Canonical Function Coding over a Stationary Set

Peter Holy

May 21, 2013

Abstract

Canonical function coding at κ as defined in [2] was claimed in [2], Remark (a) after the proof of Theorem 39, to be $<\kappa$ -directed closed. There is a minor gap in that argument and we want to take the opportunity here to provide a corrected and additionally simpler approach to that claim, i.e. present a short and self-contained improved version of Theorem 39 of [2]. Thus we provide a $<\kappa$ -directed closed (in fact even $<\kappa$ -linked closed), κ^+ -cc forcing to introduce a boldface definable wellorder of H_{κ^+} , assuming κ is regular, $\kappa^{<\kappa} = \kappa$ and $2^{\kappa} = \kappa^+$. The main idea for the simplification (and in fact the whole proof) is essentially contained in [1]. This result slightly improves parts of a result in [3], where a Δ_2^1 -definable wellorder of H_{κ^+} is introduced by $<\kappa$ -closed (and in fact $<\kappa$ -directed closed, but not $<\kappa$ -linked closed), κ^+ -cc forcing (however without assuming $2^{\kappa} = \kappa^+$).

Definition 1 Assume P is a partially ordered set and κ is a cardinal.

- D ⊆ P is directed if any two conditions in D have a common extension in D.
- D ⊆ P is linked if any two conditions in D have a common extension in P.
- P is <κ-directed closed if any directed subset of P of size less than κ has a lower bound in P.
- P is <κ-linked closed if any linked subset of P of size less than κ has a lower bound in P.

Assume κ is regular, $\kappa^{<\kappa} = \kappa$ and $2^{\kappa} = \kappa^+$. For every $\gamma \in [\kappa, \kappa^+)$, let $f_{\gamma} \colon \kappa \to \gamma$ be a bijection. We will define a forcing P to introduce a boldface definable wellorder of H_{κ^+} which will be $<\kappa$ -linked closed and κ^+ -cc. P is an iteration of length κ^+ with $<\kappa$ -support. P_0 and P_1 both denote the forcing to add a Cohen subset of κ . Let B denote the generic subset of κ added by P_0 , let S denote the generic subset of κ added by P_1 . P is trivial in the interval $[2, \kappa)$, so $P_{<\kappa}$, the iteration up to κ , is equivalent to just $P_0 * P_1$.

We will inductively define P_{α} for $\alpha \in [\kappa, \kappa^+)$ and a predicate $A: [\kappa, \kappa^+) \to 2$. As this notation already suggests, we will identify predicates or sets of ordinals and their characteristic functions. For every $\alpha \in (\kappa, \kappa^+]$, $A \upharpoonright \alpha$ will be a $P_{<\alpha^-}$ name. The definitions will be such that for any $\alpha \in [\kappa, \kappa^+)$, P_{α} can be defined given $A \upharpoonright \alpha$. We fix a wellorder \mathcal{W} of H_{κ^+} of order-type κ^+ . Given $\alpha \in [\kappa, \kappa^+)$, $A(\alpha)$ is a $P_{<\alpha+1}$ -name for either 0 or 1 such that in any $P_{<\alpha+1}$ -generic extension, $A(\alpha)$ is evaluated to 1 iff $\alpha = \prec \beta, \gamma, \delta \succ, \dot{x}$ is the β^{th} (in the sense of \mathcal{W}) $P_{<\gamma}$ name for a subset of $\kappa, \delta < \kappa$ and the induced $P_{<\gamma}$ -generic decides that $\dot{x}(\delta) = 1$.

If $i \in [\kappa, \kappa^+)$, P_i is the forcing defined in the $P_{\langle i}$ -generic extension as follows. A condition t in P_i is a κ -Cohen condition s.t. $\{\eta < |t| \mid t(\eta) = 1\}$ is a closed, bounded subset of κ and¹

$$\forall \eta \in (t \cap S) \ B(\text{ot } f_i[\eta]) = A(i).^2$$

Conditions in P_i are ordered by end-extension.

