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Abstract. The technique of forcing is almost ubiquitous in set theory, and

it seems to be based on technicalities like the concepts of genericity, forcing
names and their evaluations, and on the recursively defined forcing predicates,

the definition of which is particularly intricate for the basic case of atomic

first order formulas. In his [3], the first author has provided an axiomatic
framework for set forcing over models of ZFC that is a collection of guiding

principles for extensions over which one still has control from the ground model,

and has shown that these axiomatics necessarily lead to the the usual concepts
of genericity and of forcing extensions, and also that one can infer from them

the usual recursive definition of forcing predicates. In this paper, we present a

more general such approach, covering both class forcing and set forcing, over
various base theories, and we provide additional details regarding the formal

setting that was outlined in [3].

1. Introduction

In this paper, we introduce an axiomatic framework for class forcing over models
of second order set theory, that avoids the usual technicalities connected with any
usual standard setup for (class) forcing, in particular the concepts of genericity,
forcing names and their evaluations, and the recursively defined forcing predicates.
Instead, we provide a natural collection of axioms, and show that they induce the
common standard concepts: that is, they allow us to derive the usual concept of
genericity, the usual recursive definitions of forcing predicates, an analogue of the
structure of names for elements of generic extensions and their evaluations, thus
exactly the same forcing extensions, and also the preservation of the axioms of set
theory to our extensions. The aim of this paper is essentially twofold. First, it is to
provide an interesting new viewpoint on what is probably the most important tech-
nical tool in modern set theory. Second, it is supposed to provide a self-contained
way of introducing (class) forcing axiomatically. The only point in the paper where
it is strictly necessary to refer to some sort of standard (class) forcing setup is when
we briefly argue for our axioms to actually be consistent (modulo the axioms of
set theory) in Section 7, after we introduce our final axiom (8). We will consider
various base theories (Gödel-Bernays set theory GB, Kelley-Morse set theory KM,
and some of their variants), and also deduce the somewhat simpler axioms for the
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special case of set forcing over ZFC and some of its weakenings in Section 8. In
this introductory section, we want to provide a rough description of our axiomatic
framework, which will be followed with formal definitions in Sections 2–7.

We require forcing extensions to be based on preorders1 in a ground model – let us
fix such a transitive ground modelM∈ V for this discussion, and a class preorder P
fromM. We requireM to satisfy the axioms of some axiom system T for set theory
that is suitable for class forcing (either Gödel-Bernays set theory GB, Kelley-Morse
set theory KM, or some variants of those). We think of conditions (elements) of
P as having partial information on properties of our extensions. We require that
stronger conditions have more such information, and that any particular forcing
extension is based on a choice of filter on P. We think of such a filter as a selection
of conditions which have correct information about our extension, and we will refer
to such conditions as being correct. The motivation for using a filter of conditions
could be explained as follows.

• If we consider the information that a condition q has to be correct, then
any weaker condition p has less information than q, and this information
should therefore also be correct. This corresponds to the upwards closure
property of filters.
• If p and q are correct conditions, we consider the information that is jointly

collected by p and q to be correct. We require that there is a condition
that collects this joint information and that we consider to be correct. This
corresponds to the property of a filter that any two of its elements are
compatible, as witnessed by yet another element of the filter.

We require that for any condition p ∈ P, there exists a filter G of correct condi-
tions of which p is an element, so that no condition is a priori incorrect. Given any
particular such filter G, we require the generic extension M[G] to contain M as
a subset and G as an element. There are a number of natural axioms which make
sure that we have ground model control over our generic extensions, in a sufficiently
simple way. One necessary requirement for this is that elements of M[G] are con-
nected to elements of the ground model so that the latter serve as a sort of name for
the former. We require the existence of a definable relation on our ground model,
which, following [3], we call the P-membership relation. It is supposed to relate to
partial knowledge about the membership relation in forcing extensions. If a and b
are elements of M and p ∈ P, we say that a is an element of b according to p, and
write a ∈p b in case the triple 〈p, a, b〉 stands in this relation.2 We want to define a
membership relation forM[G], letting the object denoted by a be an element of the
object denoted by b in case a is an element of b according to some correct condition
(that is, ∃p ∈ G a ∈p b). In order to be able to obtain a transitive model as our
forcing extension, we thus require the relation ∃p ∈ P a ∈p b to be well-founded.
The relation ∃p ∈ G a ∈p b will usually not be extensional, but we nevertheless
obtain a transitive ∈-structure (which will serve as our generic extensionM[G]) as
the image of the homomorphism that is our evaluation map FG, recursively defined
by setting FG(b) = {FG(a) | a ∈G b} for every b ∈M.

1A preorder is a reflexive and transitive binary relation.
2This relation corresponds to the relation that 〈a, p〉 ∈ b in a standard forcing setup, given

that a, b are usual forcing names.
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In order to be able to show that M[G] is well-defined and satisfies the axioms
of T , we will need to require the following:

• A strong form of set-likeness: for any b ∈ M, {〈a, p〉 | a ∈p b} is a set in
M.
• High degrees of freedom for the P-membership relation: for any relation S

on M×P in M, we find b ∈M for which {〈a, p〉 | a ∈p b} = S.

Furthermore, we also require the existence of forcing predicates inM, individu-
ally for each first order formula, and also for each second order formula in the case
of KM. We do not require any particular defining instances for these predicates, we
only require them to be connected to truth in generic extensions by the following
two axioms (these requirements correspond to what is usually known as the forcing
theorem in a standard class forcing setup):

• Whatever holds in M[G] is forced by some condition in G.
• Whatever is forced by some condition p ∈ G holds true in M[G].

Finally, we will have to assume that our class forcing notion P is pretame or
tame, which are technical conditions on P that are equivalent to the preservation
of the axioms from T in a standard class forcing setup.

2. The basic setup

We want to verify our results for models of the base theory that is Gödel-Bernays
set theory GB, and also for some of its variants. In Section 9, we will also consider
the stronger theory KM, and we will consider yet another strengthening of it in
Section 10. These theories are usually presented as theories in a two-sorted lan-
guage, with variables for sets and for classes, and their models will be of the form
M = 〈M, C〉, where M denotes the domain of sets, and C denotes the domain of
classes of M.

Let L(∈) denote the collection of first order formulas in the language with the
∈-predicate in which we additionally allow for second order variables, and atomic
formulas of the form x ∈ X, where x is a first order variable and X is a second
order variable. We consider equality between first or second order elements to
abbreviate the statement that they have the same elements. The axioms of GB are
given by the axioms of ZF for sets, allowing class parameters in the axiom schemes
of separation and replacement (that is, allowing for formulas from L(∈) in which
second order variables are replaced by second order parameters from C), together
with the class axiom of first order class comprehension, that is comprehension for
classes using L(∈)-formulas with second order parameters from C. If M |= GB (or
any of its variants), we usually use lowercase letters to denote first order elements
ofM, that is elements of M , and uppercase letters to denote second order elements
of M, that is elements of C. Note that by the separation axiom, we have M ⊆ C.

We will also consider the strengthenings of GB that are obtained by adding the
axiom of choice (GBc) in the form of the statement that every set can be well-
ordered, or (GBC) the axiom that there is a well-order of all sets in order-type
Ord (or equivalently, a set-like global well-order), as well as the axiom systems
GB−, GBc− and GBC−, which are obtained from GB, GBc or GBC respectively
by removing the powerset axiom and using the axiom scheme of collection rather
than replacement. We fix a base theory T to be one of the above theories.
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We next provide the definition of a class forcing generic framework, which will
be the basic formal concept in our approach. As in [7], we will use the more general
notion of preorders rather than (the perhaps more common restriction to) partial

orders, dropping the requirement of antisymmetry. If ~A is a finite sequence, we

will use the statement ~A ∈ C to abbreviate the property that all sequents of ~A are
elements of C.

Definition 2.1. A class forcing generic framework is a tuple of the form〈
M,P, R,

(


~A
ϕ

)
ϕ∈L(∈), ~A∈C

,G

〉
with the following properties.

