtained lower bound of 〈pi�ζ⊕ : i < γ〉 for ζ < ξ. We will only
treat the hardest case when ξ = α. Let N := Mγ . Similar to Claim 54
in Case 2, we obtain that r matches N in the sense of the following claim,
completely ignoring issues at cardinals < κ which are handled as in Case 2:

Claim 68. (1) If D is a dense subset of Eζ for some ζ ∈ [κ, α) that is
coded in N , then there is i < γ so that pi reduces D below λ.

(2) |r|λ = sup(S-supp(r) ∩ κ) = N ∩ κ.
(3) C-supp(r) ∩ [κ, α) = N ∩ [κ, α).



A QUASI LOWER BOUND 33

(4) If ρ ∈ C-supp(r) has cardinality κ, (qρ)⊕ forces r∗ρ = N ∩ [κ, |rρ|)
and sup r∗∗ρ = sup(S-supp(r) ∩ κ).

Proof. Proof of 1: Immediate from our construction.

Proof of 2: Since λ ∈M0, |pi|λ ∈M i and hence |r|λ ≤ N ∩κ. For the other
direction, note that {t ∈ Eκ : |t|λ > M i ∩ κ} is dense in Eκ and coded in
M i+1, hence |pi+2|λ ≥M i ∩ κ. The proof for sup(S-supp(r) ∩ κ) is similar.

Proof of 3: If for some i < γ, ρ ∈ C-supp(pi)∩ [κ, α), then as tcl({c(pi)κ}) ⊆
M i+1, ρ = f(j) for some j < κ in M i+1 and therefore ρ ∈ M i+1 by Σn-
elementarity of M i+1. For the other direction, assume ρ ∈ M i ∩ [κ, αi) for
some i < γ. {t ∈ Eαi : ρ ∈ C-supp(t)} is dense in Eαi and coded in M i,
hence ρ ∈ C-supp(pi+1).

Proof of 4: Similar to the above and the corresponding items in Claim
54. �

Assume ν ∈ [κ, α) and (qν)⊕ forces ρ ∈ r∗ν . Let π denote the collapsing
map of N . Then (qν)⊕ forces that π(ρ) = ot(fρ[sup r∗∗ν ]) as in Case 2. Let
κ̄ = π(κ) and let N̄ = π′′N . We want to build q out of r similar as in Case
2 - in particular, we will do the same at cardinals less than κ, which we will
ignore during the rest of this argument. At κ, we do the following:

• Construct a Pκ̄-name sκ for a κ-Cohen condition and set qκ̄ = sκ as
follows:

– Let |sκ|− = supπκ
′′(N ∩ |r|κ), let |sκ| = |sκ|− + 2.

– Choose F qκ̄ to be 〈fγ : γ ∈ [λ, |sκ|)〉 with fγ chosen freely as a
bijection from λ to γ for γ ≥ κ̄ and equal to the fγ picked by r
otherwise.

– If (ρ0, ρ1) ∈ [λ, κ̄)q, then sθ(ρ0, ρ1) = r@(ρ0, ρ1).
– For all (ρ0, ρ1) ∈ ([κ, κ+)q∩N2), sκ(πκ(ρ0), πκ(ρ1)) is such that

it is forced by qξ to be equal to πκ(r@(ρ0, ρ1)) whenever ξ is so
that both ρ0 and ρ1 are either forced by (qξ)⊕ to belong to r∗ξ
or are smaller than κ̄.

– qκ̄ forces that sκ(|sκ|−) codes f|sκ|− .
• For all ν ≥ κ in C-supp(r), q∗∗ν = r∗∗ν ∪ {sup r∗∗ν }.
• qν = rν , F qν = F rν and q∗ν = r∗ν for all ν ≥ κ.

This will be possible once we know that

(a) Whenever (ρ0, ρ1) ∈ ([κ, κ+)q ∩N2) and ξ is so that both ρ0 and ρ1

are either forced by (qξ)⊕ to belong to r∗ξ or are smaller than κ̄, then

qξ forces that r@(ρ0, ρ1) has a Pκ̄-name.
(b) If ρ is not a multiple of κ and qξ forces ρ ∈ r∗ξ , then qξ forces

r@(ρ, ρ) = 0. This implies that if ρ̄ ≥ |r|λ is not a multiple of ω · λ,
qκ̄ forces sκ(ρ̄, ρ̄) = 0.

(c) qκ̄ forces that sκ is an acceptable, correct κ-Cohen condition.

Proof of (a): Choose i < γ and ξ s.t. pi�ξ⊕ forces (ρ0, ρ1) ∈ [κ, κ+)q ∩
(κ̄ ∪ (pi)∗ξ). The set of conditions deciding pi@(ρ0, ρ1) is dense in Pξ and

coded in M i. Therefore pi+1 reduces this dense set below λ and hence
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forces that pi@(ρ0, ρ1) has a Psup(S-supp(pi+1)∩κ)-name and (a) follows as

sup(S-supp(pi+1) ∩ κ) < κ̄.

Proof of (b): As in Case 2.

Proof of (c): We proceed similar to Case 2, additionally using the following
claim, which ensures Acceptability at |sκ|−:

Claim 69. κ̄ is collapsed to λ definably over L|sκ|− [sκ].

Proof. Note that our whole construction has been done Σn-definably over
L|s|[tsc(p0)]. Now as N is Σn-elementary in L|s|[tsc(p0)], it is easy to observe
that the same construction can be done Σn-definably over N and hence
the collapsed version of that construction can be done Σn-definably over
N̄ . N̄ is of the form L|s̄|[tsc(p̄0)] for some p̄0. Similar to Claim 55, if

Ḡ 3 qκ̄ is generic for Pκ̄, then 〈c(pi) : i < γ〉 together with Ḡ generates
generics G∗∗ξ for Eξ(p

0) over N whenever ξ < α. Let G∗ξ = π′′G∗∗ξ . Then

(p̄0
π(ξ))

G∗ξ = sκ� |p0
π(ξ)| and

⋃
ξ<α(p̄0

π(ξ))
G∗ξ = sκ� |sκ|−. Moreover tsc(p̄0) is

definable over L|sκ|− [sκ] in a way that L|sκ|− [tsc(p̄0)] is a definable class of
L|sκ|− [sκ], similar to Claim 65. But this makes the collapsed version of our
construction definable over L|sκ|− [sκ]. From this construction we can read

off the sequence 〈sup(M i ∩ κ̄) : i < γ〉 which is cofinal in κ̄ and hence we
obtain a surjection from λ to κ̄ definably over L|sκ|− [sκ]. �

Finally, if α has definable cofinality ≥ κ over L|s|[tsc(p0)], Claim 67 is im-
mediate by induction, as in this case M is bounded in α. �

Definition 70. Let p ∈ Eα and M be of size λ, transitive below κ. We say
q ≤ p is suitably generic for Pα at κ for codes in M if q�ξ⊕ reduces every
dense subset of E⊕ξ (ts(p)) that is coded in M below λ for every ξ < α.

