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Abstract

We investigate the consistency strength of various absoluteness
principles. Following S. Friedman, we show that Σ1

3-absoluteness for
arbitrary set-forcing has the consistency strength of a reflecting car-
dinal. Following J. Bagaria, we show that Σ1(Hω2)-absoluteness for
ω1-preserving forcing is inconsistent and that for any partial ordering
P , Σ1(Hω2)-absoluteness for P is equivalent to BFA(P ), the bounded
forcing axiom for P - and hence Σ1(Hω2)-absoluteness for ccc forcing is
equiconsistent with ZFC. Then, following S. Shelah and M. Goldstern,
we show that BPFA, the forcing axiom for the class of proper posets,
is equiconsistent with the existence of a reflecting cardinal. We review
that for any partial ordering P , Σ1(Hω2)-absoluteness for P implies
Σ1

3-absoluteness for P and finally, following S. Friedman, we turn back
to investigate the consistency strength of Σ1

3-absoluteness for various
classes of forcings: We show that Σ1

3-absoluteness for proper (or even
semiproper) forcing is equiconsistent with ZFC, that Σ1

3-absoluteness
for ω1-preserving forcing is equiconsistent with the existence of a re-
flecting cardinal, that Σ1

3-absoluteness for ω1-preserving class forcing
is inconsistent, that, under the additional assumption that ω1 is inac-
cessible to reals, Σ1

3-absoluteness for proper forcing has the consistency
strength of a reflecting cardinal and finally that Σ1

3-absoluteness for
stationary-preserving forcing has the consistency strength of a reflect-
ing cardinal.
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1 Introduction: General Set Theory

In this section, we give (mostly standard) definitions to fix our notation and
we list auxiliary results which will be relied upon in the following. We omit
many of the proofs which can be found in [17], [19] or [7].

1.1 Models, absoluteness and formula hierarchies

Notation: We let M, N denote models M = (M,∈, . . .), N = (N,∈, . . .)
with universes M and N respectively. If M = (M,∈), we sometimes write
M to denote the model (M,∈). For a model M, LM denotes the language
of M, i.e. if M = (M,∈, (Pi)i∈I), LM = (∈, (Pi)i∈I).

For X ⊆ M , we let LM(X) denote the language LM enriched with
constant symbols cx for every x ∈ X.

Definition 1.1 A closed formula ϕ ∈ LM∩LN(M∩N) is said to be absolute
between N and M if N |= ϕ↔M |= ϕ, it is said to be upwards absolute
between N and M if N ⊆ M and N |= ϕ → M |= ϕ, if N ⊇ M and
N |= ϕ→M |= ϕ, ϕ is said to be downwards absolute between N and M.

Definition 1.2 (The Lévy Hierarchy)

• A formula is Σn(X) if it is of the form

∃x1 ∀x2 ∃x3 . . . Qxn ψ(x1, . . . , xn, y1, . . . , ym)

where for all i, yi ∈ X and all the quantifiers in ψ are bounded and Q
stands for ∃ in case n is odd and for ∀ if n is even.

• A formula is Πn(X) if it is the negation of a Σn(X) formula.

• A property is Σn(X) or Πn(X) if it is expressible by some Σn(X) or
Πn(X) statement respectively.

• A property is ∆n(X) if it is both Σn(X) and Πn(X).

Definition 1.3 N is said to be an elementary submodel of M, N≺M, if
N ⊆M , LN ⊆ LM and for every closed ϕ ∈ LN(N), N |= ϕ↔M |= ϕ. N is
said to be a Σn-elementary submodel of M, N≺Σn M, if N ⊆M , LN ⊆ LM

and for every closed ϕ ∈ LN(N) ∩ Σn(N), N |= ϕ↔M |= ϕ.

Lemma 1.4 For any structure M = (M,R, . . .) with a binary relation R,
”R is well-founded on M” is a ∆1({M,R}) statement.

Proof:

• Σ1: ∃f : M → Ord ∀x, y ∈M (xRy → f(x) < f(y)).
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• Π1: ¬∃X (X ⊆M ∧ ∀x ∈ X ∃y ∈ X yRx). 2

Lemma 1.5 ”y = tcl(A)”, the transitive closure of A, is a ∆1({y,A}) state-
ment.

Proof:

• Σ1: A ⊆ y ∧ y transitive ∧∀a∈ y ∃f ∃n∈ω dom(f) =n + 1 ∧ f(0) =
∅ ∧ f(n)∈A ∧ ∀k < n f(k) ∈ f(k + 1) ∧ a ∈ range(f).

• Π1: A ⊆ y ∧ y transitive ∧∀x (A ⊆ x ∧ x transitive → y ⊆ x). 2

Fact 1.6 (Mostowski-Sheperdon Collapsing Lemma) ([7], I, Th.7.2)
Let E be a binary relation on X such that E is extensional and well-founded.
Then there is a unique transitive set M and a unique map π such that:

π : (X,E) ∼= (M,∈).

M is called the transitive collapse of (X,E), M = tcoll(X,E). 2

Lemma 1.7 Assume E is an extensional and well-founded binary relation
on X = dom(E) ∪ range(E). Then ”y = tcoll(X,E)” is a ∆1({y,X,E})
statement.

Proof:

• Σ1: ∃f : X → y ∀a ∈ X f(a) = {f(b) : bE a}.
• Π1: ∀f ∀D ⊆ X ((∀a ∈ D ∀b ∈ X bE a → b ∈ D) ∧ f : D → y ∧ ∀a ∈
D f(a) = {f(b) : bE a} ∧ f ”D transitive) → ((D = X ∧ f ”D =
y) ∨ (∃d ∈ X \ D ∀z ∈ X(z E d → z ∈ D) ∧ ∃e ∈ y e = {f(c) : c ∈
D ∧ cE d})). 2

Definition 1.8 (The hierarchy of projective formulas)

• A formula is Σ1
n(y1, . . . , ym) if it is of the form

∃x1 ⊆ ω ∀x2 ⊆ ω ∃x3 ⊆ ω . . .Qxn ⊆ ω ψ(x1, . . . , xn, y1, . . . , ym)

where for all i, yi ⊆ ω and all the quantifiers in ψ range over ω and
Q stands for ∃ in case n is odd and for ∀ if n is even.

• A formula is Σ1
n if it is Σ1

n(y1, . . . ym) for some y1, . . . , ym ⊆ ω.

• A formula is Π1
n(y1, . . . , ym) or Π1

n if it is the negation of a
Σ1

n(y1, . . . , ym) or a Σ1
n formula respectively.

• A formula is arithmetical (in a) if it is Σ1
0 (Σ1

0(a)).
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• A formula is projective if it is Σ1
n or Π1

n for some n ∈ ω.

• A relation on ωk × (ωω)l is Σ1
n(y1, . . . , ym), Π1

n(y1, . . . , ym), Σ1
n, Π1

n,
arithmetical or projective if it is expressible by some formula in the
respective formula class.

• A relation on ωk × (ωω)l is ∆1
n(y1, . . . , ym) or ∆1

n if it is both
Σ1

n(y1, . . . , ym) and Π1
n(y1, . . . , ym) - or Σ1

n and Π1
n respectively.

Fact 1.9 ([18], pp 152) A ⊆ ωk × (ωω)l is arithmetical iff A is definable
in (ω,∈,+, ·, exp,<, 0, 1), A ⊆ ωk × (ωω)l is arithmetical in a ⊆ ω iff A is
definable in (ω,∈,+, ·, exp,<, 0, 1, a). 2

Lemma 1.10 There exists an arithmetical bijection Γ: ω × ω → ω.

Proof: Let Aαβ := {(γ, δ) ∈ ω × ω : (γ, δ) <2 (α, β)} and Γ(α, β) := |Aαβ|,
with (γ, δ) <2 (α, β)↔max{γ, δ} < max{α, β}∨ (max{γ, δ} = max{α, β}∧
((δ = β ∧ γ < α)∨ (δ < β))). It is easy to find an arithmetical formula that
defines Γ. 2

Lemma 1.11 There exists an arithmetical enumeration of ω<ω.

Proof: For example, let f : ω<ω → ω, 〈x0, x1, . . . , xn〉 7→ 2x0+1 ∗ 3x1+1 ∗ . . . ∗
pn

xn+1 where (pi)i∈ω is the increasing enumeration of prime numbers, which
is arithmetical. 2

Fact 1.12 (Mostowski’s Absoluteness Theorem) ([17], Th.25.4)
If P is a Σ1

1 relation then P is absolute for every transitive model that is
adequate for P , i.e. every transitive model that satisfies some finite ZFC∗ ⊂
ZFC and contains the parameters occuring in a Σ1

1-formula describing P . 2

1.2 Kripke-Platek Set Theory / Admissible Sets

Throughout this paper, we usually work in ZFC, Zermelo-Fraenkel Set The-
ory with the Axiom of Choice. In this section we are going to define some
subtheories of ZFC which will be of use later on. ZF denotes Zermelo-
Fraenkel Set Theory without the Axiom of Choice, ZF− denotes ZF with
the Power Set Axiom deleted. In the following, for theories S and T , let
S ⊆ T denote the statement that every axiom of S is a theorem of T .

Definition 1.13 (Basic Set Theory)
BS ⊆ ZF− is the theory with the following axioms:

• Extensionality: ∀x∀y (∀z (z ∈ x↔ z ∈ y)→ (x = y))

• Induction Schema: ∀~a (∀x((∀y ∈ x)ϕ(y,~a)→ ϕ(x,~a))→ ∀xϕ(x,~a))
for any formula ϕ(x,~a)
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• Pairing: ∀x∀y∃z∀w ((w ∈ z)↔(w = x ∨ w = y))

• Union: ∀x∃y∀z ((z ∈ y)↔(∃u ∈ x)(z ∈ u))
• Infinity: ∃x (x ∈ Ord ∧ (x 6= ∅) ∧ (∀y ∈ x)(∃z ∈ x) y ∈ z)
• Cartesian Product: ∀x∀y∃z∀u ((u ∈ z)↔(∃a ∈ x)(∃b ∈ y)u = (a, b))

• Σ0-Comprehension Schema: ∀~a∀x∃y∀z ((z ∈ y)↔(z ∈ x ∧ ϕ(z,~a)))
for any Σ0-formula ϕ(x,~a)

Definition 1.14 (Amenable Sets) A transitive set M is said to be amen-
able iff it is a model of BS, i.e. satisfies the following conditions:

• Pairing: (∀x, y,∈M)({x, y} ∈M)

• Union: (∀x ∈M)(
⋃
x ∈M)

• Infinity: ω ∈M
• Cartesian Product: (∀x, y ∈M)(x× y ∈M)

• Σ0-Comprehension: if R ⊆M is Σ0(M), then (∀x ∈M)(R ∩ x ∈M)

Definition 1.15 (Kripke-Platek Set Theory) KP ⊆ZF− is the theory
that consists of the axioms of BS together with the Σ0 Collection Schema:

• ∀~a (∀x∃yϕ(y, x,~a)→ ∀u∃v (∀x ∈ u)(∃y ∈ v)ϕ(y, x,~a))
for any Σ0-formula ϕ(x,~a)

Definition 1.16 (Admissible Sets) A transitive set M is said to be ad-
missible iff it is a model of KP , i.e. iff it is amenable and satisfies that for
any Σ0(M) relation R ⊆ M ×M , if (∀x ∈ M)(∃y ∈ M)R(y, x), then for
any u ∈M there is v ∈M such that (∀x ∈ u)(∃y ∈ v)R(y, x).