• M is a transitive set-size model of T : M is transitive,
⋃
C ⊆ M , and M

is a set such that M |= T .
• P = 〈P,≤〉 is a preorder with weakest element 1P (that is p ≤ 1P for every
p ∈ P ) such that both P and ≤ are in C.
• The P-membership relation R is a relation on P ×M × C that is definable

over M by an L(∈)-formula ϕ(p, a,B) with first order variables p and a,
and a second order variable B, so that for p ∈ P , a ∈ M and B ∈ C we
have R(p, a,B) if and only if ϕ(p, a,B).3 We denote the property R(p, a,B)
as a ∈p B.4

• G is a second order unary predicate on P , i.e. a unary predicate on P(P ),
and we require that G(G) implies that G ⊆ P is a filter. If G(G) holds,
we say that G is a generic filter, or a P-generic filter on M . Whenever we
quantify over G in the following, we assume that we quantify over G’s such
that G(G) holds.

• For every ~A ∈ C and ϕ ∈ L(∈) for which the number of second order

variables corresponds to the length of ~A, 

~A
ϕ ∈ C is a predicate (which we

also call a forcing relation for ϕ) on P ×Mm, where m denotes the number
of free first order variables of ϕ.

If 〈q, a0, . . . , am−1〉 ∈ 

~A
ϕ , we also write q
ϕ(a0, . . . , am−1, ~A).

3. The basic axioms

In this section, we present our basic axioms for class forcing generic frameworks.

(1) Existence of generic filters: ∀p ∈ P ∃G p ∈ G.5

(2) Well-Foundedness: The binary relation ∃p ∈ P a ∈p b on M is well-
founded.

(3) Growth of Information: For all ~A ∈ C and ϕ ∈ L(∈), for all ~a ∈M , and

p, q ∈ P , if p
ϕ(~a, ~A) and q ≤ p, then q
ϕ(~a, ~A).

Assume that G is such that G(G) holds. Define a relation ∈G on C by letting
a ∈G B if ∃p ∈ G a ∈p B. Using axiom (2), this relation on C is well-founded,
and since M ∈ V , it is clearly set-like in V . We may thus recursively define our
evaluation function FG along the relation ∈G, letting FG(B) = {FG(a) | a ∈G B}

3Note that by our choice of the domain of R, only sets from M can stand in P-membership

relation to sets or classes from C.
4In a standard forcing setup, this would correspond to the property that 〈a, p〉 ∈ B.
5By our above convention, we tacitly require here that G(G) holds, i.e. that G is generic.
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for each B ∈ C.6 Let M[G] denote the ∈-structure on the transitive set FG[C]:7
That is, let M[G] = 〈M [G], C[G]〉, where M [G] = FG[M ], and C[G] = FG[C].

The next two axioms state that a natural form of the forcing theorem holds, that

is based on our forcing relations. Given a finite tuple ~A = 〈Ai | i < n〉 ∈ C, let

FG( ~A) = 〈FG(Ai) | i < n〉.
(4) Truth Lemma: For all ~A ∈ C and ϕ ∈ L(∈) for which the number of

second order variables corresponds to the length of ~A, all ~a ∈M and all G,

M[G] |= ϕ(FG(~a), FG( ~A)) iff ∃p ∈ G p
ϕ(~a, ~A).

(5) Definability Lemma: For all ~A ∈ C and ϕ ∈ L(∈) for which the number

of second order variables corresponds to the length of ~A, all ~a ∈ M and
p ∈ P ,

p
ϕ(~a, ~A) iff ∀G 3 p M[G] |= ϕ(FG(~a), FG( ~A)).8

Our next axiom (6̄) states that within M , a weak form of set-likeness holds for
the P-membership relation. We will later replace it by the stronger axiom (6).9

(6̄) Weak Set-Likeness: If b ∈M , then {a | ∃p ∈ P a ∈p b} ∈M .

We will also introduce two additional axioms, axioms (7) and (8), later on in our
paper. For the moment, we introduce two other additional axioms, stating that all
elements of M have a name in M , and that there is a (class) name for our generic
filters. They will later be replaced by the stronger axiom (7) which will imply both
these axioms. Since those are only temporary axioms, we will not provide them
with a number.

(*) Names for ground model objects:
• ∀a ∈M ∃ǎ ∈M ∀G FG(ǎ) = a, and
• ∀A ∈ C ∃Ǎ ∈ C ∀G FG(Ǎ) = A.

(**) Name for generic filters: ∃Ġ ∈ C ∀G FG(Ġ) = G.

Given a ∈ M and A ∈ C, we will use ǎ and Ǎ to denote names for a and A as
provided by axiom (*) above, and we will use Ġ to denote a (class) name for G as
provided by axiom (**) above.

4. Forcing predicates and density

Our axioms (1)–(5) together with the axioms (*) and (**) suffice to verify some of
the basic properties of forcing, and in particular to verify that the forcing predicates
satisfy their usual defining clauses, by arguments that are similar to the arguments
of [3, Section 4]. For the sake of completeness, and for the benefit of our readers,

6It may seem like we are taking some sort of transitive collapse of the structure 〈M[G],∈G〉,
however note that there is no reason to assume that ∈G is extensional, or that ∈G can be factorized
in order to obtain an extensional relation.

7For the moment, this notation is somewhat ambiguous, forM[G] may not only depend onM
and on G, but also on the P-membership relation. In Theorem 5.1 below, we will however show
that under additional assumptions, M[G] is uniquely determined.

8Note that we already required the forcing relations to be predicates of our model in our basic
setup, however this axiom connects them with their intended meaning, and it thus seems justified
to consider it to be our version of the definability lemma.

9We provide this weaker form here in order to be able to show that this form suffices for the
results of Section 5.
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we would nevertheless like to present some of these arguments here. The first step
will be to verify an auxiliary result on the forcing of negated statements.

Lemma 4.1. For all ϕ ∈ L(∈), p ∈ P , ~a ∈M and ~A ∈ C, we have that

p
¬ϕ(~a, ~A) iff ∀q ≤ p q 6 
ϕ(~a, ~A).

Proof. Let us assume that

(i) p
¬ϕ(~a, ~A).

By axiom (5), equivalently

(ii) ∀G 3 p M[G] |= ¬ϕ(FG(~a), FG( ~A)).

By axiom (4), this is equivalent to

(iii) ∀G 3 p ∀q ∈ G q 6 
ϕ(~a, ~A).

We want to argue that this in turn is equivalent to our desired statement that

(iv) ∀q ≤ p q 6 
ϕ(~a, ~A).

Thus, assume first that (iii) holds, and let q ≤ p. By axiom (1), we may pick a
generic filter G 3 q, which will thus also contain p as an element. By (iii), we thus

have that q 6 
ϕ(~a, ~A), as desired.
Conversely, assume that (iv) holds. Let G be a generic filter that contains p as an

element, and assume for a contradiction that there is r ∈ G such that r
ϕ(~a, ~A).
Since G is a filter, we may pick q below both p and r. By axiom (3), it follows that

q
ϕ(~a, ~A), contradicting (iv). �

We are now ready to show that our axioms imply generic filters to intersect all
dense classes in C.

Lemma 4.2. Let D ∈ C be such that D is dense in P. If G is a generic filter, then
G intersects D.

Proof. Let G be a generic filter and assume for a contradiction that G ∩ D = ∅.
Making use of axioms (*) and (**), it follows that

M[G] |= ¬∃x x ∈ FG(Ď) ∩ FG(Ġ).

By axiom (4), we may thus find p ∈ G such that

p
¬∃x x ∈ Ď ∩ Ġ.
By Lemma 4.1, equivalently

∀q ≤ p q 6 
∃x x ∈ Ď ∩ Ġ.
Since D is dense, we may fix q ≤ p in D. But then,

q
 q̌ ∈ Ď ∩ Ġ,
contradicting the above. �

We next need another auxiliary result on open dense sets (which could easily
be extended to arbitrary dense sets, but the current version is sufficient for our
purposes). We say that a subset A of a preorder P is open if it is downward closed,
that is if p ∈ A and q ≤ p, then also q ∈ A.