The following is now immediate by handling cardinals θ < κ as in Case 2
and handling κ as in Claim 67:

Corollary 71. If p ∈ Eα and for every θ ∈ [η+, κ) with C-supp(p)∩[θ, θ+) 6=
∅, Mθ is of cardinality < θ and Mκ is definable over L|s|[tsc(p0)] and of
cardinality λ, then there is q ≤ p which is suitably generic for Pα at θ over
Mθ for every θ ∈ [η+, κ) with C-supp(p) ∩ [θ, θ+) 6= ∅ and suitably generic
for Pα at κ for codes in Mκ.

Next we establish what may be called “definable reduction” for Eα:

Claim 72. If p ∈ Eα and D is a dense subset of Eα(p) which has a code
definable over L|s|[tsc(p)], then there is q ≤ p which reduces D below λ.

Proof. We will again completely ignore issues at cardinals less than κ, which
are handled as usual. Build a decreasing sequence of conditions in Pα below
p and an increasing sequence of models as follows: Fix n < ω sufficiently
large. Let p0 = p. Choose q0 to have the least code (i.e. c(q0) least in the
canonical well-ordering of L[tsc(p0)]) so that q0 ≤ p0 and q0 ∈ D. Choose
M0 to be the Σn-Skolem Hull of (λ+ 1) ∪ {c(q0)} in L|s|[tsc(p0)]. At stage

j + 1, let pj+1 ≤ p0 be the condition with least code which is incompatible
to all qk, k ≤ j, such that uλ(pj+1) = uλ(qj) if such exists and choose qj+1

to have the least code such that:
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• qj+1 ≤ pj+1,
• qj+1 ∈ D and
• uλ(qj+1) ≤ uλ(pj+1) is suitably generic for Pα at κ for codes in M j .

Choose M j+1 to be the Σn-Skolem Hull of (M j ∩ κ) ∪ {c(qj+1),M j ∩ κ} in
L|s|[tsc(p0)]. At limit stages j < κ, let pj ≤ p0 be the condition with least

code which is incompatible to all qk, k < j so that for all k < j, uλ(pj) ≤
uλ(qk) if such exists. Choose qj w.r.t. pj as qj+1 was chosen w.r.t. pj+1 above.
Choose M j to be the Σn-Skolem Hull of ((

⋃
k<jM

k ∩ κ) + 1) ∪ {c(qj)}.

Proceed until at some stage j no condition pj as above can be chosen. By 9,
this will be the case for some γ < κ. We finish the proof by showing that for
every limit ordinal j ≤ γ, we may obtain a lower bound for 〈uλ(qk) : k < j〉.
For j = γ, this lower bound will then give rise to our desired q as in Claim
51. Let N =

⋃
k<jM

k. Let π be the collapsing map of N , let κ̄ = π(κ).

As j ≤ κ̄, it follows that j < κ̄ by Σn-elementarity of N .14 Let r be the
componentwise union of 〈pi : i < j〉. We want to form q out of r similar
to the proof of Claim 67. In particular, we define sκ as in that claim.
Similar to the proof of Claim 69, we obtain that the collapsed version of
this construction (over the collapse of N) is Σn-definable over L|sκ|− [sκ],
giving rise to a collapse of κ̄ to j definably over L|sκ|− [sκ] and hence to λ as
Lκ̄[sκ] |= λ is the largest cardinal. �

Claim 73. If p ∈ Eα and D = 〈Di : i < λ〉 is a sequence of codes of dense
sets which is definable over L|s|[tsc(p0)], then there is q ≤ p which reduces
each Di below λ.

Proof. Let n < ω be so that D is Σn-definable over L|s|[tsc(p0)]. Build a de-
creasing sequence of conditions in Eα below p and an increasing sequence of
Σn-elementary submodels of L|s|[tsc(p0)] both of length λ, reducing a single
Di in each step (using Claim 72) and using Claim 67 in each step to reduce
dense subsets of Eβ for all β < α which are coded in the relevant model.
Note that this can be done so that the decreasing sequence of conditions will
be Σn-definable over L|s|[tsc(p0)]. By the same arguments as for Claim 67,
we obtain a lower bound of our sequence of conditions. This lower bound
will be as desired. �

We’re almost ready to give a proof of what we called the central pre-
liminary result above. Before that, we need one more technical claim the
validity of which was basically ensured by the definition of our forcing in 4:

Claim 74.
Every element of L|s|+1[s] has an Eα(ts(p0))-name in L|s|+1[tsc(p0)].

Proof. It is easy to see that s has an Eα(ts(p0))-name in L|s|+1[tsc(p0)]. By

the definition of conditions in 4, for every β < α, L|gβ |[s] has an Eβ(ts(p0))-

name in L|s|[tsc(p0)] and this name is uniformely definable from β. It follows

that we can obtain as the union of those names definably over L|s|[tsc(p0)] an

Eα(ts(p0))-name for L|s|[s]. We will finish by showing that every definable

subset x of L|s|[s] has an Eα(ts(p0))-name in L|s|+1[tsc(p0)]: Let x = {y ∈

14j is Σn-definable over N . κ̄ cannot be Σn-definable over N .
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L|s|[s] : L|s|[s] |= ϕ(y, p)} for some formula ϕ which may also refer to the

predicate s and some p ∈ L|s|[s]. As L|s|[s] has a name in L|s|+1[tsc(p0)], we

know that p has a name ṗ in L|s|+1[tsc(p0)] by transitivity of that structure.
Let ẋ = {(t, y) : tEα[ts(p0)] Lγ [ṡ] |= ϕ(y, ṗ)}. ẋ is a name for x and definable

over L|s|[tsc(p0)]. �

Claim 75. There is no new subset of λ in L|s|+1[s].

Proof. Assume to the contrary that there is a new subset x of λ in L|s|+1[s].