The following two facts show that the axioms of KP imply (seemingly)
stronger principles:

Fact 1.17 (Σ1-Collection) ([7], I, Lemma 11.3)
For any ϕ(y, x,~a) ∈ Σ1,

KP ` ∀~a (∀x∃yϕ(y, x,~a)→ ∀u∃v (∀x ∈ u)(∃y ∈ v)ϕ(y, x,~a)). 2

Fact 1.18 (∆1-Comprehension) ([7], I, Lemma 11.4)
For any ϕ(z,~a) ∈ ∆KP

1 (i.e. ϕ(z,~a) ∈ Σ1 and there exists ψ(z,~a) ∈ Π1 such
that KP ` ∀z∀~a (ϕ(z,~a)↔ψ(z,~a))),

KP ` ∀~a∀x∃y∀z (z ∈ y↔(z ∈ x ∧ ϕ(z,~a))). 2
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Lemma 1.19 Let M be a transitive set. Then there is a sentence φ s.t.
M |= φ↔M |= KP ↔M is admissible.

Proof: We will show that there is a finite number of theorems of KP , which,
true in M, imply that M |= KP ; in particular, we have to ”get rid” of
every axiom schema in KP : Obviously, the induction schema holds in every
transitive set. We will show that, using a universal Σ1 formula, the schemata
of Σ1-Collection and ∆1-Comprehension are implied by a theorem of KP :

Let ϕ(n, x,~a) ≡ ∃T transitive ∧ Sat(T, n, x,~a) with Sat being the sat-
isfaction relation, i.e. Sat(T, n, x,~a)↔T |= ψn(x,~a) with n = ]ψn. Sat
is a ∆KP

1 -property (for details, see [7], pp 31). It follows that ϕ(n, x,~a)
is a Σ1-property; if ψn is ∆KP

1 , then ϕ(n, x,~a) is a ∆KP
1 property, since

¬ϕ(n, x,~a)↔∃T transitive ∧ x ∈ T ∧ Sat(T, F¬(n), x,~a) where F¬ is a
Σ0-function satisfying m = F¬(n)↔ψm = ¬ψn (for details, see [7], pp 31).

Hence Σ1-Collection and ∆1-Comprehension are implied by the following
theorems of KP (which follow from instances of the above schemata):

• ∀n ∈ ω (Σ1(n)→ ∀~a (∀x∃yϕ(n, y, x,~a)→

∀u∃v(∀x ∈ u)(∃y ∈ v)ϕ(n, y, x,~a)))

• ∀n ∈ ω (∆1(n)→ ∀~a∀x∃y∀z (z ∈ y↔ z ∈ x ∧ ϕ(n, z,~a)))

where Σ1(x) and ∆1(x) are predicates with the properties

• Σ1(n)↔ψn ∈ Σ1; ∆1(n)↔ψn ∈ ∆KP
1 .

Details can be found in [7], pp 42. 2

1.3 Infinite Combinatorics

Definition 1.20 A collection A of sets is a ∆-System iff there exists r such
that ∀a, b ∈ A a ∩ b = r. Such r is called the root of A.

Fact 1.21 (∆-System Lemma) ([19], II, Theorem 1.6) Let κ ≥ ℵ0 and
θ regular such that θ > κ and ∀α < θ |α|<κ < θ. Let |A| ≥ θ such that
∀x ∈ A x ⊂ κ ∧ |x| < κ. Then there is B ⊆ A such that |B| = θ and B is a
∆-System. 2

Definition 1.22 Let κ be a regular cardinal, α > κ, α ∈ Ord. A family
A = (aξ)ξ<α of unbounded subsets of κ, s.t. for ξ 6= ξ′ < α, |aξ ∩ aξ′ | < κ,
is called an almost disjoint family on κ (of size |α|).

Lemma 1.23 If (si : i < α) is a family of distinct reals, we can use that
family to construct a family (ri : i < α) of almost disjoint reals. In particular
it follows that there exists an almost disjoint family on ω of size 2ℵ0.
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Proof: Let f : 2<ω → ω be a fixed bijection. For a real si, let ri := {f(t) : t
is an initial segment of the indicator function of si}. 2

Fact 1.24 ([17], Lemma 9.23) Let κ be a regular cardinal. Then there exists
an almost disjoint family on κ of size κ+. 2

Definition 1.25 An ordinal function f on S is regressive if

∀α ∈ S (α > 0→ f(α) < α).

Fact 1.26 (Fodor’s Lemma) ([17], Theorem 8.7)
If f is a regressive function on a stationary set S ⊆ κ ∈ Card, then there is
a stationary set T ⊆ S and some γ < κ such that f(α) = γ for all α ∈ T . 2

Definition 1.27 (Singular Cardinal Hypothesis)
The Singular Cardinal Hypothesis (SCH) is the following statement:

For every singular cardinal κ, if 2cf κ < κ, then κcf κ = κ+.

Fact 1.28 ([17], Theorem 5.22) Assume that SCH holds:

• If κ is a singular cardinal, then

– 2κ = 2<κ if the continuum function is eventually const. below κ,

– 2κ = (2<κ)+ otherwise.

• If κ and λ are infinite cardinals, then

– if κ ≤ 2λ, then κλ = 2λ,

– if 2λ < κ and λ < cf κ, then κλ = κ,

– if 2λ < κ and cf κ ≤ λ, then κλ = κ+. 2

1.4 Hereditarily countable sets and reals

Definition 1.29 For all infinite cardinals κ, let Hκ := {x : | tcl(x)| < κ}.

Definition 1.30 We say that r ∈ 2ω codes x ∈ Hω1 iff Er := {(m,n) ∈
ω×ω : Γ(m,n) ∈ r} is well-founded, extensional and the Mostowski Collapse
coll(Er) of Er equals tcl({x}). We say that r codes x via g : tcl({x})→ ω if
the above holds and g is the inverse of the collapsing map.

By lemma 1.4, lemma 1.5 and lemma 1.7, we obtain the following:

Lemma 1.31 For r∈2ω, x∈Hω1,” r codes x” is a ∆1 property. 2

Lemma 1.32 ∀x∈Hω1 ∃r∈2ω r codes x.

9



Proof: Choose some g : tcl({x}) 1−1−−→ ω, then choose E such that
g : 〈tcl({x}),∈〉 ∼= 〈ω,E〉 and let r := Γ′′E. Obviously, such r codes x. 2

Definition 1.33

• Let r0
r∼= r1 iff Er ⊂ ω×ω is the graph of a partial function fr : ω 99K ω

such that ∀m,n ∈ dom(fr) (mEr0n↔ fr(m)Er1fr(n)).

• If there exists a unique maximal element m in Er, let top(r) := m.
If r codes x via g, top(r) = g(x).

• field(r) := dom(Er) ∪ range(Er)

• For m ∈ field(r), define the transitive closure of m with respect to
r as tclr(m) := {n : ∃k ∈ ω ∃s ∈ ωk+1 s(0) = n ∧ s(k) = m ∧ ∀l <
k s(l)Ers(l + 1)}.
• r t s := {Γ(2n, 2m) : nErm} ∪ {Γ(3n, 3m) : nEsm}

• Let r0
r
↪→ r1 iff Er1 is extensional and Er ⊂ ω × ω is the graph of a

partial function fr : ω 99K ω such that

– ∀m,n ∈ dom(fr) (mEr0n→ fr(m)Er1fr(n)),

– ∀2m, 2n ∈ dom(fr) (fr(2m)Er1fr(2n)→ 2mEr02
n),

– ∀3m, 3n ∈ dom(fr) (fr(3m)Er1fr(3n)→ 3mEr03
n).

Observation: Note that all the notions introduced in definition 1.33 are
arithmetical (for tclr(m), use lemma 1.11).

Lemma 1.34 Let ϕ(x0, . . . , xk) be a ∆0 statement in L(∈), (p0, . . . , pk) ∈
Hω1. Then there exists a formula ψ(x0, . . . , xk) which is ∆1

1(x0, . . . , xk) such
that for any reals r0, . . . , rk coding p0, . . . , pk (such reals do exist),

〈Hω1 ,∈〉 |= ϕ(p0, . . . , pk) ←→ ψ(r0, . . . , rk).

Proof:

• ”p0 ∈ p1” is ∆1
1(r0, r1):

– Σ1
1: ∃r r0

r∼= r1 ∧ field(r0) ⊆ dom(fr) ∧ fr(top(r0))Er1 top(r1)

– Π1
1: ∀s∀t(r0 t r1

s
↪→ t ∧ dom(fs) = field(r0 t r1) ∧ range(fs) =

field(t))→ fs(2top(r0))Etfs(3top(r1))

• ”p0 = p1” is ∆1
1(r0, r1):

– Σ1
1: ∃r r0

r∼= r1 ∧ field(r0) ⊆ dom(fr) ∧ fr(top(r0)) = top(r1)

10



– Π1
1: ∀s∀t(r0 t r1

s
↪→ t ∧ dom(fs) = field(r0 t r1) ∧ range(fs) =

field(t))→ fs(2top(r0)) = fs(3top(r1))

For bounded quantifiers, we replace variables xi ranging over tcl({pi}) by
variables yi ranging over ω and express ”x0 ∈ p0”, ”x1 ∈ p1”, ”x0 ∈ x1” and
”x0 = x1” using the above replacing top(ri) by yi and field(r0) by tclr0(y0).

By replacing atomic formulas in this way and then shifting all quanti-
fiers to the front we can convert ϕ(p0, . . . , pk) to a ∆1

1(r0, . . . , rk) statement
ψ(r0, . . . , rk) such that

〈Hω1 ,∈〉 |= ϕ(p0, . . . , pk) ←→ ψ(r0, . . . , rk). 2

Lemma 1.35 Let ϕ(x0, . . . , xk) be a statement in L(∈), (p0, . . . , pk) ∈ Hω1.
Then there exists a formula ψ(x0, . . . , xk) such that for any reals r0, . . . , rk
coding p0, . . . , pk the following hold:

1. 〈Hω1 ,∈〉 |= ϕ(p0, . . . , pk) ←→ ψ(r0, . . . , rk).