Lemma 4.3. If D ⊆ P is open, D ∈ C, then D is dense below p if and only if

(†) ∀G 3 pD ∩G 6= ∅.
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Proof. Assume first that (†) holds. Let r ≤ p, and using axiom (1), let G be a
generic filter with r ∈ G. It follows that also p ∈ G, and thus using (†), we obtain
s ∈ D ∩G. Since D is open and G is a filter, we obtain q below both r and s that
is an element of D ∩G, showing that D is dense below p.

On the other hand, assume that D is dense below p, and let G be a generic filter
containing p as an element. Let E be the dense set of conditions which are either
below p and in D, or incompatible to p. By Lemma 4.2, it follows that G ∩E 6= ∅.
Since p ∈ G and G is a filter, it thus follows that G ∩D 6= ∅, as desired. �

It is now possible to show, as in [3], that the usual defining clauses for the forcing
relation can be recovered from our basic axioms. The only additional clause that
we need is the one for the elementhood relation with respect to classes. Its proof is
very similar to the one for the elementhood relation with respect to sets, however
we would like to provide one sample argument here in this paper for the benefit
of our readers, and we will refer them to [3] for the other clauses below (note that
since M ⊆ C, the below lemma also covers the case of the elementhood relation
with respect to sets). Let a∈pB if and only if ∃q ≥ p a ∈q B.10

Lemma 4.4. p
 a ∈ A iff ∀r ≤ p ∃s ≤ r ∃x [x∈sA ∧ s
 a = x].

Proof. Let us assume that

(i) p
 a ∈ A.

By axiom (5), this is equivalent to

(ii) ∀G 3 p FG(a) ∈ FG(A).

By the definition of FG and of ∈G, this in turn is equivalent to

(iii) ∀G 3 p ∃x ∈M [FG(a) = FG(x) ∧ ∃q ∈ G x ∈q A].

Using axiom (4), we obtain the following equivalence.

(iv) ∀G 3 p ∃x ∈M [∃r ∈ G r
 a = x ∧ ∃q ∈ G x ∈q A].

Now we make use of axiom (3), equivalently obtaining that

(v) ∀G 3 p ∃s ∈ G∃x ∈M [s
 a = x ∧ x∈sA].

Using Lemma 4.3 yields our final desired equivalence:

(vi) ∀r ≤ p ∃s ≤ r ∃x ∈M [x∈sA ∧ s
 a = x].

�

In the next lemma, we list the remaining results with respect to the forcing
predicates obeying their usual defining clauses, which are shown exactly as in [3,
Section 5], simply carrying along additional second order predicates (in case there
are any). For the detailed arguments to verify these properties, we refer the inter-
ested reader to [3]. We consider the relations ∈ and 6= as our atomic relations in
the below, however a 6= b could be seen as abbreviating ¬(a = b), and a 6∈ b should
be seen as abbreviating ¬(a ∈ b).

Lemma 4.5. Let ϕ ∈ L(∈), p ∈ P , and let ~a and ~A be finite tuples from M and
from C respectively. Then the following hold true.

10For the readers who want to look up the results from [3] at this point, we should remark
that in [3], one of the axioms requires that if q ≤ p and a ∈p b, then also a ∈q b. We did not

include this axiom into our axiom system for the sake of a more elegant presentation. Note that
the predicates ∈p clearly do satisfy this axiom however, and can be seen to correspond to the

predicates ∈p from [3].
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• p
ϕ(~a, ~A) iff ∀q ≤ p ∃r ≤ q r
ϕ(~a, ~A).

• p
[ϕ ∨ ψ](~a, ~A) iff ∀r ≤ p ∃q ≤ r [q
ϕ(~a, ~A) ∨ q
ψ(~a, ~A)].

• p
 ∃xϕ(~a, ~A) iff ∀r ≤ p∃q ≤ r ∃x ∈M q
ϕ(x,~a, ~A).

• p
[ϕ ∧ ψ](~a, ~A) iff p
ϕ(~a, ~A) ∧ p
ψ(~a, ~A).
• p
 a 6= b iff ∀r ≤ p ∃q ≤ r ∃c

(c∈q a ∧ q
 c 6∈ b) ∨ (c∈q b ∧ q
 c 6∈ a).

The existence of forcing relations for atomic formulas is usually a problematic
aspect in the case of class forcing (for a detailed account of this see [7]). The
fundamental difference in our setup is that the definability of forcing predicates
is already an integral assumption. In the above, we only show that any single
step, reducing forcing statements about atomic formulas to ones for names of lower
rank, proceeds as usual. We thus avoid the usual problem of having to obtain
the definability of the forcing predicates for atomic formulas by recursion (which a
priori is a recursion on classes, and is thus not guaranteed by the axioms of GBC,
see [7], or also [6]). The existence of such recursions is an axiom of KM on the other
hand, and this is the reason why every notion of class forcing satifies the forcing
theorem in KM (see [7], [6], or [1]).

5. An axiomatization that assumes the preservation of the axioms of
set theory

In this section, we introduce two further temporary axioms.

(***) Preservation of axioms: ∀G M[G] |= T 11 and

(****) Absoluteness of P-membership: The formula ϕ defining the P-membership
relation R is absolute for transitive models of T containing C.

Building on the terminology from [3, Section 3], let us say that a class forcing
generic extension is a class forcing generic framework together with a particular
choice of generic filter G. Our next theorem shows that under a suitable set of
axioms, this notion corresponds to the usual notion of a class forcing extension,
and in particular it shows that M[G] is well-defined, in the sense that it only
depends on M and on G.

Theorem 5.1. Given a particular class forcing generic extension, assuming axioms
(2), (6̄), (*), (**), (***) and (****) to hold, M[G] is the ⊆-smallest model of T
that contains C ∪{G} as a subset of its collection of classes.

Proof. If N = 〈N,D〉 |= T is transitive such that C ∪{G} ⊆ D, then we can
construct M [G] within N : Working in N , define the relation ∈G on M by letting
a ∈G b if ∃p ∈ G a ∈p b. By axiom (****), this definition of ∈G is absolute between
N and V . This relation on M is well-founded by axiom (2), and set-like by axiom
(6̄). We thus may define the restriction of FG to M in N : Let Q(f, b) be the formula
asserting that f is a function whose domain d includes b as an element and is closed
under ∈G-predecessors, and for every a ∈ d we have f(a) = {f(c) | c ∈G a}. Now
FG is defined by letting FG(b) = f(b) if there is an f ∈ N such that Q(f, b) holds,

11Let us remark that due to axiom (5), this axiom could equivalently be replaced by a scheme

of axioms, consisting of statements of the form 1P 
ϕ for every ϕ ∈ T . While this would increase
the number of axioms, it would decrease the number of axioms that quantify over generic filters

and are thus external to the model M.
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and is ∅ otherwise. By axioms (2) and (6̄), for any b ∈ M , such function f ∈ N
actually exists. We thus have M [G] ⊆ N .

If A ∈ C, we obtain FG(A) = {FG(a) | a ∈G A} ∈ D by using first order class
comprehension in N , and thus we also have C[G] = FG[C] ⊆ D. It thus follows that
M[G] ⊆ N , and by axioms (*), (**) and (***), M[G] therefore is the ⊆-smallest
model of T that contains all classes from C and the generic filter G as one of its
classes, if any such model exists, as desired. �

6. On the notion of tameness

One of the classical results about set forcing is that it preserves the axioms of
ZF−, ZF and ZFC, and this easily extends to any of the second order theories that
we consider in this paper. However the situation is completely different for class
forcing, for any of the second order theories that we consider in this paper may
easily be destroyed by class forcing. For example, simply consider the notion of
forcing which adds a function from ω to Ord using finite conditions. This notion
of class forcing will provide us with a class function mapping ω surjectively onto
Ord in any of its generic extensions, clearly yielding GB− to fail. A key notion in
this context is that of pretameness, which was implicit in ealier work of A. Zarach
and of M. Stanley, and which was isolated by S. Friedman in [5]. In the following,
when we talk about sequences of classes, we will assume some suitable coding so
that these sequences can themselves be viewed as classes.