If $\alpha \leq \kappa^+$, p is a condition in $P_{<\alpha}$ and $i \in [\kappa, \alpha)$, we denote p(i) by p_i^{**} . We write b(p) to denote p(0) and we write s(p) to denote p(1). We define the *club* support of p as C-supp $(p) = \{i \mid p_i^{**} \neq 1\}$. Let G be P-generic.

Claim 2 Asume $\lambda < \kappa$ and D is a linked set of conditions in $P_{<\alpha}$. Let r be the componentwise union of D, i.e. r is a sequence of length α such that $b(r) = \bigcup_{p \in D} b(p), \ s(r) = \bigcup_{p \in D} s(p) \ and \ r_{\gamma}^{**} = \bigcup_{p \in D} (p)_{\gamma}^{**} \ for \ \gamma \in C\text{-supp}(r) := \bigcup_{p \in D} C\text{-supp}(p)$. If $p \upharpoonright \gamma \Vdash |b(r)| = |s(r)| = |r_{\gamma}^{**}|$ for every $\gamma \in C\text{-supp}(r)$, then D has a lower bound in $P_{<\alpha}$.

Proof: Let $\xi = |b(r)|$. We build q out of r by setting $b(q) = b(r) \cup \{(\xi, 0)\}$, $s(q) = s(r) \cup \{(\xi, 0)\}$ and $q_{\gamma}^{**} = r_{\gamma}^{**} \cup \{\xi\}$ for every $\gamma \in \text{C-supp}(r)$. Using that $q \upharpoonright \gamma^{\oplus}$ forces that either $\sup(r_{\gamma}^{**}) = \xi$ or $\exists p \in D$ $\sup r_{\gamma}^{**} \in p_{\gamma}^{**}$ and using that $\mathbf{1} \Vdash s(q)(\xi) = 0$ it is trivial to check that q is a condition in $P_{<\alpha}$ extending each $p \in D$. \Box

Claim 3 Suppose $\kappa \leq \alpha \leq \kappa^+$. Then the following hold:

- 1. $P_{<\alpha}$ has a dense subset $D_{<\alpha}$ of conditions p such that $p_{\gamma}^{**} \in \mathbf{V}$ for every $\gamma \in C$ -supp(p).
- 2. The following set is dense in $D_{<\alpha}$:

$$E_{<\alpha} = \{ p \in D_{<\alpha} \mid \forall \gamma \in \mathcal{C}\text{-supp}(p) \ p \upharpoonright \gamma \Vdash |b(p)| = |s(p)| = |p_{\gamma}^{**}| \}.$$

3. $E_{<\alpha}$ is $<\kappa$ -linked closed.

Proof of 1: If $\alpha = \beta + 1$ is a successor ordinal and given any condition $p \in P_{<\alpha}$, we use 2 and 3 inductively to decide p_{β}^{**} . If α is a limit ordinal of cofinality κ or $\alpha = \kappa^+$, the result follows inductively by 1 as any condition $p \in P_{<\alpha}$ has support bounded in α . Assume that α is a limit ordinal of cofinality $\lambda < \kappa$ and p is a condition in $P_{<\alpha}$. Let $\langle \alpha_i \mid i < \lambda \rangle$ be increasing, continuous and cofinal in α . Build a decreasing sequence of conditions $\langle p^i \mid i < \lambda \rangle$ such that $p^0 = p$ and for every $i < \lambda$, $p^{i+1} \upharpoonright \alpha_i \in E_{<\alpha_i}$ and $p^{i+1} \upharpoonright \alpha_i, \kappa^+) = p^i [\alpha_i, \kappa^+)$. It follows by Claim 2 that $\langle p^i \mid i < \xi \rangle$ has a lower bound q for every $\xi \le \lambda$ and in fact the construction of q in the proof of that claim shows that $q \upharpoonright \alpha_{\xi} \in E_{<\alpha_{\xi}}$. Hence we

¹We write $\eta \in t$ to abbreviate $t(\eta) = 1$. We write $\sup(t)$ for $\sup(\{\eta \mid t(\eta) = 1\})$. Using predicates giving rise to closed, bounded subsets of κ instead of closed, bounded subsets of κ themselves is the necessary correction to make the proof work, as mentioned in the abstract.