By Claim 74, x has an Eα(ts(p0))-name ẋ in L|s|+1[tsc(p0)]. But then by
Claim 73, it is dense to force that x has a Pξ-name of size λ for some ξ < κ,
implying that x ∈ Lκ·2[s], contradicting our assumption. �

Claim 76. uη(Pα) is η+-strategically closed.

Proof. To show that decreasing sequences of suitably generic conditions give
rise to lower bounds at limit stages, perform an argument very similar to
that of Claim 52, using Claim 75 and elementarity to verify the instance
of Claim 57 about new subsets of λ in L|sκ|−+1[g_λ sκ]. The existence of
suitably generic conditions is seen as in Case 5, Claim 62 and Claim 63. �

Finally: We want to show that if α is a limit ordinal, 12 follows from 10.
That we can extend ∗∗-components below the top cardinal follows induc-
tively. At the top cardinal κ, let ν := card(I ∩ [κ, κ+)) < κ, let I = {xi : i <
ν}. Assume η ∈ [ν, κ). Let Di := {t ∈ uη(Pα) : t�xi⊕ sup t∗∗xi ≥ δ̄xi} for
i < ν. Each Di is dense in uη(Pα) by 12 inductively. Use 10 to build a
decreasing sequence of conditions 〈pi : i < ν〉 in Pα with p0 = p and lower
bound q so that each uη(p

i+1) hits Di, i.e. forces that sup pi+1 ≥ δ̄xi , and
〈lη(pi) : i < ν〉 is constant.

We are now finished with proving 10, 11 and 12.

Proof of 13 - Early Names: Apply 11 to reduce the dense sets Di of
conditions which decide ḟ(i), i < η.

Proof of 14 (Coding Hη), 15 (Preservation of the GCH) and 16 (Covering,
Preservation of Cofinalities): 14 is an easy density argument using 13. 15
and 16 follow from ∆-distributivity (see [8], Lemma 2.10 and Lemma 2.13).

�

Corollary 77. P preserves ZFC, cofinalities and the GCH.

Proof. By the same proof as for Clause 11 of Theorem 49, P is easily seen
to be ∆-distributive. By Lemma 2.23 of [8], this implies that P is tame and
hence preserves ZFC and cofinalities. GCH preservation is immediate from
Clause 14 of Theorem 49. �

To verify that A witnesses Local Club Condensation in V[G], we will
use the following two observations from [10], the former reformulated in the
context of models of the form L[A]:

Lemma 78. [10] The statement that A witnesses Local Club Condensation
is equivalent to the following, seemingly weaker statement: If α has un-
countable cardinality κ, then the structure A = (Lα[A],∈, A, F ) has a con-
tinuous chain 〈Bγ : γ ∈ C〉 of condensing substructures with domains Bγ,
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γ∈C Bγ = Lα[A], C ⊆ κ is club, C consists only of cardinals if κ is a limit

cardinal, each Bγ has cardinality card γ and contains γ as subset, where F
denotes the function (f, x) 7→ f(x) whenever f ∈ Lα[A] is a function and
x ∈ dom(f) ∩ Lα[A].

Fact 79. [10] Assume fβ : cardβ → β is a bijection from the cardinality of
β, a regular uncountable cardinal, to β. There is a club of δ < cardβ such
that fα[δ] = fβ[δ] ∩ α for all α ∈ fβ[δ] \ cardβ.

Claim 80. Let G be P -generic. Let A be the generic predicate obtained
from G, i.e. α ∈ A↔∃p ∈ G p p@α = 1. Then A witnesses Local Club
Condensation and Acceptability in V [G].

Proof. That L[A] = V [G] follows from Clause 14 of Theorem 49. That A
witnesses Acceptability can be seen as in Lemma 31. It remains to show
that A witnesses Local Club Condensation.

Assume first that α has regular uncountable cardinality κ. Note that for
all β0, β1 ∈ α we have A(πδ(β0), πδ(β1)) = πδ(A(β0, β1)) for all sufficiently
large δ in the club

⋃
p∈G p

∗∗
γ ⊆ κ where γ is such that for some p ∈ G,

p{β0, β1}\κ ⊆ p∗γ . Moreover fβ[δ] = fα[δ]∩β for all β ∈ fα[δ]\κ for a club
of δ < κ by Fact 79. Let C denote the intersection of those clubs. Let M∗α =
(Lα[A],∈, A, F, . . .) be a Skolemized structure for a countable language and
for any X ⊆ α let M∗α(X) be the least substructure of M∗α containing X
as a subset. Consider the continuous chain 〈M∗α(fα[δ]) : δ ∈ D〉, where D
consists of all elements δ of C s.t. δ = fα[δ]∩κ and fα[δ] = M∗α(fα[δ])∩Ord.
Then M∗α(fα[δ]) condenses for each δ ∈ D.

The remaining case is to verify Local Club Condensation for α when α has
singular cardinality κ. Let F denote the function (f, x) 7→ f(x) whenever

f ∈ Lα[A] is a function with x ∈ dom(f). Suppose that Ṡ ∈ V is a Pβ-name
for a structure (Lα[A],∈, A, F, . . .) for a countable language in L[A] such that

the Ṡ-closure of κ is all of Lα[A]. We may assume that β is a limit ordinal.
We show that any condition p has an extension q which forces that there
is a continuous chain 〈Yγ : γ ∈ C〉 of condensing substructures of Ṡ whose
domains 〈yγ : γ ∈ C〉 have union Lα[A] such that 〈yγ ∩Ord : γ ∈ C〉 belongs
to the ground model, where C is a closed unbounded subset of Card∩κ,
each yγ has cardinality γ and contains γ as subset. Choose C to be any
club subset of Card∩κ of ordertype cof κ whose minimum is either ω or
a singular cardinal and is at least cof κ so that C is bounded below every
inaccessible cardinal. Write C in increasing order as 〈γi : i < cof κ〉. Choose
some large (w.r.t. β), regular ν.

Let p0 = p. Let 〈M0
θ : ∃i < cof κ θ = γi〉 be a sequence of elementary

submodels of Hν such that each M0
θ has size less than θ, is transitive below

θ and contains p0 and Ṡ as elements. Moreover make sure that whenever
θ0 < θ1, M0

θ0
⊆M0

θ1
.