Definition 6.1. P is pretame (for M = 〈M, C〉) if for every p ∈ P and every
sequence 〈Di | i ∈ I〉 ∈ C of dense subclasses of P with I ∈ M , there is q ≤ p and
〈di | i ∈ I〉 ∈M such that for every i ∈ I, di ⊆ Di is predense below q in P.

M. Stanley showed that pretameness is actually equivalent to the property that
forcing with P preserves the axioms of GB− in a standard class forcing setup (see [8,
Theorem 3.1]), and it is shown in [8, Theorem 1.12] that pretameness is equivalent
to a large number of desirable niceness features of forcing notions. It therefore seems
very natural to restrict ones attention to pretame notions of forcing in the context
of class forcing. Pretame notions of forcing also preserve the axiom of choice, and
the existence of a global wellorder in order type Ord: regarding the axiom of choice,
if x is a set in a generic extension M[G] by a pretame forcing notion P, we pick
a P-name ẋ for x, and a wellorder ≺ of X = {σ | ∃p ∈ P 〈σ, p〉 ∈ ẋ}. We then
construct a wellorder of x as follows: given two of its elements y and z, we let y / z
if the ≺-least P-name for y in X (that is, the ≺-least σ ∈ X so that σG = y) is
≺-below any P-name for z in X. The argument for the preservation of the existence
of a global wellorder in order type Ord is essentially the same, and presented within
[8, Theorem 3.1].

However, pretame notions of forcing need not preserve the powerset axiom. This
can easily be observed by considering the pretame notion of forcing that adds a
proper class of Cohen subsets of ω. Since in any of its extensions, the powerset of ω
would have to be a proper class, it cannot exist as a set. For the preservation of the
powerset axiom, we need the notion of tameness. In his [4], Sy Friedman introduces
tameness of a class forcing notion P as the axiom requiring that P is pretame and
that the weakest condition of P forces the powerset axiom to hold (in the generic
extension). Since pretameness of P implies the P-forcing relation to be definable,
forcing the powerset axiom to hold is a first order property of P. Previously, in his
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[5], a more combinatorial definition of tameness was provided, which however seems
potentially problematic to us (we do not see how a crucial step in the argument
of [5, Theorem 2.21] proceeds, which is supposed to show that this combinatorial
version of tameness implies the preservation of the powerset axiom), but this issue
can easily be fixed by slighly strengthening the original property of tameness from
[5] (we will let tameness denote this strengthened property in the below) – we will
show that (our version of) tameness is equivalent to the preservation of the powerset
axiom under certain additional axioms (which all hold in any standard setup for
class forcing) in Section 7 below.12

Definition 6.2. Let M = 〈M, C〉 |= GB and let P ∈ C be a notion of forcing.

• If p ∈ P , a predense ≤ p partition (of P) is a pair 〈D0, D1〉 of classes such
that D0 ∪D1 is predense below p and such that p0 ∈ D0 ∧ p1 ∈ D1 implies
that p0 ⊥ p1.
• Suppose that 〈〈Di

0, D
i
1〉 | i ∈ a〉 and 〈〈Ei0, Ei1〉 | i ∈ a〉 are sequences of

predense ≤ p partitions of P. We say that they are equivalent ≤ p if for
each i ∈ a,

{q ∈ P | Di
0 is predense below q ⇐⇒ Ei0 is predense below q}

is dense below p in P.
• P is tame (for M) if P is pretame (for M) and for each a ∈M and p ∈ P ,

there is q ≤ p and α ∈ Ord(M) s.t. whenever r ≤ q and

~d = 〈〈di0, di1〉 | i ∈ a〉 ∈M

is a sequence of predense ≤ r partitions of P, then there is s ≤ r such that
~d is equivalent ≤s to some

~e = 〈〈ei0, ei1〉 | i ∈ a〉 ∈ VMα .13

Note that if 〈D0, D1〉 is a predense ≤ p partition of P for some p ∈ P , and q ≤ p,
then 〈D0, D1〉 is also a predense ≤ q partition of P. We will tacitly make use of
this in the below.

7. An axiomatization that does not assume the preservation of the
axioms of set theory

Alternatively, we can replace (6̄), (*), (**), (***) and (****) by the following
axioms, and in particular we can derive the preservation of the axioms of set theory
from natural axioms rather than requiring it. Axiom (6) below is a strengthening of
axiom (6̄), which seems to be a natural requirement in the context of class forcing,
and could be seen to essentially say that the objects that are our version of names
for sets correspond to set-sized objects in a standard class forcing setup. Axiom
(7) essentially says that we can freely (from the perspective of M) construct our
version of names in M. Axiom (8) is (pre)tameness, and is only required in the
case of class forcing (for it is trivial in the case of set forcing).

(6) Strong Set-Likeness: If b ∈M , then {〈a, p〉 | a ∈p b} ∈M .

12It may well be the case that Friedman’s original definition of tameness from [5] is equivalent
to the below though, for we were not able to produce a counterexample to this being the case.

13The subtle difference to Friedman’s original definition of tameness is that he requires ~d to

be a sequence of predense ≤ q partitions of P.
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(7) Universality: If S ∈ C is a relation on M × P , then there exists B ∈ C
such that

S(a, p) if and only if a ∈p B.

Moreover, if S ∈ M , then we obtain the above B to be in M , and there is
a map Γ that is first order definable over M which on input S ∈ M yields
one such witnessing B ∈M .14

(8) • Pretameness: P is pretame (for M).
• Tameness: If T contains the power set axiom, then we make the

stronger requirement that P is tame (for M).

Let us make the important remark that our axioms (1)–(8), as well as the axioms
(*), (**), (***) and (****) hold in the standard setup for class forcing, as described
for example in [7]. Given a transitive model M = 〈M, C〉 of T , and a pretame, or
tame (in case T contains the powerset axiom) notion of class forcing P ∈ C such
that for every condition p from P, there is a P-generic filter over M that contains
p as an element (this is the case in particular if M is countable15), interpreting
a ∈p B as 〈a, p〉 ∈ B, we arrive at such a standard setup, and it is well-known how
to verify axioms (1)–(8), (*), (**), (***) and (****) with respect to M and P in
this context – for the forcing theorem, as described in our axioms (4) and (5), see
[8] and [7].

Lemma 7.1. The axioms (*) and (**) can be derived from axiom (7).

Proof. Essentially, axiom (7) allows us to construct analogues of the usual canonical
names for ground model objects and for the generic filter. That is, using axiom
(7), by recursion on rank, for b ∈M , we define b̌ to be such that x ∈p b̌ if and only
if p = 1 and x is of the form ǎ for some a ∈ b, and we do this in a definable way,
making use of the map Γ. Note that using Γ, we in fact obtain a strong form of
axiom (*): we have the extra property that the map from b to b̌ described above is

definable over M . We then use this to define Ġ to be such that x ∈p Ġ if and only
if p ∈ P and x = p̌. �

Making heavy use of axioms (6) and (7), our next lemma shows that standard
forcing names and their evaluations essentially concide with elements of our ground
model M and their images under our evaluation function FG.

Lemma 7.2. (i) If σ is a (class) P-name in M (or in C) in the standard sense,
then there is a ∈ M (or a ∈ C) such that FG(a) = σG, where σG denotes
the standard evaluation of the name σ by the generic filter G.

(ii) If a ∈M (or a ∈ C), then there is a (class) P-name σ in M (or in C) such
that σG = FG(a).

Thus, in particular, M[G] is the standard generic extension of the model M by
the generic filter G.