²This constitutes the simplification mentioned in the abstract - we don't demand this kind of coding property for all $\eta \in t$, but only for $\eta \in (t \cap S)$, where S is the stationary subset of κ previously added by Cohen forcing.

can perform the above construction and if q is the lower bound of $\langle p^i | i < \lambda \rangle$ as obtained in the proof of Claim 2, then $q \in E_{<\alpha} \subseteq D_{<\alpha}$.

Proof of 2: Immediate by 1 and just lengthening components by zeroes.

Proof of 3: Immediate by Claim 2. \Box

Claim 4 P is κ^+ -cc.

Proof: If $\alpha < \kappa^+$, $\{p \in D_{<\alpha} \mid p(0) \text{ decides } p(1)\}$ is dense in $P_{<\alpha}$ and has size κ . $P_{<\kappa^+}$ is the direct limit of $\langle P_{<\alpha} \mid \alpha < \kappa^+ \rangle$ and thus is κ^+ -cc. \Box

Claim 5 Any condition $p \in P$ has an extension q such that for any given $\xi < \kappa$ and any $\zeta \in [\kappa, \kappa^+), q \upharpoonright \zeta \Vdash \sup q_{\zeta}^{**} > \xi$.

Proof: Let X be an antichain of $P_{<\zeta}$ below $p \upharpoonright \zeta$ deciding $\sup(p_{\zeta}^{*})$. Choose $\xi' > \xi$ such that $p(0) \Vdash \xi' \notin |s(p)|$. Choose q to extend p such that $s(q) \supseteq s(p) \cup \{(\xi', 0)\}$ and choose q_{ζ}^{**} such that whenever $x \in X$ forces that $\sup(p_{\zeta}^{**}) \leq \xi$, then x forces that $q_{\zeta}^{**} = p_{\zeta}^{**} \cup \{\xi'\}$ and such that x forces $q_{\zeta}^{**} = p_{\zeta}^{**}$ otherwise. \Box

Claim 6 A is definable from S and B over $H_{\kappa^+}^{\mathbf{V}[G]}$.

Proof: An easy density argument using Claim 5 shows that in $H_{\kappa^+}^{\mathbf{V}[G]}$,

 $\gamma \in A \iff \exists C \text{ club } \forall \delta \in C \cap S \text{ ot } f_{\gamma}[\delta] \in B.$

Moreover the same is true with f_{γ} replaced by any bijection between κ and γ . \Box

Claim 7 In $\mathbf{V}[G]$, $H_{\kappa^+} = L_{\kappa^+}[A]$.

Proof: An obvious density argument. \Box

Theorem 8 Forcing with P introduces a Δ_1^1 -definable wellorder of H_{κ^+} .

Proof: By Claim 7, using the standard $\Delta^1_1(A)$ -wellorder of $L_{\kappa^+}[A]$ and using that A is definable from S and B over $H^{V[G]}_{\kappa^+}$ by Claim 6. \Box

Note: As in Theorem 39 of [2], it is easily possible to additionally make any given ground model subset of $H_{\kappa^+} \Delta_1^1$ -definable over $H_{\kappa^+}^{\mathbf{V}[G]}$.

References

- David Asperó and Sy-David Friedman. Large cardinals and locally defined well-orders of the universe. Annals of Pure and Applied Logic 157, no. 1, pp 1–15, 2009.
- [2] Sy-David Friedman and Peter Holy. Condensation and Large Cardinals. Fundamenta Mathematicae 215, no. 2, pp 133-166, 2011.
- [3] Philipp Lücke. Σ¹₁-definability at uncountable regular cardinals. Journal of Symbolic Logic 77, no. 3, pp 1011–1046, 2012.