Given pi, choose pi+1 ≤ pi such that pi+1 reduces every dense subset of
Pβ in M i

θ below cardM i
θ and such that sup(S-supp(pi+1) ∩ θ) ≥ card(M i

θ)

and ≥M i
θ∩θ for all θ. Choose 〈M i+1

θ : C-supp(pi+1)∩ [θ, θ+) 6= ∅〉 such that

each M i+1
θ ⊇ M i

θ has size less than θ, is transitive below θ, contains pi+1
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and M i
θ as elements and is elementary in Hν . Also make sure that whenever

θ0 < θ1 are as above, M i+1
θ0
⊆ M i+1

θ1
and that whenever γj is a limit point

of C, M i+1
γj+

=
⋃
k<jM

i+1
γk+

. The latter is possible as γ0 ≥ cof κ, we may thus

sufficiently enlarge the M i+1
γk+

after choosing M i+1
γj+
⊇
⋃
k<jM

i+1
γk+

in the first

place.

Finally, let r be the componentwise union of 〈pi : i < ω〉. We will construct
a lower bound q for 〈pi : i < ω〉 which will be as desired. Let yγ :=

⋃
i<ωM

i
γ+

for every γ ∈ C. We have obtained the following properties for every γ ∈ C:

(1) yγ is transitive below γ+,
(2) yγ ∩ [γ, γ+) = S-supp(r) ∩ [γ, γ+) = |r|γ ,
(3) yγ ∩ [γ+, γ++) = I-supp(r) ∩ [γ+, γ++),

(4) any lower bound of 〈pi : i < cof κ〉 forces that the Ṡ-closure of yγ
intersected with Ord equals yγ ,

(5) any lower bound of 〈pi : i < cof κ〉 forces that A ∩ yγ2 has a Pyγ∩γ+-
name and

(6) 〈yγ : γ ∈ C〉 is continuous and increasing.

(1) is immediate as each of the M i
γ+ is transitive below γ+, (2) and (3) follow

similar to Claim 54. (4) now follows as pi+2 ∈ M i+2
γ+

: using elementarity,

pi+2 forces that we can cover the Ṡ-closure of M i
γ+ by a set in M i+2

γ+
of size

γ; as γ ⊆ M i+2
γ+

, this covering set will be contained (as a subset) in M i+2
γ+

.

(5) follows similar to (4), using easy density arguments. (6) is immediate
by our requirements on the M i

θ.

Let πγ be the collapsing map of yγ , let γ̄+ = πγ(γ+). We obtain q by
choosing qγ̄+ of length sup(π′′γyγ) + 2 for every γ ∈ C (at cardinals not in
C but in C-supp(r), we do the usual construction necessary to obtain a
lower bound): If ξ ∈ yγ , fξ is a bijection from card ξ to ξ, hence fξ�(yγ ∩
card ξ) is a bijection from yγ ∩ card ξ to yγ ∩ ξ by elementarity, i.e. πγ(ξ) =

ot(fξ[yγ ∩ card ξ]). If (ξ0, ξ1) ∈ [γ,Ord)q ∩ yγ2, let qγ̄+(πγ(ξ0), πγ(ξ1)) =
πγ(r@(ξ0, ξ1)). Let qγ̄+(sup(π′′γyγ)) code a bijection from γ to sup(π′′γyγ)
and let qγ̄+(sup(π′′γyγ) + 1) = 0. qγ̄+ is obviously correct. That qγ̄+ is
acceptable follows by elementarity of yγ similar to Claims 57 and 59. Our
construction made sure that q forces yγ to condense for every γ ∈ C. �

Theorem 81. Local Club Condensation and Acceptability are simultane-
ously consistent with the existence of an ω-superstrong cardinal.

Proof. Assume κ is ω-superstrong, witnessed by the embedding j : V→M.
Let P be the Local Club Condensation and Acceptability forcing as defined
at the beginning of this section. We want to show that forcing with P may
preserve the ω-superstrength of κ. Let P ∗ denote the M-version of P (using
the definition of P in M). Note that for every n < ω, Pjn(κ) = P ∗jn(κ).

We want to find a V-generic G ⊆ P and an M-generic G∗ ⊆ P ∗ such that
j′′G ⊆ G∗ and V [G]jω(κ) ⊆ M [G∗]. After finding a suitable Pjω(κ)-generic
Gjω(κ), we will let G∗jω(κ) be Gjω(κ) ∩ P ∗jω(κ). We will let G∗ be the filter

generated by G∗jω(κ) together with the image of G under j. We have to show

the following:
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(1) G∗jω(κ) is P ∗jω(κ)-generic over M.

(2) G∗ is P ∗-generic over M.
(3) We can choose Gjω(κ) in such a way that j′′Gjω(κ) ⊆ G∗jω(κ).

We will assume 3 for the moment and proof 1 and 2 using 3. We will then
proof 3 without using either 1 or 2. Assume that j is given by an ultrapower
embedding, which means that every element of M is of the form j(f)(a)
where f has domain Hjω(κ) and a belongs to Hjω(κ).

Proof of 1: Suppose D ∈M is dense on P ∗jω(κ) and write D as j(f)(a) where

dom(f) = Vjω(κ) and a ∈ Vjn+1(κ) for some n ∈ ω. Choose p ∈ Gjω(κ) such
that p reduces f(ā) below jn(κ) whenever ā belongs to Vjn(κ) and f(ā) is
dense on Pjω(κ). The existence of p follows from Clause 11 of Theorem 49,
using that Vjn(κ) has size jn(κ). Then j(p) belongs to j′′Gjω(κ) ⊆ G∗jω(κ) by

3 and reduces D below jn+1(κ).
Hence E := {q ∈ Pjn+2(κ) : q_j(p)[jn+2(κ), jω(κ)) ∈ D} is dense be-

low j(p)�jn+2(κ) in Pjn+2(κ). Since Gjn+2(κ) contains j(p)�jn+2(κ) and is
Pjn+2(κ)-generic over M, Gjn+2(κ) ∩ E 6= ∅. Choose q in that intersection.

Then q_j(p)[jn+2(κ), jω(κ)) ∈ D ∩G∗jω(κ).

Proof of 2: Like 1, using that j′′G ⊆ G∗ as an immediate consequence of 3.

Proof of 3: We will specify a master condition q ∈ Pjω(κ) so that q ∈ Gjω(κ)

ensures j′′Gjω(κ) ⊆ G∗jω(κ). Let Ġ be the canonical name in V for the Pjω(κ)-

generic. We define r by letting, for all γ ≥ j(κ):

rγ =
⋃
p∈Ġ

j(p)γ , F
r
γ =

⋃
p∈Ġ

F j(p)γ , r∗γ =
⋃
p∈Ġ

j(p)∗γ , r
∗∗
γ =

⋃
p∈Ġ

j(p)∗∗γ .