14This additional definability assumption is of course redundant when T yields the existence

of a global well-order. In fact, it could also be omitted if T includes the powerset axiom: in that
case, instead of a single object B witnessing an instance of axiom (7), we would obtain a set of

rank-minimal objects witnessing such an instance, and this would suffice to verify Lemma 7.1,

Theorem 7.3 and Proposition 7.4 below.
15This is supposed to mean that both M and C are countable.
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Proof. Let us first verify (i). Let σ be a P-name in M . Making use of the map Γ
that was introduced in axiom (7), we recursively define a translation function h,
letting

h(τ) = Γ({〈h(ν), p〉 | 〈ν, p〉 ∈ τ}) ∈M.

It follows that FG(h(σ)) = {FG(a) | ∃p ∈ G a ∈p h(σ)} =

= {FG(a) | a = h(τ) and ∃p ∈ G 〈τ, p〉 ∈ σ} = {τG | ∃p ∈ G 〈τ, p〉 ∈ σ} = σG.

Now if σ ∈ C, using axiom (7), we can define h(σ) to be such that for all P-names
τ ∈M and p ∈ P ,

h(τ) ∈p h(σ) if and only if 〈τ, p〉 ∈ σ.
We thus obtain h(σ) ∈ C, and then the same argument as above shows that
FG(h(σ)) = σG.

Now let us verify (ii), in a similar way. Let b ∈M , and making use of axiom (6),
we obtain a map E ∈ C with domain M such that for every a ∈M , E(a) = {〈x, p〉 |
x ∈p a} ∈ M . Making use of this map, we recursively define another translation
function g, letting g(b) = {〈g(a), p〉 | a ∈ E(b), a ∈p b} for b ∈M . Similar to before,
it now follows that

g(b)G = {g(a)G | ∃p ∈ G 〈g(a), p〉 ∈ g(b)} = {FG(a) | ∃p ∈ G a ∈p b} = FG(b).

If B ∈ C, we can define g(B) = {〈g(a), p〉 | a ∈p B}, and then the same argument
as above shows that g(b)G = FG(b). �

Our next goal is to show that we can derive axiom (***) as well as the conse-
quences of Theorem 5.1 from the axioms (1)–(8). There are two somewhat different
ways to do this. The first possibility is to make use of Lemma 7.2, and then invoke
the relevant standard results about the preservation of the axioms of set theory
in standard generic extensions,16 and also about their minimality. The second
possibility is to directly verify the individual axioms of set theory in our generic
extension M[G] from our axioms. The advantage of this second option is that we
do not make use of any standard results in this case (but of course, the arguments
to verify the individual axioms in our generic extension are essentially analogous
to the corresponding classical arguments). We can then infer minimality of M[G]
by invoking Theorem 5.1 with respect to the standard setup for class forcing.17 We
would like to present both approaches in the below.

Theorem 7.3. Axioms (1)–(8) imply that M[G] is the ⊆-smallest model of T that
contains C ∪{G} as a subset of its collection of classes. In particular thus, axiom
(***) holds.

First Proof: Lemma 7.2 shows that our extension M[G] is exactly the standard
class forcing extension ofM by G, and thus one can apply the standard arguments
to show that M[G] is the ⊆-smallest model N of T that contains C ∪{G} as a
subset of its collection of classes. �

16For the case of the powerset axiom, using our new definition of tameness, such a proof can
easily be isolated from our proof of the powerset axiom in the second proof of Theorem 7.3 below.

17Let us remark that axiom (****) is not a consequence of axioms (1)–(8). If we additionally
assumed axiom (****), this use of the standard setup for class forcing could as well be avoided,
for we could then directly invoke Theorem 5.1 at this point.
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Second Proof: We directly verify the individual axioms in our generic extension.
This argument mostly proceeds similar to the proof of [8, Theorem 3.1 (1)]. The
verification of the powerset axiom inM[G] proceeds somewhat similar to the proof
of [5, Theorem 2.21], however making use of our modified definition of tameness.

SinceM[G] is a transitive ∈-structure, it clearly satisfies Regularity and Exten-
sionality. Using axiom (7), it is easy to see that M [G] satisfies Pairing, and by
axiom (*), it satisfies Infinity.

Let us treat the union axiom: Let a ∈ M [G] be given; we need to show that
for some b ∈ M [G],

⋃
a ⊆ b. Let X = {c | ∃p c ∈p a} ∈ M by axiom (6̄). Let

Y = {d | ∃c ∈ X ∃q d ∈q c} ∈ M by axiom (6̄). Using axiom (7), let ḃ ∈ M be

such that d ∈r ḃ if and only if d ∈ Y and r = 1. Using the definition of FG, it is
straightforward to check that b = FG(ḃ) is as desired.

Let us verify first order class comprehension in M[G]. If ϕ ∈ L(∈) and B ∈ C,
using axiom (7), let A ∈ C be such that a ∈p A if and only if p
ϕ(a,B). It then
follows that FG(A) = {x ∈M [G] | M[G] |= ϕ(x, FG(B))}.

We now show that M[G] satisfies collection. Let a ∈ M , A ∈ C, and assume
that M[G] |= ∀x ∈ FG(a)∃y 〈x, y〉 ∈ FG(A). We need to find b ∈ M such that
M[G] |= ∀x ∈ FG(a)∃y ∈ FG(b) 〈x, y〉 ∈ FG(A).

By axiom (4), we may pick some p ∈ G such that p
∀x ∈ a ∃y 〈x, y〉 ∈ A. By
axiom (6), X = {〈c, r〉 | c ∈r a} ∈M . For each 〈c, r〉 ∈ X, let

D〈c,r〉 = {s ∈ P | [s ≤ p, r ∧ ∃d ∈M s
〈c, d〉 ∈ A] ∨ s ⊥ r} ∈ C .
By Lemma 4.5, it follows that each D〈c,r〉 is dense below p in P. Using that P
is pretame by axiom (8), there is q ∈ G below p and there is a sequence 〈d〈c,r〉 |
〈c, r〉 ∈ X〉 ∈ M such that d〈c,r〉 ⊆ D〈c,r〉 and d〈c,r〉 is predense below q in P for
each 〈c, r〉 ∈ X.

Using collection in M , there is a set Y ∈ M such that for each 〈c, r〉 ∈ X and
for each s ∈ d〈c,r〉 that is compatible with r, there is d ∈ Y such that s
ϕ(c, d,A).
Using axiom (7), let b ∈ M be such that d ∈s b if and only if d ∈ Y and there is
〈c, r〉 ∈ X such that s ∈ d〈c,r〉 and s
ϕ(c, d,A). Then, by construction, M[G] |=
∀x ∈ FG(a)∃y ∈ FG(b) 〈x, y〉 ∈ FG(A), as desired.

Let us next show that M[G] satisfies separation. Let a ∈ M and A ∈ C. We
need to find b ∈ M such that M[G] |= FG(b) = FG(a) ∩ FG(A). By axiom (6),
X = {〈c, r〉 | c ∈r a} ∈ M . For each 〈c, r〉 ∈ X, let D〈c,r〉 = {q ∈ P | q ≤
r decides c ∈ A ∨ q ⊥ r} ∈ C. By an easy application of Lemma 4.1, it follows
that each D〈c,r〉 is dense in P. Using that P is pretame by axiom (8), we may pick
p ∈ G and a sequence 〈d〈c,r〉 | 〈c, r〉 ∈ X〉 ∈ M such that d〈c,r〉 ⊆ D〈c,r〉 and d〈c,r〉
is predense below p in P for each 〈c, r〉 ∈ X. Using axiom (7), let b ∈ M be such
that c ∈q b if and only if there is r ∈ P such that q ≤ r, 〈c, r〉 ∈ X, q ∈ d〈c,r〉 and
q
 c ∈ A. It clearly follows that b is as desired.

Let us observe at this point that we have by now verified the axioms of GB− in
M[G]. By our absoluteness assumptions on the P-membership relation, this allows
us to perform the relevant recursion to obtain FG ∈ C[G].