2. If ϕ(p0, . . . , pk) is Σn, ψ(r0, . . . , rk) is Σ1
n+1.

If ϕ(p0, . . . , pk) is Πn, ψ(r0, . . . , rk) is Π1
n+1.

Proof: The proof uses induction on formula complexity.
For ∆0 statements, the above has already been shown in lemma 1.34.
Assume ϕ is Σn+1 and we can already convert Πn statements. For simplic-
ity, assume ϕ(p) ≡ ∃xΘ(x, p) and Θ is Πn(x, p). We need to express

∃x ∈ Hω1 Hω1 |= Θ(x, p) (1)

By our induction hypothesis, Hω1 |= Θ(x, p) can be converted to a Π1
n+1

formula Θ̃. Let rp be a real coding p. Then (1) is equivalent to the following:

∃r (r codes an extensional, well-founded relation ∧ Θ̃(r, rp)) (2)

Furthermore ”r ⊆ ω codes a well-founded relation” is equivalent to the
statement ”@r′ ⊆ ω s.t. r′ codes an infinite descending branch through r”,
which is a Π1

1(r) property. So (2) as a whole is a Σ1
n+2 formula.

Now assume ϕ is Πn+1 and we can already convert Σn statements. By
the same argument, it follows that we can find an appropriate ψ ∈ Π1

n+2. 2

Lemma 1.36 If A ⊆ ω is Σ1
2 then it is Σ1

Hω1 with parameters in P(ω).

Proof: If A is a Σ1
2 set of reals, then for some Π1

1 relation P ,
A = {x : ∃y ⊆ ω P (x, y)}. By fact 1.12, ”x ∈ A iff ∃ countable transitive
model M 3 x adequate for P ∃y ∈ M such that M |= P (x, y)” which gives
us a Σ1

Hω1 definition of A. 2

11



The next result is an immediate consequence of the above:

Corollary 1.37 A ⊆ ω is Σ1
n+1 iff it is Σn

Hω1 . (n ≥ 1) 2

1.5 Constructibility

1.5.1 Constructibility

Throughout this section, we work in L.

Fact 1.38 ([7], pp 71) There exists a ∆1 relation <L that well-orders L s.t.

• for every ordinal α, <L ∩ (Lα)2 well-orders Lα,

• (x <L y ∧ y ∈ Lα)→ x ∈ Lα,

• (x ∈ Lα ∧ y ∈| Lα)→ x <L y. 2

Fact 1.39 ([7], pp 63) The function α 7→ Lα is ∆1. 2

Fact 1.40 ([7], II, Lemma 1.1) ∀α ≥ ω, |Lα| = |α|. 2

Fact 1.41 ([7], II, Lemma 5.5) ∀α ≥ ω, P(Lα)L ⊆ L(α+)L. 2

Lemma 1.42 If κ is a regular, uncountable L-cardinal, then HL
κ = Lκ.

Proof: Work in L: If x ∈ Lκ, then x ∈ Lα for some ordinal α < κ, hence
tcl(x) ⊆ Lα, so | tcl(x)| ≤ |Lα| = |α| < κ by fact 1.40, so x∈Hκ and thus
we have shown Lκ ⊆ Hκ. Assume Lκ 6= Hκ and fix A ∈ Hκ \ Lκ such that
A ∩ (Hκ \ Lκ) = ∅, which we can do because Hκ and Lκ are both transitive
and ∈ is well-founded on Hκ. A ⊆ Hκ ∩ Lκ = Lκ, so because κ is regular
and |A| < κ, A ⊆ Lα for some ordinal α < κ, hence by fact 1.41, A ∈ Lα+ .
As α+ ≤ κ, A ∈ Lκ, a contradiction. 2

Corollary 1.43 If κ ≥ ω, κ ∈ CardL, then HL
κ = Lκ. 2

Lemma 1.44 Let (κ ∈ Card)L and ξ < κ.
Then the following are equivalent:

1. L |= ξ ∈ Card

2. ∀α < κ (ξ ∈ Lα → Lα |= ξ ∈ Card)

Proof: Assume L |= ξ ∈| Card, i.e. L |= ∃β < ξ ∃f : β onto−−→ ξ. Let β and
f be witnesses for that statement. Fact 1.41 implies f ∈ Lκ, thus there is
α < κ s.t. ξ, f ∈ Lα yielding Lα |= ξ ∈| Card. 2

12



1.5.2 Relative Constructibility

Definition 1.45 L0[A] = ∅, Lα+1[A] = DefA(Lα[A]), where DefA(X)
denotes the set of all subsets of X which are definable (with parameters) in
the structure (X,∈, A ∩ X) with a unary predicate interpreted as A ∩ X,
Lγ [A] =

⋃
α<γ Lα[A] for limits γ, L[A] =

⋃
α∈Ord Lα[A].

Throughout this section, we work in L[A] for some A ⊆ L.

Fact 1.46 ([7], Exercise 2L)
There is a ∆1(A) relation <L[A] that well-orders L[A] such that

• for every ordinal α, <L[A] ∩ (Lα[A])2 well-orders Lα[A],

• (x <L[A] y ∧ y ∈ Lα[A])→ x ∈ Lα[A],

• (x ∈ Lα[A] ∧ y ∈| Lα[A])→ x <L[A] y. 2

Fact 1.47 ([7], Exercise 2A) ∀α ≥ ω, |Lα[A]| = |α|. 2

Fact 1.48 ([17], pp 192) There is ϕ ∈ L(∈, A), where A is a unary predi-
cate, such that for any transitive model M = (M,∈, A), M |= ϕ if and only
if for some limit ordinal α, M = Lα[A]. 2

Notation: In the following, we often write L[A] or Lα[A] to actually de-
note the models (L[A],∈, A ∩ L[A]) or (Lα[A],∈, A ∩ Lα[A]) respectively.

Lemma 1.49 If M is an elementary submodel of Lγ [A], γ a limit ordinal,
then the transitive collapse M̄ of M equals (let π denote the collapsing map)
Lβ[B] with B = π′′(A ∩M) for some limit ordinal β.

Proof: Let ϕ be such that the property in fact 1.48 holds. Then Lγ [A] |= ϕ,
hence M |= ϕ, i.e. M̄ = Lβ[B] with B = π′′(A ∩M). 2

Lemma 1.50 If M is a countable elementary submodel of Lγ [A], γ ≥ ω1

a limit ordinal, then ω1 ∩M = α for some α < ω1.

Proof: Let β < ω1, β ∈ M . Let f be the <L-least mapping f : ω onto−−→ β.
By elementarity, f ∈M . Since ω ⊂M , f ′′(ω) = β ⊂M . 2

Corollary 1.51
If M is a countable elementary submodel of Lω1 [A], then M is transitive. 2

Lemma 1.52 If M is a countable elementary submodel of Lγ [A], γ ≥ ω1 a
limit ordinal, A ⊆ ω1, then the transitive collapse M̄ of M equals Lβ[A∩ α]
for some α, β < ω1, in fact α = ωM̄

1 (if γ > ω1) and β = Ord(M̄).
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Proof: By lemma 1.49, M̄ = Lβ[π′′(A ∩M)]. By lemma 1.50, A ∩M =
(A ∩ ω1) ∩ M = A ∩ (M ∩ ω1) = A ∩ α for some α < ω1. Since M̄ is
transitive, assuming γ > ω1, α = ωM̄

1 . 2

Lemma 1.53 For A ⊆ ω1, L[A] |= GCH.

Proof: If x ⊆ ω, x ∈ L[A], then x is an element of some countable, el-
ementary submodel M of Lω1 [A] and of the transitive collapse M̄ of M.
By lemma 1.49, M̄ = Lβ[A ∩ α] with α, β < ω1. It follows that 2ℵ0 ≤
|⋃α,β<ω1

Lβ[A ∩ α]| = ℵ1, hence 2ℵ0 = ℵ1.
If x ⊆ ωγ , γ ≥ 1, x ∈ L[A], then x is an element of some elementary

submodel M of Lωγ
+ [A] of size ℵγ with ωγ ⊆M . It follows that x is also an

element of the transitive collapse M̄ of M. Like above, it now follows that
2ℵγ = ℵγ

+. 2

1.6 Absoluteness

Definition 1.54 Suppose P is a definable class of posets in V. Then
Σn(Hω1) absoluteness for P-forcing is the statement that Hω1

V≺Σn Hω1
VP

for any P ∈ P. We abbreviate this as Abs(Σn(Hω1),P).
Analogous definitions apply to larger cardinals.

Definition 1.55 Σ1
n absoluteness for P-forcing means that for any real r ∈

V and any ϕ ∈ Σ1
n(r), V |= ϕ(r)↔VP |= ϕ(r) for any P ∈ P.

Σ1
n absoluteness for P-forcing is the same without parameter.

By lemma 1.31, lemma 1.35 and corollary 1.37 the following is immediate:

Corollary 1.56 Σ1
n+1 absoluteness for P-forcing←→ Abs(Σn(Hω1),P). 2

Fact 1.57 (Lévy-Shoenfield Absoluteness Theorem) ([16], Thr. 36)
Let a ⊆ ω, ϕ ∈ Σ1(a) and θ = ω

L[a]
1 . Then

ϕ(a)→ Lθ[a] |= ϕ(a). 2

Applying lemma 1.36 and upwards absoluteness of Σ1 statements yields
the following:

Corollary 1.58 If ϕ ∈ Σ1
2(a) then

ϕ(a)↔M |= ϕ(a)

for every transitive M ⊇ Lθ[a] with θ = ω
L[a]
1 . 2

Corollary 1.58 can be weakened to the following (for a brief review of
class forcing, see section 2.1.6):
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Corollary 1.59

• Σ1
2 absoluteness for set/class forcing holds.

• Abs(Σ1(Hω1), set/class forcing) holds. 2

Lemma 1.60 For any poset P , the following holds:

Abs(Σ1(Hκ), P )↔ for any ϕ ∈ Σ1(Hκ), (ϕ↔ °P ϕ)

Proof: Let ϕ ∈ Σ1(Hκ). First assume that ϕ↔ °P ϕ and °P Hκ |= ϕ.
Then, because of upward absoluteness, °P ϕ and hence, by our assumption,
ϕ holds. By lemma 1.64 below, it follows that Hκ |= ϕ.