As we did earlier, we write S-supp(r) for {γ : r(γ)(0) 6= 1̌} and C-supp(r)
for {γ : r(γ)(1) 6= 1̌}. It is easily observed as in the proof of Theorem 25
of [10] that S-supp(r) is bounded below every regular cardinal and that
card(C-supp(r) ∩ θ+) < θ for every regular cardinal θ. We want to form
q out of r by setting, for every γ ∈ C-supp(r) of cardinality θ and every
(δ0, δ1) ∈ [card sup r∗∗γ ,Ord)q ∩ (sup r∗∗γ ∪ r∗γ)2:

• q∗∗γ = r∗∗γ ∪ {sup r∗∗γ },
• If γ ≥ j(κ)+, let

qsup r∗∗θ
(πsup r∗∗θ (δ0), πsup r∗∗θ (δ1))=πsup r∗∗θ (r@(δ0, δ1)),

• Let tθ := supζ∈I-supp(r)∩[θ,θ+) π
sup r∗∗θ (ζ) and let qsup r∗∗θ

(tθ) code a

bijection from card sup r∗∗θ to tθ, let qsup r∗∗θ
(tθ+1) = 0 and |qsup r∗∗θ

| =
tθ + 2.
• Choose arbitrary collapsing information F qsup r∗∗θ

.

We also set qγ = rγ and F qγ = F rγ for γ in S-supp(r), q∗γ = r∗γ for all γ and

let components other than the above have value 1̌. The following Claim will
finish the proof of Theorem 81:

Claim 82. (1) q ∈ Pjω(κ).
(2) q extends j(p) whenever p�κ = 1.
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(3) Whenever p ≤ q, p ∈ G, then p ≤ j(p); hence if p ∈ Gjω(κ), then
j(p) ∈ Gjω(κ), i.e. j′′Gjω(κ) ⊆ G∗jω(κ).

Proof. Proof of 1: We want to define, for every cardinal θ ≥ j(κ)+ with
C-supp(r) ∩ [θ, θ+) 6= ∅ a model Mθ: Choose some large (w.r.t. jω(κ)),
regular (in M) ν ∈ range(j), choose a wellorder of Hν

M in range(j) and let
Mθ be the Skolem Hull of sup(S-supp(r)∩ θ)∪ (C-supp(r)∩ [θ, θ+)) in Hν

M

w.r.t. that wellorder.

Claim 83. For all θ with C-supp(r) ∩ [θ, θ+) 6= ∅,
• Mθ ∩ θ = sup(S-supp(r) ∩ θ) = sup r∗∗θ .
• Mθ ∩ [θ, θ+) = C-supp(r) ∩ [θ, θ+) = I-supp(r) ∩ [θ, θ+).

Proof. For the first statement, assume ξ ∈Mθ, ξ < θ. Then ξ can be defined
using finite sets of parameters S0 ⊆ sup(S-supp(r)∩θ) and S1 ⊆ C-supp(r)∩
[θ, θ+). Choose p ∈ G so that S0 ⊆ S-supp(j(p)∩θ) and S1 ⊆ C-supp(j(p))∩
[θ, θ+). Let t ≤ p in G be such that whenever C-supp(p) ∩ [ρ, ρ+) 6=
∅, sup(S-supp(t) ∩ ρ) ≥ sup(H

Hj−1(ν)(sup(S-supp(p) ∩ ρ) ∪ (C-supp(p) ∩
[ρ, ρ+)))∩ρ).15 It follows that ξ < sup(S-supp(j(t))∩θ < sup(S-supp(r)∩θ),
which is equal to sup r∗∗θ by the usual arguments. The proof of the second
statement is similar. �

Let πθ denote the collapsing map of Mθ and note that πθ�θ+ = πsup r∗∗θ .
By the usual arguments, it follows that our above definition of q has no
conflicting requirements and q has appropriate supports in order to be a
condition in Pjω(κ). It is immediate that q�j(κ)+ ∈ Pj(κ)+ . It remains to

show that each qsup r∗∗θ
is an acceptable, correct (sup r∗∗θ )+-Cohen condition.

Claim 84. For all θ ≥ j(κ)+ with C-supp(r) ∩ [θ, θ+) 6= ∅, the following
hold:

(1) q�(Mθ ∩ θ) ∈ PMθ∩θ and extends j(p)�(Mθ ∩ θ) for every p ∈ G with
p�κ = 1.

(2) If q�(Mθ ∩ θ) ∈ GMθ∩θ and G is P -generic over V, then GMθ∩θ
together with j′′G generates a PMθ+∩θ+-generic filter H over Mθ+.

(3) Let H̄ = πθ
′′H.(

πθ
′′g[card(Mθ ∩ θ),Mθ+ ∩ θ+)

)H̄
= (qMθ∩θ�tθ)

GMθ∩θ .

(4) q�(Mθ ∩ θ) qMθ∩θ is an acceptable, correct (Mθ ∩ θ)+-Cohen condi-
tion.

(5) q�(Mθ+ ∩ θ+) ∈ PMθ+∩θ+ and extends j(p)�(Mθ+ ∩ θ+) for every

p ∈ G with p�κ = 1.

Proof. By induction on θ.

Proof of 1: If θ > j(κ)+, 1 is immediate from 5 inductively. If θ = j(κ)+,
observe that

• sup r∗∗j(κ) = κ,

• ∀γ ∈ [κ, κ+) ot j(fγ)[κ] = γ and

15The Skolem Hull in Hj−1(ν) is taken with respect to the j-preimage of the wellorder

of Hν
M chosen above.
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• C-supp(r) ∩ [j(κ), j(κ)+) = I-supp(r) ∩ [j(κ), j(κ)+) = j′′[κ, κ+).

For every ξ ∈ C-supp(p) ∩ [κ, κ+), δ ∈ q∗∗j(ξ) \ j(p)
∗∗
j(ξ) and (γ0, γ1) ∈

[j(κ), j(κ)+)q ∩ (sup(j(p)∗∗j(ξ))∪ j(p)
∗
j(ξ))

2, we have to verify that q@(πδ(γ0),

πδ(γ1)) = πδ(j(p)@(γ0, γ1)). If δ < κ, we use that by a density argument,
there exists t ≤ j(p) in j′′G with δ ∈ t∗∗j(ξ). If δ = κ, 1 follows from our above

observations.