Let us argue that the axiom of choice is preserved. Let a ∈M . We have to find a
well-order / of FG(a) in M [G]. Using axiom (6̄), let X = {c | ∃r ∈ P c ∈r a} ∈M ,
and let ≺ be a well-order of X, using the axiom of choice in M . Now given x and
y in FG(a), making use of our above observation, we simply let x / y if and only if
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there is ẋ ∈ X such that x = FG(ẋ) and for all ẏ ∈ X such that y = FG(ẏ), we
have ẋ ≺ ẏ. Using that separation holds in M[G], we thus obtain / ∈M [G].

Let’s argue that if M has a set-like global well-order ≺∈ C, then we can find
a set-like global well-order / of M [G] in C[G]. Using our above observation, we
simply let x/y if and only if there is ẋ ∈M such that x = FG(ẋ) and for all ẏ ∈M
such that y = FG(ẏ), we have ẋ ≺ ẏ. Using that first order class comprehension
holds in M[G], we thus obtain / ∈ C[G].

Finally, we argue that assuming P to be tame, the powerset axiom is preserved.
Working in M[G], it suffices to show that P(a) exists in M [G] for every a ∈M : If
b ∈ M [G], b = FG(σ), using axiom (6̄), let X = {c | ∃r ∈ P c ∈r σ} ∈ M . Using
that FG ∈ C[G], and using that replacement holds in M[G], there is a surjection
from X onto b in M [G], and this surjection naturally induces a surjection from
P(X) onto P(b) in C[G]. Using replacement in M[G] once again, if P(X) ∈M [G],
it follows that P(b) ∈M [G].

Therefore, let a ∈ M . By Lemma 4.2, we may pick q ∈ G and α ∈ Ord(M)
witnessing the tameness of P with respect to a. Now for any σ ∈ M such that

q
σ ⊆ ǎ, consider the sequence of classes ~D = 〈〈Di
0, D

i
1〉 | i ∈ a〉 defined by

letting Di
0 = {r ≤ q | r
 ǐ 6∈ σ} and Di

1 = {r ≤ q | r
 ǐ ∈ σ}. For every i ∈ a
and j ∈ {0, 1}, let Eij be the dense set obtained as the downward closure of Di

j .
By pretameness, for every r ≤ q, we obtain s ≤ r and a predense ≤ s partition
~d = 〈〈di0, di1〉 | i ∈ a〉 such that di0 ⊆ Ei0 and di1 ⊆ Ei1 for every i ∈ a. By our choice

of q and α, we find ~e ∈ VMα and t ≤ s such that ~d and ~e are equivalent ≤ s.18 Since
this yields a dense set of conditions t, we may pick such t ∈ G. Thus,

i ∈ FG(σ) ⇐⇒ G ∩ ei1 6= ∅,
and therefore using axiom (7), letting σ0 ∈ M be such that c ∈s σ0 if and only if
c = ǐ for some i ∈ a and s ∈ ei1, it follows that FG(σ) = FG(σ0). Making use of the
map Γ described in axiom (7), we have a definable choice of such σ0’s in M given a
predense ≤ r partition ~e ∈ VMα , and using replacement in M , we thus obtain a set
Σ ∈ M containing a suitable σ0 for every predense ≤ r partition ~e ∈ VMα . Using
axiom (7) once again, let π ∈M be such that c ∈s π if and only if c ∈ Σ and s = 1.
Using separation in M[G], this clearly yields {x ∈ FG(π) | x ⊆ a} ∈ M [G] to be
the powerset of a in M[G], as desired.

Having verified all axioms of T in M[G], there are two ways to end the proof:
In case axiom (****) holds, the statement of our theorem is a direct consequence
of Theorem 5.1, and we have not made any use of the standard setup for class
forcing in this case. Without axiom (****), we use that all of our axioms hold
in the standard setup for class forcing with P over M, and that M[G] is just the
standard class forcing extension of M by G by Lemma 7.2, and therefore M[G]
is the ⊆-smallest model of T that contains C ∪{G} as a subset of its collection of
classes by Theorem 5.1 used within the standard setup. �

Our next proposition shows in particular that notions of forcing that preserve
GB need to be tame (in the sense of Definition 6.2), thus strengthening [5, Proposi-
tion 2.20]. Its proof is similar to the proof that is provided for [5, Proposition 2.20].

18This step of the argument does not seem possible with the original definition of tameness

from [5], for we were only able to apply its instances to predense ≤ q partitions, however ~d is a
predense ≤ s partition and s ≤ q.
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Proposition 7.4. Axioms (1)–(7) together with axiom (***) imply axiom (8).

Proof. If P is not pretame, then there is a sequence ~D = 〈Di | i ∈ I〉 ∈ C of dense
subclasses of P with I ∈ M and a condition p ∈ P witnessing that pretameness

fails with respect to ~D. Using axiom (1), let G be a P-generic filter over M with

p ∈ G. In the extension M[G], consider the (class) function F : I → OrdM defined
by letting

F (i) = min{α ∈ OrdM | G ∩Di ∩ VMα 6= ∅},
which is an element of C[G] by first order class comprehension in M[G]. Since
replacement holds inM[G], there is some x ∈M [G] with ranF ⊆ x. Let γ = supx.
Using axiom (4), let q ≤ p be a condition in G that forces this property of γ̌. Using

our assumption on p and on ~D however,

∃i ∈ I ∀r ∈ Di ∩ VMγ q ⊥ r,

yielding G ∩Di ∩ VMγ = ∅, a contradiction.
If T contains the powerset axiom however P is not tame, we may thus choose

a ∈ M and p ∈ P such that for every α ∈ Ord(M) and q ≤ p, there is r ≤ q

and a sequence ~d ∈ M of predense ≤ r partitions of P with domain a such that

whenever s ≤ r, then ~d is not equivalent ≤ s to any ~e in VMα . Using axiom (1),
let G be a P-generic filter over M with p ∈ G. Since the above yields a dense set
of such conditions r for every α ∈ Ord(M), by Lemma 4.2, there are rα ∈ G and

a sequence of predense ≤ rα partitions ~dα = 〈〈diα,0, diα,1〉 | i ∈ a〉 ∈ M for every

α ∈ Ord(M), witnessing that P is not tame.19 Whenever ~d = 〈〈di0, di1〉 | i ∈ a〉 ∈M
is a sequence of predense ≤ t partitions for some t ∈ G, we use axiom (7) to define

ḟ~d ∈M , letting x ∈u ḟ~d if and only if[
x = ˇ〈i, 0〉 ∧ u ∈ di0

]
∨
[
x = ˇ〈i, 1〉 ∧ u ∈ di1

]
.

That is, ḟ~d can be seen as a canonical name for the function f~d ∈M [G], f~d : a→ 2

that is defined by letting f~d(i) = 0 ⇐⇒ G ∩ di0 6= ∅ for every i ∈ a. Note that,

using axioms (4) and (5), two sequences ~d and ~d′ of predense ≤ t partitions with

domain a of P in C are equivalent ≤ t if and only if t
 ḟ~d = ḟ~d′ . Thus, for any

α ∈ OrdM , rα forces that ḟ~dα 6= ḟ~e for any predense ≤ rα partition ~e ∈ VMα with

domain a. This implies that in M[G], we obtain a cofinal partial function F from
{f ∈ M [G] | f : a → 2} to Ord, by letting F (f) be the least α such that there is
a condition r ∈ G and a predense ≤ r partition ~e ∈ VMα with domain a such that
f = f~e. By replacement in M[G] thus, the powerset of a cannot exist as a set in
M [G], and hence M[G] does not satisfy the powerset axiom. �

8. Set forcing

The axioms for set forcing, which are essentially as in [3], can easily be derived
from the case of class forcing over models of GBc that was treated in this paper.
In addition, we will also consider the base theories ZF−, ZFC− and ZF, which
correspond to the second order theories GB−, GBc− and GB. Let T thus denote
our base theory, which will either be ZF−, ZFC−, ZF or ZFC. Our terminology will

19Making a cautious remark here, we do not claim that the sequences of rα’s or ~Dα’s are in
any way internal to M.
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be slightly different from that of [3]. In this section, let L(∈) denote the collection
of first order formulas.