The second direction of the proof works almost the same. 2

1.7 Large Cardinals

1.7.1 Inaccessible Cardinals

Definition 1.61 κ ∈ Card is weakly inaccessible if κ is a regular limit
cardinal, (strongly) inaccessible if κ is regular and ∀λ < κ 2λ < κ, i.e. κ is
a regular strong limit cardinal.

Definition 1.62 ω1 is inaccessible to reals if for every x ⊆ ω, ω1 is inac-
cessible in L[x].

Lemma 1.63 ω1 is inaccessible to reals iff for every x ⊆ ω, ωL[x]
1 < ω1.

Proof: First assume ω1 is inaccessible to reals and let x ⊆ ω. Then ω1 is
inaccessible in L[x], hence ω1 > ω

L[x]
1 .

For the other direction, assume that for some y ⊆ ω, ω1 is not inaccessible
in L[y], i.e. ∃λ < ω1, λ ∈ CardL[y] ∧ (2λ)L[y] ≥ ω1. Since λ < ω1, there
exists f : ω onto−−→ λ, since f ∈ Hω1 , we can code f by a real r. But then
L[y][r] |= λ < ω

L[y][r]
1 , hence ωL[y][r]

1 = (λ+)L[y][r] ≥ (λ+)L[y] = (2λ)L[y] ≥ ω1.
Since L[y][r] = L[c] for some c ⊆ ω, this proves the lemma. 2

1.7.2 Reflecting cardinals

Lemma 1.64 ∀κ ≥ ω1 Hκ≺Σ1 V.

Proof: Let ϕ ∈ Σ1(Hκ). If Hκ |= ϕ then by upwards absoluteness of Σ1

statements, V |= ϕ. Conversely, let V |= ϕ. Then by a Löwenheim-Skolem
argument, there exists a well-founded, extensional model of ϕ containing
tcl(p) for each parameter p occuring in ϕ, of size < κ. Let M be the
transitive collapse of that model, then M |= ϕ. Because M ⊆ Hκ and ϕ is
upwards absolute, Hκ |= ϕ. 2
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Corollary 1.65 ∀κ ≥ ω1 ∀ϕ ∈ Σ2(Hκ) (Hκ |= ϕ→ V |= ϕ).

Proof: Assume ϕ ∈ Σ2(Hκ), ϕ ≡ ∃x∀yψ(x, y, p), ψ is ∆0(x, y, p) and Hκ |=
ϕ. Fix a witness x ∈ Hκ for ϕ. Then Hκ |= ∀yψ(x, y, p). By lemma 1.64,
V |= ∀yψ(x, y, p), hence V |= ϕ. 2

So we have just shown that, for any κ ≥ ω1, Σ1(Hκ) statements are
absolute between Hκ and V and Σ2(Hκ) statements are upwards absolute
between Hκ and V. We can also obtain a singular cardinal κ such that
Σ2(Hκ) statements are absolute between Hκ and V:

Lemma 1.66 ∃κ Hκ≺Σ2 V.

Proof: Assume ϕ ≡ ∃x∀yψ(x, y) where ψ is ∆0(x, y) and V |= ϕ. Then
there exists a cardinal λϕ such that ∃x ∈ Hλϕ∀y ψ(x, y). Let λ0 :=⋃

ϕ∈Σ2(∅) λϕ. Then for each ϕ ∈ Σ2(∅), by downwards absoluteness of Π1

formulas, Hλ0 |= ϕ ↔ V |= ϕ.

Now, similar to above, for each ϕ ∈ Σ2(Hλ0), ϕ ≡ ∃x∀yψ(x, y, p) with p ∈
Hλ0 and V |= ϕ, we can find a cardinal λϕ such that ∃x ∈ Hλϕ∀y ψ(x, y, p).
Let λ1 :=

⋃
ϕ∈Σ2(Hλ0

) λϕ. Then for each ϕ ∈ Σ2(Hλ0), Hλ1 |= ϕ ↔ V |= ϕ.

Going on like this, we get an ω-chain of cardinals 〈λ0, λ1, . . .〉 such that

∀i<ω ∀ϕ ∈ Σ2(Hλi−1) (Hλi |= ϕ ↔ V |= ϕ). (let λ−1 := ∅)

Let λ :=
⋃

i<ω λi. Then Hλ≺Σ2 V:

Let ϕ ∈ Σ2(Hλ), ϕ ≡ ∃x∀yψ(x, y, p) with p ∈ Hλ and ψ ∈ ∆0(x, y, p).
Assume V |= ϕ. ∃i < ω p ∈ Hλi−1 , so, by our above construction, ∃x ∈
Hλi V |= ∀yψ(x, y, p). So, by downwards absoluteness of Π1 statements,
Hλ |= ∃x∀yψ(x, y, p) i.e. Hλ |= ϕ. 2

Definition 1.67 A regular cardinal κ is reflecting if for every a ∈ Hκ and
every first order formula ϕ(x), if for some (regular) cardinal λ, Hλ |= ϕ(a),
then there exists a cardinal δ < κ such that Hδ |= ϕ(a).

Observation: The above definition remains equivalent whether regular
is inserted (where it is indicated in brackets) or not. This follows from the
proof of theorem 1.69 below - there we show that, using the seemingly weaker
definition of a reflecting cardinal (with regular inserted), if κ is reflecting,
then Hκ≺Σ2 V and, using the seemingly stronger definition of a reflecting
cardinal (leaving out that particular regularity assumption), if Hκ≺Σ2 V,
then κ is reflecting.
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Lemma 1.68 κ reflecting → κ inaccessible.

Proof: Let x ∈ Hκ. Then for some (regular) cardinal λ, Hλ |= ∃y y =
|P(x)|. Because κ is reflecting, there exists a cardinal δ < κ such that
Hδ |= ∃y y = |P(x)| and because P(x)Hδ = P(x), ∃y ∈ Hκ y = |P(x)| and
hence ∀α<κ 2α<κ. 2

Theorem 1.69 Let κ be a regular cardinal. Then

κ is reflecting ←→ Vκ≺Σ2 V.

Proof: First assume κ is reflecting. Then by lemma 1.68, κ is inaccessible.
This implies that Hκ = Vκ and thus by lemma 1.65, Σ2 statements are
upwards absolute between Vκ and V. Now if V |= ϕ with ϕ ∈ Σ2(Hκ), then
we can find a regular cardinal λ such that Hλ |= ϕ. Because κ is reflecting,
there is δ < κ such that Hδ |= ϕ, hence Hκ |= ϕ.

Now suppose Vκ≺Σ2 V and κ regular. Again, κ must be inaccessible, as
”∃y ∃α ∈Ord∃f : α onto−−→ y ∧ y = P(x)” is a Σ2(x) statement, hence for
each x ∈ Vκ, |P(x)| ∈ Vκ. Again, Hκ = Vκ follows. Secondly suppose that
for some cardinal λ, Hλ |= ϕ with ϕ having parameters in Hκ.

y = Hδ ←→ ∀x(| tcl(x)|<δ↔x ∈ y).

Because | tcl(x)|<δ is a ∆1(x, δ) statement, y = Hδ is a Π1(y, δ) statement
and hence, by lemma 1.64, Hδ is absolute between Hκ and V (for δ < κ).
∃δ Hδ |= ϕ is a Σ2 statement, so because Hκ = Vκ≺Σ2 V, it follows that
Hκ |= (∃δ Hδ |= ϕ) and also ∃δ < κ Hκ |= (Hδ |= ϕ), so we can finally
conclude ∃δ < κ Hδ |= ϕ, yielding κ to be a reflecting cardinal. 2

Corollary 1.70 If Hκ≺Σ2 V (κ might be singular), then for every a ∈ Hκ

and every first order formula ϕ(x), if for some cardinal λ, Hλ |= ϕ(a), then
there exists a cardinal δ < κ such that Hδ |= ϕ(a). 2

Observation: Note that ∃δ δ regular ∧Hδ |= ϕ is a Σ2 statement as well.
Hence we can (equivalently) define reflecting cardinals as follows:

A regular cardinal κ is reflecting if for every a ∈ Hκ and every first order
formula ϕ(x), if for some regular cardinal λ, Hλ |= ϕ(a), then there exists a
regular cardinal δ < κ such that Hδ |= ϕ(a).

Lemma 1.71 Let κ be a regular cardinal. Then κ is reflecting iff for any
first order formula ϕ(x), for any a ∈ Hκ and for unboundedly many λ ≥ κ,

Hλ |= ϕ(a)→ ∃δ < κ Hδ |= ϕ(a).
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Proof: First note that if λ′ < λ, since (Hλ′)Hλ = Hλ′ , the following holds:

Hλ′ |= ϕ(a) ↔ Hλ |= ”Hλ′ |= ϕ(a)” (3)

Now assume that the assumptions from our lemma hold, we will show that κ
is reflecting: Let ϕ(x) be any first order formula and let a ∈ Hκ. Let λ′ ≥ κ
such that Hλ′ |= ϕ(a) and let λ ≥ λ′ such that the above implication holds
for λ (i.e. formulas with parameters in Hκ which hold in Hλ are reflected
to some Hδ with δ < κ).

By (3), Hλ |= ”Hλ′ |= ϕ(a)”, so Hλ |= ∃χ ”Hχ |= ϕ(a)”. This sentence is
reflected to some δ < κ by assumption, i.e. ∃δ < κ Hδ |= ”∃χ Hχ |= ϕ(a)”,
henceforth ∃δ<κ∃χ<δ Hδ |= ”Hχ |= ϕ(a)”; again by (3), we conclude that
∃χ < κ Hχ |= ϕ(a) which shows that κ is a reflecting cardinal. 2

1.7.3 Mahlo Cardinals

Definition 1.72 An inaccessible cardinal κ is called a Mahlo cardinal if the
set of all regular cardinals below κ is stationary.

Lemma 1.73 If κ is inaccessible, then the set of all strong limit cardinals
below κ is closed unbounded. Therefore, if κ is Mahlo, then the set of all
inaccessibles below κ is stationary and κ is the κ-th inaccessible cardinal.

Proof: Let α < κ. By iterating the power set operation, we can obtain a
strong limit cardinal above α. Since κ is inaccessible, it will be below κ,
yielding unboundedness. Closedness is obvious. 2

Lemma 1.74 If both a reflecting and a Mahlo cardinal exist, then the least
Mahlo is strictly below the least reflecting, which is not Mahlo itself. The
existence of a Mahlo cardinal implies the consistency of a stationary class
of reflecting cardinals.

Proof: Let θ be the least Mahlo and κ the least reflecting cardinal. If
θ > κ, Hθ+ |= ∃λ Mahlo; this is reflected by some Hη, η < κ. As being
Mahlo is absolute between Hη and V, there is a Mahlo cardinal below κ, a
contradiction.