Proof of 2: By 1, GMθ∩θ and j′′G are compatible and thus generate a filter.

IfD is a dense subset of PMθ+∩θ+ inMθ+ , we can define it inHν
M using finite

sets of parameters S0 ⊆ sup(S-supp(r)∩θ+) and S1 ⊆ C-supp(r)∩[θ+, θ++).
Choose p ∈ G so that S0 ⊆ sup(S-supp(j(p)) ∩ θ+) and S1 ⊆ C-supp(j(p)).
By a density argument, there is q ≤ p in G s.t. for all θ > κ with C-supp(p)∩
[θ, θ+) 6= ∅, q reduces all dense subsets of P which are definable in Hj−1(ν)

using parameters in sup(S-supp(p)∩ θ)∪ (C-supp(p)∩ [θ, θ+)) strictly below
θ in the sense that q reduces them below λ for some λ < θ. But then j(q)
reduces D strictly below θ and we may hit D by further extending j(q) only
below Mθ ∩ θ, yielding 2.

Proof of 3: Let ġ be the canonical name (in V) for the generic predicate

obtained from Ġ. If (ξ0, ξ1) ∈ [cardMθ ∩θ, tθ)q, then (πθ
′′ġ)H̄(ξ0, ξ1) = ξ2 iff

∃p ∈ GMθ∩θ and s ∈ j′′G so that p∧s forces s@(π−1
θ (ξ0), π−1

θ (ξ1)) = π−1
θ (ξ2)

iff (qMθ∩θ)
GMθ∩θ@(ξ0, ξ1) = ξ2.

Proof of 4: Follows from 2 and 3 using elementarity, similar to Claims 57
and 59.

Proof of 5: The first statement is immediate from 4. The second statement
is immediate from the definition of q. �

Proof of 2 (of Claim 82): Immediate from Claim 84.

Proof of 3: Assume p ≤ q. Then p ≤ j(p) as p�κ = j(p)�κ and p[κ, jω(κ)) ≤
q ≤ j(p)[κ, jω(κ)). �

�

4. Preserving smaller large cardinals

Many smaller large cardinals may be preserved while forcing Local Club
Condensation and Acceptability. We will show how to preserve subcompact
cardinals, as this will become relevant for our application in Section 6:

Definition 85. κ is subcompact iff for every A ⊆ κ+ there is a cardinal
λ < κ, some Ā ⊆ λ+ and an elementary embedding π : (Hλ+ , Ā)→ (Hκ+ , A)
with π�λ = id.

Theorem 86. We may force Local Club Condensation and Acceptability
preserving all instances of subcompactness.

Proof. We will use the following equivalent characterization of subcompact-
ness of κ in the ground model: Given any κ+-closed transitive T of size κ+

and A ∈ T there is a cardinal λ < κ, a λ+-closed T̄ of size λ+, Ā ∈ T̄ and
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an elementary embedding π from (T̄ , Ā) to (T,A) such that π has critical
point λ and sends λ to κ.

Let P denote the Local Club Condensation and Acceptability forcing as
described in Section 3. Let Ȧ be a name for a subset of κ+ in some P -generic
extension. As every subset of κ+ is added by Pξ for some ξ < κ++ we may

assume that Ȧ is a Pξ-name for some ξ < κ++. Note that below any fully
string supported p ∈ Pξ, Pξ has a dense subset of size κ+ and hence an

isomorphic copy E ∈ Hκ++ . Let Ḃ be some E-name in Hκ++ translating Ȧ.
We can choose a κ+-closed transitive T of size κ+ containing Ḃ and apply
the above form of subcompactness to (T, Ḃ) to obtain a cardinal λ < κ, a

λ+-closed T̄ of size λ+, some ¯̇B ∈ T̄ and an elementary embedding π from

(T̄ , ¯̇B) to (T, Ḃ).

To show that κ is subcompact after forcing with P , we want to find

q ∈ E forcing that π lifts to πG : (T̄ [G], ¯̇BG) → (T [G], ḂG). This then

gives an elementary πG0 from (Hλ+ [G], ¯̇BG) to (Hκ+ [G], ḂG), establishing

subcompactness for ȦG. But to lift π, we just have to make sure that given
any Pκ-generic Gκ, we choose Gκ++ extending Gκ so that π′′Gλ++ ⊆ Gκ++ .
But this is easy to ensure choosing q to be a master condition similar to the
proof of Theorem 81. �

5. Strong Condensation for ω2

Apart from its intrinsic interest, the material of this section will also be
useful for the application we will give in the next section. In this section,
we do not want to restrict the context to models of the form L[A], but work
in the more general context of models with a hierarchy of levels:

Definition 87. We say (M, 〈Mα : α ∈ Ord〉) |= ZFC is a model with a
hierarchy of levels if 〈Mα : α ∈ Ord〉 is so that M =

⋃
α∈OrdMα, each

Mα is transitive, Ord(Mα) = α, if α < β then Mα ∈ Mβ and if γ is a
limit ordinal, then Mγ =

⋃
α<γMα. We will often use Mα to also denote

the structure (Mα,∈, 〈Mβ : β < α〉), where context will clarify the intended
meaning. If B has domain B and is a substructure of some structure on Mα,
we say that B condenses or that B has Condensation iff (B,∈, 〈Mβ : β ∈ B〉)
is isomorphic to some (Mᾱ,∈, 〈Mβ : β < ᾱ〉). We also say that B condenses
or that B has Condensation in this case.

Local Club Condensation for a model M with a hierarchy of levels is
the statement that if α has uncountable cardinality κ and Aα = (Mα,∈,
〈Mβ : β < α〉, . . .) is a structure for a countable language, then there exists a
continuous chain 〈Bγ : ω ≤ γ < κ〉 of condensing substructures of Aα whose
domains have union Mα, where each Bγ = (Bγ ,∈, 〈Mβ : β ∈ Bγ〉, . . .) is such
that Bγ has cardinality card γ and contains γ as a subset.

Theorem 88. 16 If (M, 〈Mα : α ∈ Ord〉) is a model of Local Club Con-
densation, τ is an M-cardinal of uncountable cofinality, κ = (τ+)M, F =

16We would like to thank Liu-Zhen Wu for providing significant help on improving an
older, slightly weaker version of this theorem.
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〈fα : α ∈ [τ, κ)〉 where each fα is a bijection from τ to α in M, S is a set of
Skolem functions for Mκ,

X ≺ (Mκ,∈, 〈Mα : α < κ〉, F, S)

and X is transitive below τ , then X condenses. In fact, X need not be an
element of M for the above to hold.