Definition 8.1. A set forcing generic framework is a tuple of the form〈
M,P, R, (
ϕ)ϕ∈L(∈) ,G

〉
with the following properties.

• M is a transitive set-size model of T .
• P = 〈P,≤〉 ∈M is a preorder.
• The P-membership relation R is a relation on P×M2 that is definable over
M by an L(∈)-formula. We denote the property R(p, a, b) as a ∈p b.20
• G is a second order unary predicate on P , i.e. a unary predicate on P(P ),

and we require that G(G) implies that G ⊆ P is a filter. If G(G) holds,
we say that G is a generic filter, or a P-generic filter on M . Whenever we
quantify over G in the following, we assume that we quantify over G’s such
that G(G) holds.
• For every ϕ ∈ L(∈), 
ϕ ∈ C is a predicate (which we also call a forcing

relation for ϕ) on P ×Mm, where m denotes the number of free variables
of ϕ. If 〈q, a0, . . . , am−1〉 ∈ 
ϕ, we also write q
ϕ(a0, . . . , am−1).

Let us briefly provide the list of corresponding axioms for set forcing.

(S1) Existence of generic filters: ∀p ∈ P ∃G p ∈ G.
(S2) Well-Foundedness: The binary relation ∃p ∈ P a ∈p b on M is well-

founded.
(S3) Growth of Information: For all ϕ ∈ L(∈), for all ~a ∈ M , and p, q ∈ P ,

if p
ϕ(~a) and q ≤ p, then q
ϕ(~a).

Define the relation ∈G on M by letting a ∈G b if ∃p ∈ G a ∈p b. Recursively
define our evaluation function FG along the relation ∈G, letting FG(a) = {FG(b) |
b ∈G a} for each a ∈ M . Let M [G] denote the ∈-structure on the transitive set
FG[M ].

(S4) Truth Lemma: For all ϕ ∈ L(∈), all ~a ∈M and all G,

M [G] |= ϕ(FG(~a)) iff ∃p ∈ G p
ϕ(~a).

(S5) Definability Lemma: For all ϕ ∈ L(∈), all ~a ∈M and p ∈ P ,

p
ϕ(~a) iff ∀G 3 p M [G] |= ϕ(FG(~a)).

(S6) Set-Likeness: If b ∈M , then {a | ∃p ∈ P a ∈p b} ∈M .
(S*) Names for ground model objects: ∀a ∈M ∃ǎ ∈M ∀G FG(ǎ) = a.

(S**) Name for generic filters: ∃Ġ ∈M ∀G FG(Ġ) = G.
(S***) Preservation of axioms: ∀G M [G] |= T .

(S****) Absoluteness of P-membership: The formula ϕ defining the P-member-
ship relation R is absolute for transitive models of T containing M .

We can use these axioms to deduce the following version of Theorem 5.1 (by
essentially using the same argument). A set forcing generic extension is a set
forcing generic framework together with a particular choice of generic filter G.

Theorem 8.2. Given a particular set forcing generic extension, assuming axioms
(S1) to (S6), and also axioms (S*), (S**), (S***) and (S****) to hold, M [G] is

20In a standard forcing setup, this would correspond to the property that 〈a, p〉 ∈ b.



AXIOMS FOR FORCING 17

actually well-defined in the sense that it depends only on M and on G, and is in
fact the ⊆-smallest model N of T that contains M ∪ {G} as a subset.

Proceeding toward a set forcing analogue of the results of Section 7, we introduce
one further axiom.

(S7) Universality: If s ∈ M is a relation on M × P , then there exists b ∈ M
such that

s(a, p) if and only if a ∈p b.
We additionally assume that there is a map Γ that is first order definable
over M which on input s yields one such witnessing b ∈M .21

The arguments from Section 7 then also yield the following.

Theorem 8.3. Axioms (S1)–(S7) imply axioms (S*), (S**) and (S***), and also
that M [G] is the ⊆-smallest model of T that contains M ∪ {G} as a subset.

Another way of verifying Theorem 8.3 is to observe that a set forcing generic
framework satisfying the axioms (S1)–(S7) corresponds exactly to a class forcing
generic framework over a modelM = 〈M, C〉 satisfying the axioms (1)–(8) for which
C is just the collection of subsets of M that are first order definable over M , and
to then apply Theorem 7.3:22

In one direction, it should be pretty clear that starting from a class forcing
generic framework in this setting, when P ∈M however is a set-sized partial order,
we can easily isolate a corresponding set forcing generic framework with respect
to P and verify our set forcing axioms for that framework from their class forcing
counterparts.

Let us provide a few more details on the other direction, which is relevant for
verifying Theorem 8.3. We start with a set forcing generic framework〈

M,P, R, (
ϕ)ϕ∈L(∈) ,G
〉
.

We first have to extend our P-membership relation R. Using the same letter R also
for its extension, we simply do so by letting R(p, a,B) if and only if 〈a, p〉 ∈ B
in case B ∈ C \M . That is, at the top level, when B is a proper class, we define
our P-membership relation to behave analogous to the relation 〈a, p〉 ∈ B from

the classical setting. For every nonzero length ~A ∈ C and ϕ ∈ L(∈), we have to

define relations 

~A
ϕ , however we simply define them to equal the corresponding

first order forcing relations from our set forcing generic framework for the formulas

obtained by replacing the elements of ~A by their defining formulas. Using our
extended P-membership relation, we can now define a ∈G B if ∃p ∈ G a ∈p B in
case B is a proper class, and we can thus also define FG(B) for B ∈ C \M , letting
FG(B) = {FG(a) | ∃p ∈ G〈a, p〉 ∈ B}. We then let M[G] = 〈FG[M ], FG[C]〉, as we
did in Section 3. It is then easy to see that each of the axioms (S1)–(S6) implies
its corresponding axiom from (1)–(6). In order to verify axiom (7), assume that
S ∈ C \M is a relation on M ×P . Let B ∈ C be such that S(a, p) holds if and only

21As in the case of axiom (7), this additional definability assumption seems not to be strictly

necessary for our present purposes when our theory T contains the powerset axiom.
22Let us remark however that an analogous result with respect to Theorem 8.2 should not hold

– there seems to be no reason to expect that starting from the axioms (S1)–(S6) together with
(S*), (S**), (S***) and (S****), the P-membership relation on sets could be extended to definable

classes so that it satisfies the absoluteness requirement from axiom (****).
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if 〈a, p〉 ∈ B. Then B witnesses the relevant instance of axiom (7). Finally, it is
well-known and easy to check that any notion of set forcing is pretame for models
of GB−, and tame for models of GB, thus yielding axiom (8).

9. Kelley-Morse set theory

Kelley-Morse set theory KM extends the axioms of GBC by the scheme of second
order class comprehension. Let L2(∈) denote the collection of all second order
formulas in the language with the ∈-predicate.

Definition 9.1. A class forcing generic framework for KM is a tuple of the form〈
M,P, R,

(


~A
ϕ

)
ϕ∈L2(∈), ~A∈C

,G

〉
with the same properties as those of a class forcing generic framework in Definition
2.1, except that the last item from that definition has to be changed to the following.

• For every ~A ∈ C and ϕ ∈ L2(∈) for which the number of free second order

variables corresponds to the length of ~A, 

~A
ϕ ∈ C is a predicate (which we

also call a forcing relation for ϕ) on P ×Mm, where m denotes the number
of free first order variables of ϕ.

If 〈q, a0, . . . , am−1〉 ∈ 

~A
ϕ , we also write q
ϕ(a0, . . . , am−1, ~A).

Axioms (1)–(5) are the same as in Section 3, except that L(∈) has to be replaced
by L2(∈) throughout, and that in axioms (4) and (5), we have to refer to the number
of free second order variables, rather than just the number of second order variables.
Axioms (6̄), (*) and (**) are exactly as in Section 3.