Now assume that κ, the least reflecting cardinal, is Mahlo. For any
ξ < κ, let f(ξ) be least such that for all p ∈ Hξ+ and all formulas ϕ(x), if
there is a regular δ such that Hδ |= ϕ(p), then there is such δ below f(ξ).
Since κ is reflecting and regular, f maps κ into κ. Since κ is Mahlo, there
must be a regular closure point of f below κ. Any such closure point is a
reflecting cardinal below κ, a contradiction.

If θ is any Mahlo cardinal, since Hθ is a model of ZFC, we can construct
f inHθ similar to above - for any ξ, let f(ξ) be least such that for all p ∈ Hξ+

and all formulas ϕ(x), if there is a regular δ such that Hδ |= ϕ(p), then there
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is such δ below f(ξ). The set of closure points of f is a club in θ, hence,
since θ is Mahlo, there is a stationary set of regular closure points of f below
θ, each of those is a reflecting cardinal in Hθ. 2

Corollary 1.75 If θ is Mahlo in L, then Lθ |= ∃κ reflecting. 2

1.7.4 0]

0] is a set of natural numbers defined as

0] = {]ϕ : Lℵω |= ϕ(ℵ1, . . . ,ℵn)}.

Fact 1.76 (Silver) ([17], pp 311) 0] exists if and only if

1. If κ and λ are uncountable cardinals and κ < λ, then (Lκ,∈)≺ (Lλ,∈).

2. There is a unique class-sized club of ordinals I containing all uncount-
able cardinals such that for every uncountable cardinal κ:

(a) |I ∩ κ| = κ,

(b) I ∩ κ is a set of indiscernibles for (Lκ,∈) and

(c) every a ∈ Lκ is definable in (Lκ,∈) from I ∩ κ.

The elements of I are called Silver Indiscernibles.
Applying the reflection principle in L yields the following:

Corollary 1.77 If 0] exists, then for every uncountable cardinal κ,

(Lκ,∈)≺ (L,∈). 2

This obviously implies the following:

Corollary 1.78 If 0] exists, then V 6= L. 2

Fact 1.79 [Jensen’s Covering Theorem] ([17], Theorem 18.30)
If 0] does not exist, then for every uncountable set X ⊂ Ord, there exists
Y ∈ L such that Y ⊇ X and |Y | = |X|. 2

Lemma 1.80 If 0] does not exist, then for every λ ≥ ℵ2, if λ is a regular
cardinal in L, then cf λ = |λ|. Consequently, every singular cardinal is a
singular cardinal in L.

Proof: Let λ be a limit ordinal such that λ ≥ ℵ2 and λ is a regular cardinal
in L. Let X be an unbounded subset of λ such that |X| = cf λ. By the
Covering Theorem, there exists a constructible Y such that X ⊆ Y ⊆ λ and
|Y | = |X| ∗ ℵ1. Since Y is unbounded in λ and λ is a regular L-cardinal,
|Y | = |λ|. Hence |λ| = cf λ ∗ ℵ1; since λ ≥ ℵ2, this yields |λ| = cf λ. 2
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Lemma 1.81
If 0] does not exist, then, for every singular cardinal κ, (κ+)L = κ+.

Proof: Let κ be a singular cardinal and let λ := (κ+)L. We want to show
that λ = κ+: If not, |λ| = κ and since κ is singular, cf λ < κ. However, this
means cf λ < |λ|, contradicting the above lemma. 2

Lemma 1.82 If 0] does not exist, then the Singular Cardinal Hypothesis
holds.

Proof: Let κ be such that 2cf κ < κ and let A := [κ]cf κ. We show that
|A| ≤ κ+, which is sufficient. By the Covering Theorem (fact 1.79), for
every x ∈ A, there exists a constructible y ⊆ κ such that x ⊆ y and |y| = λ
with λ = ℵ1 · cf κ, thus A ⊆ ⋃{[y]cf κ : y ∈ C} with C := {y ⊆ κ : |y| =
λ ∧ y ∈ L}. If y ∈ C, then |[y]cf κ| = λcf κ = (ℵ1 · cf κ)cf κ = 2cf κ < κ. Since
|C| ≤ |PL(κ)| = |(κ+)L| ≤ κ+, it follows that |A| ≤ κ+. 2

1.7.5 R]

For R ⊆ ω, R] is a set of natural numbers defined as

R] = {]ϕ : (Lℵω [R],∈, R) |= ϕ(ℵ1, . . . ,ℵn)}.

All results from the previous section can be relativized, working over
L[R] instead of L, to obtain results analogous to above for R] instead of 0].
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2 Introduction: Forcing

2.1 Definitions and Facts

2.1.1 Properties of forcings

Definition 2.1 A partial order P is κ-closed if for every λ < κ, every
descending sequence 〈pα : α < λ〉 has a lower bound. P is σ-closed if it is
ω1-closed.

Definition 2.2 A partial order P is κ-distributive if the intersection of < κ
open dense sets of P is open dense.

Fact 2.3 ([17], Lemma 15.8) If P is κ-closed, then P is κ-distributive. 2

Fact 2.4 ([17], Theorem 15.6) Let κ be an infinite cardinal, assume that P
is κ-distributive and let G be generic for P over V. Then if f ∈ V[G] is a
function from λ into V and λ < κ, then f ∈ V. In particular, such λ has
no new subsets in V[G]. 2

Definition 2.5 A partial order P satisfies the κ-chain-condition or is κ-
cc if every antichain in P is of size < κ. P satisfies the countable chain
condition or is ccc if it is ω1-cc.

Fact 2.6 ([17], Theorem 7.15) If P is κ-cc and κ singular, then ∃λ < κ P
is λ-cc, i.e. the least λ s.t. P satisfies the λ-cc is a regular cardinal. 2

Definition 2.7 A partial ordering P has property (K) if every uncountable
subset of P contains an uncountable pairwise compatible set.

Remark: Obviously, P has property (K)→ P ccc.

Definition 2.8 A partial order P is κ-centered if there is f : P → κ such
that ∀ξ < κ∀W ∈ [f−1(ξ)]<κ ∃ γ∀δ ∈W γ ≤ δ.

Definition 2.9 A partial order P is κ-linked if there is f : P → κ such that
f(p) = f(q)→ p ‖ q.

Remark: Obviously, P κ-centered → P κ-linked → P κ+-cc.

Definition 2.10 A partial order P is proper if for every uncountable car-
dinal λ, every stationary subset of [λ]ω remains stationary in the generic
extension.

Fact 2.11 ([17], Lemma 31.3) P σ-closed → P proper. 2

Fact 2.12 ([17], Lemma 31.2) P ccc→ P proper. 2
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Definition 2.13 Let P ∈ Hλ be a p.o., λ>ω and M≺ (Hλ,∈) s.t. P ∈M .
q∈P is (M,P )-generic if for every I∈M which is predense (or equivalently,
for every maximal antichain I∈M), I ∩M is predense below q.

Fact 2.14 ([21], III, Lemma 2.6; [17], Lemma 31.6) Let λ be a regular
uncountable cardinal such that P(P ) ∈ Hλ and let M ≺(Hλ,∈) such that
P ∈M . Then the following are equivalent:

1. q is (M,P )-generic,

2. If τ̇ is a name for an ordinal and τ̇ ∈M , then q ° τ̇ ∈M ,

3. For every P -name τ̇ ∈M , if ° τ̇ ∈ V, then q ° τ̇ ∈M ,

4. q ° Ġ ∩M is a filter on P generic over M ,

where Ġ = {(p̌, p) : p ∈ P} is the standard name for the generic filter. 2

Fact 2.15 ([6], Lemma 2.5) The following are equivalent:

1. P is proper.

2. There is a regular cardinal λ such that P ∈ Hλ and there is a club C
of countable elementary submodels M≺ (Hλ,∈) containing P s.t.

∀p ∈M ∃ q ≤ p (q is (M,P )-generic).

3. For all regular cardinals λ such that P ∈ Hλ, there is a club C of
countable elementary submodels M≺ (Hλ,∈) containing P s.t.

∀p ∈M ∃ q ≤ p (q is (M,P )-generic). 2

Definition 2.16 Let P ∈ Hλ be a p.o., λ>ω and M≺ (Hλ,∈) s.t. P ∈M .
q ∈ P is (M,P )-semigeneric if for every name α̇ ∈ M s.t. ° ”α̇ is a
countable ordinal”, q ° α̇ ∈M .

By fact 2.14, 2, the following is immediate:

Corollary 2.17 q (M,P )-generic→ q (M,P )-semigeneric. 2

Definition 2.18 P is semiproper if for all λ > 2|P | such that P ∈ Hλ,
there is a club C of countable elementary submodels M≺ (Hλ,∈) such that
P ∈M and ∀p ∈M ∃ q ≤ p q (M,P )-semigeneric.

By fact 2.15 and corollary 2.17, the following is immediate:

Corollary 2.19 P proper→ P semiproper. 2

Fact 2.20 ([17], Theorem 34.4)
P semiproper→ P preserves stationary subsets of ω1. 2
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2.1.2 Embeddings

Definition 2.21 Let P and Q be partial orders and i : P → Q. i is a
complete embedding iff the following hold:

1. ∀p, p′ ∈ P (p′ ≤ p→ i(p′) ≤ i(p))
2. ∀p1, p2 ∈ P (p1⊥p2↔ i(p1)⊥i(p2))

3. ∀q ∈ Q∃p ∈ P ∀p′ ∈ P (p′ ≤ p→ i(p′) ‖ q)
In 3, we call p a reduction of q to P .

Fact 2.22 ([19], VII, Theorem 7.5) Suppose i, P and Q are in V, i : P → Q
and i is a complete embedding. Let H be Q-generic over V. Then i−1(H)
is P -generic over V and V[i−1(H)] ⊆ V[H]. 2

Definition 2.23 Let P and Q be partial orders and i : P → Q. i is a dense
embedding iff it is a complete embedding and i′′(P ) is dense in Q.

Definition 2.24 If P is a separative partial order, we let B(P ) denote the
unique (up to isomorphism) complete boolean algebra containing P as a
dense subset.

Definition 2.25 Let P and Q be partial orders. P ∼ Q iff B(P ) ∼= B(Q).

2.1.3 Product Forcing

Definition 2.26 (Product of Forcings) Let P and Q be two notions of
forcing. The product P×Q is the coordinatewise partially ordered set product
of P and Q:

(p1, q1) ≤ (p2, q2) iff p1 ≤ p2 ∧ q1 ≤ q2.
If G is a generic filter on P ×Q, let

G1 := {p ∈ P : ∃q (p, q) ∈ G}, G2 := {q ∈ Q : ∃p (p, q) ∈ G}.