Proof. Let X be as above, let τ̄ be the image of τ under the transitive
collapse of X. For α ∈ X,

X ∩Mα≺ (Mα,∈, 〈Mβ : β < α〉, fα, S).

Now X =
⋃
α∈X X∩Mα. We want to show that for α < supX in X, X∩Mα

condenses and therefore X condenses. Let, for all β ≤ τ < α < κ, H∗α(β)
be the Skolem Hull (using Skolem functions in S) of β in (Mα,∈, 〈Mγ : γ <
α〉, fα). H∗α(τ) = Mα for every α < κ. Using Local Club Condensation, for
each α < κ, there is a club subset of τ in Mκ such that H∗α(θ) condenses
for every θ in that club. But by elementarity of X in Mκ, there is such a
club Cα in X which is club in τ̄ , i.e. τ̄ ∈ Cα and thus H∗α(τ̄) = Mα ∩ X
condenses. �

Strong Condensation for a model M with a hierarchy of levels is the
statement that for every ordinal α, there is a structure Aα = (Mα,∈,
〈Mβ : β < α〉, . . .) for a countable language such that each of its substruc-

tures condenses.17

Strong Condensation up to β (β ∈ Card, M as above) is the statement
of Strong Condensation restricted to ordinals α ≤ β together with the as-
sumption that Mβ = Hβ.

Strong Condensation for α (α ∈ Card, M as above) is the statement of
Strong Condensation for a single cardinal α together with the assumption
that Mα = Hα.

Local Club Condensation up to β for a cardinal β is the statement of
Local Club Condensation restricted to ordinals α ≤ β together with the
assumption that Mβ = Hβ.

Note: For every cardinal α, Strong Condensation implies Strong Con-
densation up to α implies Strong Condensation for α. For α = ω1, Strong
Condensation up to α is a theorem of ZFC. It is known, using collapsing
functions, that Strong Condensation for ω3 implies that there is no precipi-
tous ideal on ω1 (see [15]), which makes Strong Condensation for ω3 already
a most interesting property. It is not known whether it is possible to force
Strong Condensation for ω3 with a small forcing. It was shown by Liu-Zhen
Wu that there is a small forcing to obtain Strong Condensation for ω2 in
the generic extension and it was observed independently by the first author
that Strong Condensation for ω2 also holds in the model for Local Club
Condensation from [10]. But more is true - Local Club Condensation up to
ω2 implies Strong Condensation for ω2 (using the same hierarchy of levels):

Corollary 89 (Liu-Zhen Wu). Local Club Condensation up to ω2 implies
Strong Condensation for ω2.

17Strong Condensation was originally defined by Hugh Woodin in [18].
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Proof. Follows directly from theorem 88, letting τ = ω1. �

Note: It is easy to see that Strong Condensation for ω2 implies Strong Con-
densation up to ω2, which of course implies Local Club Condensation up to
ω2, hence Local Club Condensation up to ω2 and Strong Condensation for ω2

are equivalent. In light of Theorem 88, we think of Local Club Condensation
as a global version of Strong Condensation for ω2.

6. An application to the consistency strength of PFA

Let c denote 2ℵ0 . Σ2
1-indescribable gaps [κ, κ+) were introduced in Defi-

nition 4. In [13] and [14], Neeman and Schimmerling show the following:

Theorem 90 (Neeman, Schimmerling). [13] Suppose [κ, κ+) is Σ2
1-inde-

scribable in a model satisfying GCH. Then PFA(c+-linked) holds in a proper
forcing extension in which c = ω2 = κ.

Theorem 91 (Neeman). [14] Suppose V is a proper forcing extension of
a fine structural model M and PFA(c+-linked) holds in V. Then [κ, κ+) is
Σ2

1-indescribable in M where κ = (ω2)V.

By the methods developed in our paper, we are able to provide a suffi-
ciently fine structural (or rather “L-like”) model for the arguments of the
proof of the latter theorem to go through. But this L-like model may, in
contrast to current fine structural inner models, also contain large cardinals
in the range of a Σ2

1-indescribable gap [κ, κ+). Also we do not need V to
be a proper forcing extension - it suffices if V is a proper extension of M
(which is also true for Neeman’s theorem above):

Theorem 92. If V is a proper extension of a model M satisfying Local Club
Condensation, Acceptability, � on the singular cardinals and �λ for every
singular λ and PFA(c+-linked) holds in V, then there is a Σ2

1-indescribable
gap [κ, κ+) in M.

Proof. The properties of M may be compared with those used by Neeman
in his [14], listed at the beginning of its §2: Neeman assumes what we
called strong Acceptability (but it is easy to see that he only uses what we
call Acceptability in the present paper) and uses a Condensation property

different from ours. Also he works in an extender model of the form J [ ~E]
while our model is of the form L[A] for a bfp A. We sketch the argument
that Neeman’s proof, which may be found in §2 of [14], can be adapted to
our present situation. We assume that the reader is familiar with [14] for
the rest of this section. We define (this may be compared with the definition
in [14] following the proof of its Lemma 2.1):

Definition 93. β is a point on level α if

(1) Lβ[A] |= α is the largest cardinal,

(2) β ∈ CardLβ+1[A] and

(3) β ∈| CardL[A].

The following definitions and claims are carried out as in [14], noting that
we are always in a situation similar to condition 1 of Lemma 2.1 of [14]
and it is easy to observe that that the proofs of all those claims (which
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aren’t numbered in [14], but generalize Claims 1.2 through 1.9 of §1 of [14])
can easily be adapted to our current setting. The same is true for Lemma
2.3, Claim 2.9, Definition 2.10 and Claim 2.11 of [14]. The same is also
basically true for Theorem 2.12 of [14], the main theorem yielding our desired
Theorem 92. There’s just one point in the argument where additional care is
needed: When Neeman applies PFA(c+-linked) in [14], he defines amongst
other objects a function f̄ from ω1 to Lκ[A], where κ = τ+ is a successor
cardinal with τ inaccessible, and lets N̄ be the transitive collapse of range(f̄).
We have to show that Local Club Condensation is strong enough to yield
that N̄ is a level of L[A], as this is what Neeman uses further on in [14]
and what we want to use in our adaption of his proof. As N̄ is transitive
below τ by the properties of f̄ (see [14]) and elementarity w.r.t. the structure
defined in the statement of Theorem 88 is easy to arrange, this follows from
Theorem 88. �

Corollary 94. Assuming the consistency of a proper class of subcompact
cardinals, it is consistent that there is a proper class of subcompact cardinals,
but PFA (even restricted to posets which are c+-linked) holds in no proper
extension of the universe.