We can then use the above axioms to show that the forcing predicates obey their
usual defining clauses as in Section 4, except that we have to consider additional
types of formulas. As in the case of GBC we can avoid atomic formulas expressing
(in)equality for classes, for we may consider those to be defined in terms of the
∈-relation. But we need to treat second order quantification, extending Lemma 4.5
by the following clause. It is verified essentially by the same argument as for first
order quantification in [3], however we would like to provide the argument for the
benefit of our readers.

Lemma 9.2. p
∃Xϕ(~a, ~A) iff ∀r ≤ p ∃q ≤ r ∃X ∈ C q
ϕ(~a, ~A).

Proof. Let us assume that

(i) p
 ∃Xϕ(X,~a, ~A).

By axiom 5, this is equivalent to

(ii) ∀G 3 p M[G] |= ∃Xϕ(X,FG(~a), FG( ~A)).

By the definition of M[G], this is in turn equivalent to

(iii) ∀G 3 p ∃Ẋ ∈ C M[G] |= ϕ(FG(Ẋ), FG(~a), FG( ~A)).

Making use of axiom 4, we equivalently obtain

(iv) ∀G 3 p ∃Ẋ ∈ C ∃q ∈ G q
ϕ(Ẋ,~a, ~A).

Applying Lemma 4.3 yields equivalence to

(v) ∀r ≤ p ∃q ≤ r ∃Ẋ ∈ C q
ϕ(Ẋ,~a, ~A),

as desired. �
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We can now let axioms (***) and (****) be as in Section 5, and verify the
analogue of Theorem 5.1 when T = KM exactly as in that section, showing that
M[G] is the least model of KM that contains C ∪{G} as a subset of its collection
of classes.

Let axiom (6) be exactly as in Section 7. Let axiom (7) be exactly as in Section
7, except that we can ignore its additional definability assumption, for the axioms
of KM include the existence of a global well-order. Let axiom (8) be the assumption
that P is tame (for M), as in Section 7, noting that the axioms of KM include the
power set axiom.

As in Section 7, we would like to show that our axioms (1)–(8) imply axioms (*),
(**) and (***), and that M[G] is the ⊆-smallest model of T that contains C ∪{G}
as a subset of its collection of classes. For (*) and (**), this is shown exactly as in
Lemma 7.1. The verification of (***) and the minimality ofM[G] proceeds exactly
as in the proofs of Theorem 7.3, however we have to additionally verify second
order class comprehension inM[G] in the second proof. This is done by essentially
the same argument as for first order class comprehension from the second proof of
Theorem 7.3.

Proposition 9.3. M[G] satisfies second order class comprehension.

Proof. If ϕ ∈ L2(∈) and B ∈ C, using axiom (7), let A ∈ C be such that a ∈p A
if and only if p
ϕ(a,B). It then follows that FG(A) = {x ∈ M [G] | M[G] |=
ϕ(x, FG(B))}. �

10. Extensions of KM

The results of the previous section can also be extended to base theories beyond
KM. As a sample result, let us finally investigate the case of the base theory T
that is KM together with the axiom of class choice (CC), which was first studied
by A. Mostowski and W. Marek in [9].

Definition 10.1. • Given Y ∈ C and α ∈ Ord, we let Yα = {x | 〈α, x〉 ∈ Y }.
• CC is the statement that whenever ϕ ∈ L2(∈), A ∈ C, and for every ordinal
α there is some X ∈ C such that ϕ(α,X,A) holds, then there is Y ∈ C such
that for every ordinal α, we have ϕ(α, Yα, A).

Note that in the above, we could equivalently use arbitrary sets rather than just
ordinals as indices, for our base theory KM provides us with a global well-order in
order-type Ord. We will tacitly make use of this in the below.

It is shown in [2] that tame forcing preserves KM + CC. All results from the
previous section thus apply to the stronger base theory T = KM + CC as well –
we only need to verify that axioms (1)–(8) from Section 9 imply the preservation
of CC. Our proof of this is based on the argument from [2]. Given x, y ∈ M , let

ˇ{x, y} be defined by letting a ∈p ˇ{x, y} if and only if a ∈ {x, y} and p = 1. Let
ˇ〈x, y〉 be defined by letting a ∈p ˇ〈x, y〉 if and only if a ∈ { ˇ{x, x}, ˇ{x, y}} and p = 1.

Thus, ˇ〈x, y〉 is a canonical name for the ordered pair 〈FG(x), FG(y)〉 in our setup.

Proposition 10.2. M[G] |= CC.

Proof. Let A ∈ C. As a first step, we will argue that a strong form of Lemma 9.2
holds, namely whenever p
 ∃Xϕ(X,A), then there is X ∈ C such that p
ϕ(X,A).
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Using (second order) class comprehension inM, let D ∈ C be the dense class of all
q ≤ p for which there is some Xq ∈ C such that q
ϕ(Xq, A). Let A be a maximal
antichain in D. Using CC in M, for every q ∈ A, we may pick some Xq ∈ C such
that q
ϕ(Xq, A). Now we obtain our desired X ∈ C making use of axiom (7),
letting a ∈r X if and only if

r ≤ q ∧ a ∈ dom(Xq) ∧ r
 a ∈ Xq.

Now suppose that M[G] |= ∀α ∃X ϕ(α,X, FG(A)). By axiom (4), there is

p ∈ G such that p
 ∀α ∃X ϕ(α,X,A). For any α ∈ OrdM, by the above, we
find some Xα ∈ C such that p
ϕ(α,Xα, A). Using that our forcing relations are
in C, and using CC in M, we may obtain X ∈ C such that ∀α p
ϕ(α,Xα, A).
Making use of axiom (7), define Y ∈ C by letting a ∈r Y if and only if for some

α ∈ OrdM, a = ˇ〈α, x〉 and r is such that x ∈r Xα. It follows that for all α ∈ Ord,
M[G] |= ϕ(α, FG(X)α, FG(A)), as desired. �

11. Open questions and possible future directions

One obvious question is whether our axiom system can be simplified, or whether
some of its axioms could be weakened or even omitted. We have already remarked
that the definability of the map Γ provided by axiom (7) is not necessary in many
cases, and it is not hard to see that for any of the axiom systems we consider,
it would instead suffice, in the terminology of axiom (7), to have a map Γ which
provides a set of witnesses for each S ∈ M . Moreover, axiom (7) could in fact be
replaced by the weaker Item (i) from Lemma 7.2, or some equivalent form of that
item, which however seems less desirable as an axiom due to its reference to generic
filters. All other requirements made by our axioms seem to be necessary as far
as we know. Let us remark that Proposition 7.4 shows that axiom (8) cannot be
omitted.

Question 11.1. Are there possible improvements to our axiomatization of forcing,
either by using a proper subset of our axioms, or perhaps by replacing some of our
axioms by weaker or, in some other sense, better axioms?

In the present paper, we considered base theories containing at least the axioms
of GB−, or the corresponding first order theory ZF−. The following question was
posed to us by Ali Enayat.

Question 11.2. Is there a similar axiom system for forcing over suitable base
theories that are strictly weaker than ZF− (and perhaps also their corresponding
second order theories, when such exist), over which it is possible to develop a suitable
machinery of forcing?

One such weaker base theory would be Kripke-Platek set theory, however in his
[10], Adrian Mathias devoloped a weaker axiom system of provident set theory,
and shows that models of this theory support a smooth theory of set forcing. It
seems plausible that a careful adaption of our axioms could make them work in the
context of such weaker models of set theory as well.

A topic that is somewhat implicit in our paper is touched by the following.

Question 11.3. To what extent does our axiomatization shed light on the unique-
ness of the forcing method as a means to extending models of set theory without
giving up (ground model) control over the extension?
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Another future direction of research would be the following.

Question 11.4. Is it possible to provide natural and interesting axiomatizations
for other technical concepts in set theory? For example, for symmetric submodels of
forcing extensions, for (generic) ultrapowers or for (certain) canonical inner models
of set theory?
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