Fact 2.27 ([17], Lemma 15.9) Let P and Q be two notions of forcing in V.
Then the following are equivalent:

1. G ⊆ P ×Q is generic over V.

2. G = G1 × G2 ∧ G1 ⊆ P is generic over V ∧ G2 ⊆ Q is generic over
V[G1].

Moreover, V[G] = V[G1][G2] and if G1 ⊆ P is generic over V and G2 ⊆ Q
is generic over V[G1], then G1 ⊆ P is generic over V[G2] and V[G1][G2] =
V[G2][G1]. 2
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2.1.4 Iterated Forcing

The basic observation is that a two-step iteration can be represented by a
single forcing extension. Let P be a notion of forcing in V and let Q̇ ∈ VP

be a P -name for a p.o. in the generic extension.

Definition 2.28 (Composition of Forcings)

(i) P ∗ Q̇ := {(p, q̇) : p ∈ P∧ °P q̇ ∈ Q̇}
(ii) (p1, q̇1) ≤ (p2, q̇2) iff p1 ≤ p2 ∧ p1 ° q̇1 ≤ q̇2

In (i), we identify (p, q̇0) and (p, q̇1) iff p ° q̇0 = q̇1.

Fact 2.29 ([17], Theorem 16.2)

(i) Let G be a V-generic filter on P , let Q = Q̇G and let H be a V[G]-
generic filter on Q. Then G ∗H := {(p, q̇) ∈ P ∗ Q̇ : p ∈ G ∧ q̇G ∈ H}
is a V-generic filter on P ∗ Q̇ and V[G ∗H] = V[G][H].

(ii) Let K be a V-generic filter on P ∗ Q̇. Then G := {p ∈ P : ∃q̇ (p, q̇) ∈
K} and H := {q̇G : ∃p (p, q̇) ∈ K} are respectively a V-generic filter
on P and a V[G]- generic filter on Q := Q̇G and K = G ∗H. 2

Definition 2.30 (Finite Support Iteration) Let α ≥ 1. A forcing no-
tion Pα is an iteration of length α with finite support if it is a set of α-
sequences with the following properties:

1. If α = 1, then for some forcing notion Q0,

• P1 is the set of all 1-sequences 〈p(0)〉 where p(0) ∈ Q0,

• 〈p(0)〉 ≤1 〈q(0)〉 ↔ p(0) ≤Q0 q(0).

2. If α = β + 1, then Pβ = Pα¹β = {p¹β : p ∈ Pα} is an iteration of
length β and there is some forcing notion Q̇β ∈ VPβ s.t.

• p ∈ Pα ↔ p¹β ∈ Pβ ∧ °β p(β) ∈ Q̇β,

• p ≤α q ↔ p¹β ≤β q¹β ∧ p¹β °β p(β) ≤Q̇β
q(β).

3. If α is a limit ordinal, then for every β < α, Pβ = Pα¹β is an iteration
of length β and

• p ∈ Pα ↔ ∀β < α p¹β ∈ Pβ and for all but finitely many β < α,
°β p(β) = 1,

• p ≤α q ↔ ∀β < α p¹β ≤β q¹β.

where ≤α abbreviates ≤Pα and °α abbreviates °Pα.
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The finite set {β < α : ¬ °β p(β) = 1} is the so-called support of p ∈
Pα. An iteration with finite support of length α is uniquely determined by
the sequence 〈Q̇β : β < α〉. Thus we call Pα the finite support iteration of
〈Q̇β : β < α〉. For each β < α, Pβ+1 is isomorphic to Pβ ∗ Q̇β. When α is a
limit ordinal, (Pα,≤α) is the so-called direct limit of the Pβ, β < α.

Definition 2.31 (General Iteration) Let α ≥ 1. A forcing notion Pα

is an iteration of length α if it is a set of α-sequences with the following
properties:

1. If α = 1, then for some forcing notion Q0,

• P1 is the set of all 1-sequences 〈p(0)〉 where p(0) ∈ Q0,

• 〈p(0)〉 ≤1 〈q(0)〉 ↔ p(0) ≤Q0 q(0).

2. If α = β + 1, then Pβ = Pα¹β = {p¹β : p ∈ Pα} is an iteration of
length β and there is some forcing notion Q̇β ∈ VPβ s.t.

• p ∈ Pα ↔ p¹β ∈ Pβ ∧ °β p(β) ∈ Q̇β,

• p ≤α q ↔ p¹β ≤β q¹β ∧ p¹β °β p(β) ≤Q̇β
q(β).

3. If α is a limit ordinal, then for every β < α, Pβ = Pα¹β is an iteration
of length β and

• the α-sequence 〈1, . . . ,1, . . .〉 is in Pα,

• If p ∈ Pα, β < α and q ∈ Pβ s.t. q ≤β p¹β, then r ∈ Pα where
∀ξ < β r(ξ) = q(ξ) and β ≤ ξ < α→ r(ξ) = p(ξ),

• p ≤α q ↔ ∀β < α p¹β ≤β q¹β.

Clearly, an iteration with finite support is an iteration.
Property 3 guarantees that if Pβ = Pα¹β, then VPβ ⊆ VPα, i.e. whenever
G is a generic filter on Pα, then there is some H ∈ V[G] that is a generic
filter on Pβ:

Lemma 2.32 Let h : Q→ P be such that

• q1 ≤ q2 → h(q1) ≤ h(q2),
• ∀q ∈ Q∀p ≤ h(q) ∃q′ ≤ q h(q′) ≤ p.

Then VP ⊆ VQ.

Proof: We show that if D ⊆ P is open dense, then h−1(D) is dense in Q,
hence if G is generic on Q, then {p ∈ P : ∃q ∈ Q p ≥ h(q)} is generic on P :

Let q ∈ Q and choose p ≤ h(q), p ∈ D. By our assumption, there is
q′ ∈ h−1(Pp) ⊆ h−1(D) s.t. q′ ≤ q, hence h−1(D) is dense in Q. 2
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Lemma 2.33 If Pα is an iteration and Pβ = Pα¹β, then VPβ ⊆ VPα.

Proof: Let h : VPβ → VPα , p 7→ p¹β. We will show that h satisfies the
conditions from lemma 2.32, hence VPβ ⊆ VPα :

• q1 ≤ q2 → h(q1) ≤ h(q2) obviously holds.

• ∀q ∈ Q∀p ≤ h(q) ∃q′ ∈ Q q′ ‖ q ∧ h(q′) ≤ p:
Let q ∈ Pα and p ≤ q¹β. By property 3 of definition 2.31, let r ∈ Pα s.t.
(ξ < β → r(ξ) = p(ξ)) ∧ (β ≤ ξ < α → r(ξ) = q(ξ)). Then r ‖ q, because
r ≤ q and h(r) = p. So, let q′ = r in the above condition. 2

A general iteration depends not only on the Q̇β, but also on the limit
stages of the iteration. Let Pα be an iteration of length α where α is a limit
ordinal.

• Pα is a direct limit if for every α-sequence p,

p ∈ Pα ↔ ∃β < α p¹β ∈ Pβ ∧ ∀ξ ≥ β °ξ p(ξ) = 1.

• Pα is an inverse limit if for every α-sequence p,

p ∈ Pα ↔ ∀β < α p¹β ∈ Pβ.

Finite support iterations are exactly those that use only direct limits. In
general, let s(p), the support of p ∈ Pα, be {β < α : ¬ °β p(β) = 1}. If I is
an ideal on α containing all finite sets, then an iteration with I-support is
an iteration that satisfies for every limit ordinal γ ≤ α:

p ∈ Pγ ↔ ∀β < γ p¹β ∈ Pβ ∧ s(p) ∈ I.

Definition 2.34 [Countable Support Iteration] A countable support
iteration is an iteration with I-support s.t. I is the ideal of at most countable
sets. If Pα is a countable support iteration of length α, then for every limit
ordinal γ ≤ α, if cf γ = ω, then Pγ is an inverse limit, if cf γ > ω, then Pγ

is a direct limit.

Fact 2.35 (Shelah) ([17], Theorem 31.15) If Pα is a countable support
iteration of {Q̇β : β < α} such that every Q̇β is a proper forcing notion in
VPα¹β, then Pα is proper. 2

Fact 2.36 ([17], Theorem 16.30) Let κ be a regular uncountable cardinal
and let α be a limit ordinal. Let Pα be an iteration of length α s.t. ∀β <
α Pβ = Pα¹β is κ-cc. If Pα is a direct limit and either cf(α) 6= κ or cf(α) = κ
and for a stationary set of β < α, Pβ is a direct limit, then Pα is κ-cc. 2
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Definition 2.37 [Revised Countable Support Iteration] Let α ≥ 1. A forc-
ing notion Pα is a RCS (revised countable support) iteration of {Q̇β : β < α},
if for every limit ordinal η ≤ α, Pη is an iteration consisting of all η-
sequences p that satisfy:

(∀q≤p ∃γ<η ∃r≤γ q¹γ) (r °γ cf η = ω ∨ ∀β≥γ p¹[γ, β) °Pγ,β
p(β) = 1)

where q ranges over elements of the inverse limit of the Q̇β and Pγ,β is the
restriction of the inverse limit to the interval [γ, β).

Fact 2.38 (Shelah) ([17], Theorem 37.4) If Pα is an RCS iteration of
{Q̇α : β<α} s.t. every Q̇α is a semiproper forcing notion in VPα¹β, then Pα

is semiproper. 2

Definition 2.39 (Quotient Forcing) Let 〈Pγ , Q̇γ : γ < α〉 be an iteration
and assume Gβ is generic for Pβ over V. We define Pα/Gβ to be a Pβ-name
for a forcing notion s.t.

°β Pα/Gβ = {p ∈ P̌α : p¹β ∈ Ǧβ}.

For p, q ∈ Pα/Gβ, we let p ≤Pα/Gβ
q iff p ≤α q.

Fact 2.40 ([13], Fact 4.5) The map i : Pα → Pβ∗(Pα/Gβ) defined by i(p) =
〈p¹β, p̌〉 is a dense embedding. Hence, forcing with Pα amounts to the same
as first forcing with Pβ and then with the quotient forcing Pα/Gβ. 2

Fact 2.41 ([13], Theorem 4.6) Let 〈Pγ , Q̇γ : γ <α〉 be a countable support
iteration of proper forcings and let γ + β = α. Then there exists a Pγ-name
〈P̄χ,

¯̇Qχ : χ < β〉 of a countable support iteration of proper forcings of length
β such that °γ ∀χ < β P̄χ ∼ Pχ/Gγ. In particular, °γ Pα/Gγ is proper. 2

2.1.5 Forcing and sets of hereditarily bounded size

Lemma 2.42 If P ∈ Hχ, χ regular and °P ẋ ∈ Hχ, then there exists
˙̃x ∈ Hχ such that °P ẋ = ˙̃x.