Proof. We start with a model containing a proper class of subcompact car-
dinals. Force to obtain the GCH using Theorem 2 of [9], preserving all
subcompacts (this may be done using the technique of Theorem 86). Now
force to obtain �λ for every singular λ, preserving all subcompacts (using
the technique of Theorem 86) and the GCH, using a reverse Easton iteration
of the standard forcing to obtain square (conditions are initial segments of
the desired square sequence, ordered by end-extension - see [4], Section 6).
Force again to obtain square on the singular cardinals as in [5], preserving
all subcompacts (using the technique of Theorem 86), �λ for every singu-
lar λ (as the iteration of [5] is cofinality-preserving) and the GCH. Force
once more to obtain a bfp A coding the generic extension, witnessing Lo-
cal Club Condensation and Acceptability while preserving all subcompacts,
using Theorem 86. Note that the forcing used is cofinality-preserving and
hence preserves any square principles. If this final model does not contain
a Σ2

1-indescribable gap [κ, κ+), let it be our model M, otherwise let M be
the Vκ of this model, where κ is the least Σ2

1-indescribable gap [κ, κ+) of
that model. It is easy to verify that below any Σ2

1-indescribable gap [κ, κ+),
there is a stationary set of subcompacts, hence Vκ has a proper class of
subcompacts in the latter case. Applying Theorem 92, it follows that PFA
(even restricted to posets which are c+-linked) cannot hold in any proper
extension of M. �

7. Generalized Condensation Principles and Diamond

Stationary Condensation implies ♦; this was noted without proof already
in [10]. The proof of this fact is most similar to the proof that ♦ holds in
L, which may be found in [6]. For any regular cardinal κ, Fat Stationary
Condensation implies ♦κ+(Cof κ), which again follows by a proof analogous
to the respective proof for the same principle in L, which may again be
found in [6]. Moreover, the following hold, proofs of which are omitted for
similar reasons ([6] might be consulted again):
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Lemma 95. The following are implied by Local Club Condensation:

• ♦κ(E) whenever κ is regular and E ⊆ κ is stationary.
• ♦∗κ for all successor cardinals κ.
• ♦+

κ for all successor cardinals κ.

8. Separating Local Club Condensation and Stationary
Condensation

As we were making a huge effort to obtain Local Club Condensation and
Acceptability while preserving large cardinals above and obtain Stationary
Condensation and Acceptability quite easily while preserving large cardinals
in Theorem 29, we want to end this paper by showing that those principles
are actually different. The following separates Stationary Condensation and
Local Club Condensation in a strong sense, using Lemma 95:

Theorem 96. There is a model of ZFC in which Stationary Condensation
and Acceptability hold but ♦∗κ+ fails for every infinite cardinal κ. Moreover,
assuming the consistency of an ω-superstrong cardinal, there is such a model
with an ω-superstrong cardinal.

Proof. By [7], there is a σ-closed forcing which destroys ♦∗, preserves cofi-
nalities and the GCH. Observe that this proof can be easily modified (by
replacing ω by any infinite cardinal κ throughout the proof) to yield that
for every infinite cardinal κ, there is a κ+-closed forcing18 which destroys
♦∗κ+ , preserves cofinalities and the GCH. Now force Stationary Condensa-
tion and Acceptability by first adding an acceptable ω1-Cohen to give rise
to the predicate A below ω1, then destroy ♦∗ by σ-closed forcing. Now
add an acceptable ω2-Cohen to give rise to the predicate A in the interval
[ω1, ω2), then destroy ♦∗ω2

by ω2-closed forcing. Continue this iteration with
reverse Easton support and note that it preserves cofinalities, forces Station-
ary Condensation and Acceptability (this is seen as in Theorem 29 above,
the important point is that since the forcings to destroy ♦∗κ+ are sufficiently
closed, A will code the final generic extension) and preserves many large
cardinals, in particular preserves ω-superstrong cardinals (this is again seen
as in Theorem 29). The iteration starting from κ+ is κ++-closed, and thus
♦∗κ+ will fail in the final generic extension for every infinite cardinal κ. �

9. Open Questions

Neeman and Schimmerling [13] not only obtain the consistency of PFA for
c+-linked forcings from a Σ2

1 indescribable “1-gap” [κ, κ+), but they obtain
a similar result for higher gaps: The consistency of a Σ2

1 indescribable “n-
gap” [κ, κ+n) is sufficient for the consistency of PFA for c+n-linked forcings.
Are there analogues of Theorems 6 and 1 for higher gaps? For cardinals
κ < α, the definition of “κ is α-subcompact” can be found in [3].

Question 97. Is it consistent that there exists a proper class of κ which are
κ++-subcompact but PFA for c++-linked forcings fails in all proper exten-
sions?

18the forcing to add κ++-many Cohen subsets of κ+
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This is probably related to the question whether forcing a “global version
of Strong Condensation for ω3” (see the note at the end of Section 5) is
possible while preserving very large cardinals, which at its core has the
following, seemingly very hard question:

Question 98. Over an arbitrary ground model is it possible to obtain Strong
Condensation for ω3 by set forcing?

We showed that Local Club Condensation up to ω2 and Strong Conden-
sation for ω2 are equivalent in Section 5. It is easily observed that there is
a bfp A on ωω+1 witnessing Local Club Condensation up to ωω+1, but not
Strong Condensation for ωω+1. Large cardinals allow us to separate Strong
Condensation and Local Club Condensation in a stronger sense, as in any
model of Local Club Condensation that has an ω1-Erdős cardinal, no predi-
cate can witness Strong Condensation (see [10]). An obvious question which
should have a negative answer is the following:

Question 99. Does Local Club Condensation up to ω3 imply Strong Con-
densation for ω3 - in the sense that in any model of the former there is a
hierarchy witnessing the latter?

It would also be very interesting to find quasi-lower bounds on the con-
sistency strength of set theoretic principles other than (fragments of) PFA,
for example one could ask the following:

Question 100. Is a proper class of subcompacts a quasi lower bound on the
consistency strength of the failure of �λ, λ singular?
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