Proof: By induction on rank(ẋ): The above is true for rank(ẋ) = 0, so
assume rank(ẋ) = r and the claim holds for all ẏ with rank(ẏ) < r. Assume
°P ẋ ∈ Hχ, ẋ = {(ẏi, pi) : i ∈ I}. ∀i ∈ I rank(ẏi) < r, hence we can replace
ẏi by żi ∈ Hχ in ẋ s.t. °P ẏi = żi to obtain ˙̄x s.t. °P ˙̄x = ẋ.

For each p ∈ P , let Ap := {ẏ : (ẏ, p) ∈ ˙̄x}. Fix p ∈ P . For each
ẏ ∈ Ap, p ° ẏ ∈ ˙̄x. As °P ˙̄x ∈ Hχ, there exists Bp ⊆ Ap of size < χ s.t.
∀ẏ ∈ Ap ∃ż ∈ Bp p ° ẏ = ż. So, for each p ∈ P , we can replace Ap × {p} by
Bp × {p} in ˙̄x (as subsets) to obtain a name ˙̃x s.t. °P

˙̃x = ˙̄x and | ˙̃x| < χ
(here we use |P | < χ and χ regular). Hence ˙̃x ∈ Hχ and °P

˙̃x = x. 2
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Lemma 2.43 If P, ẋ ∈ Hχ, then °P ẋ ∈ Hχ.

Proof: By induction on rank(ẋ): The above is true for rank(ẋ) = 0, so
assume rank(ẋ) = r and the claim holds for all ẏ s.t. rank(ẏ) < r. Assume
ẋ ∈ Hχ, ẋ = {(ẏi, pi) : i ∈ I}. ∀i ∈ I ẏi ∈ Hχ follows, hence, by induction
hypothesis, °P ẏi ∈ Hχ. Because ẋ ∈ Hχ, |ẋ| < χ. As |P | < χ, χ
remains a cardinal in any P -generic extension, hence °P |ẋ| < χ, yielding
°P ẋ ∈ Hχ. 2

Corollary 2.44 If P, ẏ ∈ Hχ, χ regular and ϕ(·) is a formula, then:

°P Hχ |= ϕ(ẏ) ↔ Hχ |= °P ϕ(ẏ)

Proof: By induction on formula complexity. It is obvious for quantifier-free
formulas and if the claim holds for ψ, it is obvious (by the definition of °)
that it also holds for ϕ ≡ ¬ψ. So assume ϕ ≡ ∃x ψ and that the claim holds
for ψ:

°P Hχ |= ∃x ψ(x)
using lemma 2.42←−−−−−−−−−−and lemma 2.43−−−−−−−−−→

∃ẋ ∈ Hχ °P Hχ |= ψ(ẋ)
using←−−−our induction hypothesis−−−−−−−−−−−−−−−→

∃ẋ ∈ Hχ Hχ |= °P ψ(ẋ) ←−−→ Hχ |= ∃ẋ °P ψ(ẋ)
by←−definition of °−−−−−−−−−→

Hχ |= °P ∃xψ(x) 2

2.1.6 Class Forcing

We now give a very brief review of class forcing. For a more detailed intro-
duction on Class Forcing, see [10], ch. 2.2:

Let A ⊆ M . We say that (M,A) is a model of ZFC (ZFC∗ ⊆ ZFC) if
M is a model of ZFC (ZFC∗) and the scheme of replacement holds in M
for formulas which mention A as a predicate. We also require that (M,A)
satisfies V = L[A], i.e. V =

⋃
α∈Ord L[A ∩ Vα], we call such M a ground

model. If (M,A) is a model of ZFC it is easy to find A∗ ⊆ M such that
(M,A∗) is a ground model with the same definable predicates (for details,
see [10]).

A partial ordering P is a class forcing for M if for some ground model
(M,A), P is definable (with parameters) over (M,A). G ⊆ P is P -generic
over (M,A) iff:

• p, q ∈ G→ p ‖ q.
• p ≥ q ∈ G→ p ∈ G.

• D ⊆ P dense and (M,A)-definable (with parameters) → G ∩D 6= ∅.
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A P -generic extension over (M,A) is a model of the form (M [G], A,G) with
a P -generic G as unary predicate.

Lemma 2.45 ([10], Lemma 2.16)

• M ⊆M [G], M [G] is transitive, Ord(M [G]) = Ord(M).

• α ∈ Ord(M)→ G ∩ Vα
M [G] ∈M [G].

• If M ⊆ N , (N,G) amenable and N |= ZF , then M [G] ⊆ N and M is
definable over (N,A), in fact M = L[A]N . 2

2.2 Some notions of forcing

In this section, we will define and analyze the forcing notions that we will
use throughout this paper.

2.2.1 The Lévy Collapse

Definition 2.46 For S ⊆ Ord, γ regular, define coll(γ, S) := {p : p is a
function ∧ dom(p) ⊆ S × γ ∧ |p |<γ ∧ ∀ (ξ, ζ) ∈ dom(p) p(ξ, ζ) ∈ ξ} ordered
by p ≤ q iff p ⊇ q.

Let G be a generic set of conditions for coll(γ, S). For each ξ ∈ S and
each χ ∈ ξ, the set of conditions q where for some ζ ∈ γ, p(ξ, ζ) = χ is
dense. Thus F :=

⋃
G is a function such that for each ξ ∈ S, the function

ζ 7→ F (ξ, ζ) is a surjection from γ onto ξ. Hence °coll(γ,S) ∀ξ ∈ Š |ξ| ≤ γ̌.

coll(γ, {κ}) is called the Lévy Collapse of κ onto γ, it collapses κ to γ.
coll(γ, κ) is called the gentle Lévy Collapse of κ onto γ+, it collapses every
λ < κ to γ. If κ ≥ γ+, then in the forcing extension κ = γ+ holds.

Lemma 2.47

1. coll(γ, S) is γ-closed

2. κ<γ = κ→ coll(γ, {κ}) is κ+-cc

3. κ regular, κ > γ ∧ ∀ξ<κ ξ<γ<κ→ coll(γ, κ) is κ-cc

4. coll(γ, S) is weakly homogeneous.

Proof:

1. Because γ is regular, the union of less than γ-many functions of size
<γ has size < γ.

2. coll(γ, {κ}) ⊆ [{κ}×γ×κ]<γ ∼= κ<γ = κ, so obviously every antichain
in coll(γ, {κ}) has to have size < κ+.
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3. Assume to the contrary that A is an antichain of coll(γ, κ) of size κ.
Applying the ∆-System Lemma (1.21) to {dom(p) : p ∈ A}, which
has cardinality κ (counting multiple occurences), we can find a root
r ∈ [κ × γ]<γ and A′ ⊆ A of size κ such that for any two distinct
p, q ∈ A′, dom(p)∩ dom(q) = r. As γ < κ and κ is regular, for p ∈ A′,
there are, for some ξ < κ, at most ξ<γ < κ possibilities for p¹r. Thus
there is B ⊆ A′ such that |B| = κ and ∀p, q ∈ B p¹r = q¹r, but as the
domains of elements of B are disjoint outside of r, all elements of B
are compatible, contradicting the assumption of B being an antichain.

4. Given p, q ∈ coll(γ, S), we can find a bijection f : γ → γ such that
∀〈α, ξ〉∈dom p ∀〈β, ζ〉∈dom q f(ξ) 6= ζ, because both dom p and dom q
have cardinality < γ. This induces an automorphism e of coll(γ, S),
r 7→ e(r): (〈α, f(ξ)〉 ∈ dom e(r) iff 〈α, ξ〉 ∈ dom r) ∧ e(r)(α, f(ξ)) :=
r(α, ξ). Since dom e(p) ∩ dom q = ∅, e(p) ‖ q. 2

Lemma 2.48 Let S = R ∪ T and R ∩ T = ∅. Then i : 〈p, q〉 7→ p ∪ q is
an isomorphism from coll(λ,R) × coll(λ, T ) onto Coll(λ, S). Furthermore
coll(λ, T ) = coll(λ, T )V[G] for any G that is coll(λ,R)-generic. Moreover,
the second claim also holds if R ∩ T 6= ∅.
Proof: The isomorphism property is obvious. The second fact holds since
by λ-closedness of coll(λ,R), no new subsets of T ×λ×⋃

T of size less than
λ are added (see fact 2.4). 2

2.2.2 Adding a closed unbounded set

Theorem 2.49 [15] Let A ⊆ ω1 be stationary. Then there exists an ω1-
preserving generic extension V[G] such that V[G] |= ∃C ⊆ A C is closed
and unbounded in ω1.

Proof: Let P := {p ⊆ A : p closed}, ordered by p ≤ q iff p is an end-extension
of q. Let G be a generic filter on P . Then

⋃
G ⊆ A is club in ω1: For any

α < ω1, Dα := {p ∈ P : sup(p) > α} is dense in P , because for any q ∈ P ,
because A is stationary and thus unbounded in ω1, there is a ∈ A such that
a > sup(q) ∧ a > α, so q ∪ {a} end-extends q and q ∪ {a} ∈ Dα. So for any
α < ω1, there is p ∈ G such that ∃β ∈ p β > α and hence ∃β ∈ ⋃

G β > α,
yielding

⋃
G to be unbounded in ω1. To see that

⋃
G is closed, suppose α

is a limit point of
⋃
G. Then ∃ q ∈G sup(q)>α. Because the elements of

G are end-extending each other, α ∩ ⋃
G ⊆ q. Because q is closed, α ∈ q,

hence α ∈ ⋃
G.

It remains to show that ωV[G]
1 = ωV

1 , we will show that for any f : ω → V
with f ∈ V[G], actually f ∈ V. Thus ω1 is not collapsed by forcing with P .

Claim: For any f : ω → V, f ∈ V[G] and p ∈ P s.t. p ° ”ḟ : ω → y ” and
y ⊂ V, the following holds: ∃q ≤ p∀n ∈ ω ∃x q ° ḟ(n) = x.
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Corollary: For any f and p as in the above claim, let q ∈ P be such that
the above condition holds. Let g ∈ V be defined as g(n) = x↔ q ° ḟ(n) = x.
Then ∀n ∈ ω g(n) = f(n), hence g = f and f ∈ V, proving our theorem
above.

Proof of Claim: Note that P is not σ-closed (which would suffice).
Let p ∈ P s.t. p ° ”ḟ : ω → y ”. For each α < ω1, we define a set Aα and
an ordinal hα as follows:

• A0 := {p}
• hα := sup({sup(p) : p ∈ Aα})
• Aλ =

⋃
β<λAβ for limit ordinals λ

• Aα+1 := a minimal A′α ⊇ Aα s.t. for any q ∈ A′α and n < ω there is
q∗ ≤ q in A′α s.t. q∗ ° ḟ(n) = x for some x ∈ V and sup(q∗) > hα.

By induction, each Aα is countable. Let B := {hα : α < ω1}. Then B ∈ V
and B is unbounded in ω1. Let B′ be the set of limit points of B - not
necessarily contained in B. Then B′ ∈ V is a club in ω1, hence, because A
is stationary, we can choose η ∈ B′ ∩A and 〈αi〉i<ω s.t.

⋃{hαi : i < ω} = η,
α0>0 and the αi are strictly increasing.

Now we build an ω-chain of conditions 〈qi〉i<ω as follows: Let q0 ∈ Aα0

decide a value for f(0). Let q1 ≤ q0 ∈ Aα1 with sup(q1) > hα0 decide a value
for f(1) and so forth. Then q :=

⋃
i<ω qi∪{η} is closed and hence a condition

in P which extends p and decides a value for f(n) for each n ∈ ω. 2

2.2.3 Cohen Reals

The following notion of forcing adjoins κ real numbers, called Cohen Reals:

Let P be the set of all functions p such that:

• dom(p) is a finite subset of κ× ω,

• range(p) ⊆ {0, 1}
and let p ≤ q↔ p ⊇ q.

Let G be a generic set of conditions and let f :=
⋃
G. By a genericity

argument, f is a function from κ×ω into {0, 1}. For each α < κ, let fα be the
function on ω defined by fα(n) := f(α, n) and let aα := {n ∈ ω : fα(n) = 1}.
It follows that each aα is a real, aα ∈| V and α 6= β → aα 6= aβ.

Lemma 2.50 The forcing P for adjoining κ Cohen Reals has property (K).

31



Proof: Let pα, α < ω1 be conditions in P , let aα := dom(pα) for each
α < ω1. By the ∆-system lemma (1.21), there exists x ⊆ ω1, |x| = ℵ1, s.t.
A := {aα : α ∈ x} is a ∆-system, i.e. there is r s.t. for any aα, aβ ∈ A,
aα ∩ aβ = r. As there are only finitely many possibilities for p¹r for p ∈ P ,
let y ⊆ x, |y| = ℵ1 and choose u s.t. ∀α ∈ y pα¹r = u. Then {pα : α ∈ y} is
an uncountable subset of {pα : α < ω1} of pairwise compatible elements. 2

2.2.4 Sealing the ω1-branches of a tree

Definition 2.51

• Let T be a tree of height ω1. We say that B ⊆ T is an ω1-branch iff
B is a maximal linearly ordered subset of T and has order-type ω1.

• A nonempty tree T is perfect if for any t ∈ T , there exist s1, s2 s.t. t ≤
s1, s2 and neither s1 ≤ s2, nor s2 ≤ s1 (s1 and s2 are incomparable).

Lemma 2.52 Suppose T is a tree of height ω1 and P has property (K).
Then forcing with P adds no new ω1-branches through T .

Proof: Assume for a contradiction that p ° Ḃ is a new ω1-branch. Let S :=
{s ∈ T : ∃q ≤ p q ° s ∈ Ḃ}. Obviously, for each α < ω1, there is sα ∈ S and
pα ≤ p s.t. pα ° sα ∈ Ḃ and sα has level α in T . Since P has property (K),
there is A ⊆ ω1, |A| = ℵ1, s.t. {pα : α ∈ A} is pairwise compatible. But then
{sα : α ∈ A} is linearly ordered, so there is an uncountable branch B through
S. Since p ° Ḃ ∈| V, it follows that ∀s ∈ S ∃ t, u ∈ S s ≤ t, u ∧ t⊥u, where
⊥ denotes incompatibility with respect to the tree ordering ≥. Hence S′ :=
{s ∈ S : s is ≤-minimal s.t. s∈| B} is an uncountable, pairwise incomparable
(and hence incompatible) set. But if s⊥ t, q1 ° s ∈ Ḃ, q2 ° t ∈ Ḃ, then
q1⊥q2, which gives us an uncountable, pairwise incompatible subset of P
contradicting that P has property (K). 2

Lemma 2.53 Suppose T is a tree of height ω1 and 2ℵ0 > |T |. If P is
σ-closed, then forcing with P adds no new ω1-branches through T .

Proof: Assume for a contradiction that p ° Ḃ is a new ω1-branch. For each
σ ∈ 2<ω we will find pσ ≤ p and sσ ∈ T s.t. pσ ° sσ ∈ Ḃ. Also, if σ ⊂ τ ,
then sσ < sτ and if σ and τ are incomparable (with respect to ⊆), then
sσ and sτ are incomparable. We proceed by induction on |σ|: If σ = ∅,
let p0 ≤ p and s0 be arbitrary s.t. p0 ° s0 ∈ Ḃ. Given pσ and sσ, let
τ1 := σ_〈0〉 and τ2 := σ_〈1〉. Since pσ ° Ḃ is a new ω1-branch, there exist
incomparable sτ1 , sτ2 > sσ and there exist pτ1 , pτ2 ≤ pσ s.t. pτi ° sτi ∈ Ḃ,
i = 1, 2.

For f ∈ 2ω, choose pf s.t. ∀n ∈ ω pf ≤ pf¹n, which is possible since P is
σ-closed by assumption. Then, for any n ∈ ω, pf ° sf¹n ∈ Ḃ. Since pf ° Ḃ
is a new ω1-branch, there is p′f ≤ pf and sf ∈ T s.t. ∀n ∈ ω sf ≥ sf¹n
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and p′f ° sf ∈ Ḃ. But, by our above construction, if f 6= g, sf and sg are
incomparable which implies |T | ≥ 2ℵ0 , contradicting our assumption. 2

Corollary 2.54 Let T be a tree of height ω1, κ > |T | and let R1 be the
forcing notion adding κ Cohen Reals. In VR1, let R2 be a σ-closed forcing
notion. Then every branch of T in VR1∗Ṙ2 is already in V.

Proof: Immediate from lemma 2.50, lemma 2.52 and lemma 2.53. 2

Corollary 2.55 Let T be a tree of height ω1, κ > |T |, let b(T ) denote the
number of ω1-branches of T , assume b(T ) > ℵ1 and let R1 be the forcing
notion adding κ Cohen Reals, R2 := coll(ω1, {b(T )})VR1 . T will have ℵ1

ω1-branches in VR1∗Ṙ2. Moreover, R1 ∗ Ṙ2 is proper.

Proof: The first statement follows immediately from lemma 2.47, 1 and
corollary 2.54. The second statement follows immediately from fact 2.11,
fact 2.12 and definition 2.10. 2

Definition 2.56 Let T be a tree of height ω1 with ℵ1 ω1-branches Bi, i <
ω1, and assume that each node of T is on some ω1-branch. For each j < ω1,
let B′j := Bj \

⋃
i<j Bi and xj := minB′j, so that the sets B′j are disjoint

end segments of the branches Bj and that they form a partition of T . Let
A := {xi : i < ω1}. The forcing P ′T is defined as

P ′T := {f : |f | < ℵ0, f : A→ ω,∀x, y ∈ dom(f) (x < y → f(x) 6= f(y))}

where f ≤ g↔ f ⊇ g.

Theorem 2.57 (Baumgartner) [4] P ′T is ccc.

Proof: We will use the notation from definition 2.56. A, considered as a
substructure of T is a tree. Moreover, A has no uncountable branches: If B
were such a branch, then for some α, B ⊆ Bα and B ∩ (T \A) = ∅. B ⊆ Bα

implies that |B∩B′α| = ℵ1, but B∩B′α = (B∩B′α∩A)∪(B∩B′α∩(T \A)) =
B ∩B′α ∩A and B′α ∩A = {xα}, a contradiction.

Assume I = {pα : α ∈ ω1} is an antichain of P ′T . As |pα| < ℵ0, there are
only ℵ0 possibilities for |pα|, hence we can without loss of generality assume
that for all α < ω1, |pα| = n and that n is minimal in the sense that for
no n′ < n there is an antichain of size ω1 of partial functions of size n′ in
P ′T . For each α < ω1, let aα := dom(pα). Now 〈aα : α < ω1〉 is a collection
of uncountably many finite sets, allowing us to apply the ∆-system lemma
(1.21): There exist x ⊆ ω1 and r ⊆ A s.t. |x| = ℵ1 and for any α, β ∈ x,
aα∩aβ = r. As r has to be finite, there are only countably many possibilities
for pα¹r for any pα : A→ ω, hence there are y ⊆ x and p : r → ω s.t. |y| = ℵ1

and ∀α ∈ y pα¹r = p. If r 6= ∅, then {pα¹(A \ r) : α ∈ y} is a pairwise
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incompatible set of cardinality ℵ1 of functions of size n− |r|, contradicting
our assumption about minimality of n. Hence r = ∅ and hence for any
α, β ∈ x, aα ∩ aβ = ∅. So we can without loss of generality assume that
α 6= β → dom(pα) ∩ dom(pβ) = ∅ for any α, β ∈ ω1.

Also, by thinning out I if necessary, we may assume that whenever
α < β, pα(s) = pβ(t), s 6= t and s and t are comparable (which must be
the case for some s and t, as pα⊥pβ), then s < t: Assume we have already
thinned out 〈pα : α < γ〉 for some γ < ω1. For simplicity of notation, we
may assume that the above condition holds for 〈pα : α < γ〉. We will find
γ′ ≥ γ such that that condition holds for α, β ∈ γ ∪{γ′}, which is sufficient.
Assume towards a contradiction that there is no such γ′ ≥ γ, i.e. for any
γ′ ≥ γ there is α < γ and there are s, t ∈ A such that s 6= t, pα(s) = pγ′(t)
and t < s. But |⋃α<γ dom(pα)| ≤ ℵ0 and, because T is a tree of height ω1,
letting D := {t : ∃s ∈ ⋃

α<γ dom(pα) t < s}, |D| ≤ ℵ0. Note that for any
γ′ ≥ γ, D∩dom(pγ′) 6= ∅. Since |ω1 \ γ| = ℵ1 and |D| ≤ ℵ0, this contradicts
our assumption that α 6= β → dom(pα) ∩ dom(pβ) = ∅.

Let U be a uniform ultrafilter on ω1 (i.e. ∀x ∈ U |x| = ℵ1) and for
each α ∈ ω1, let dom(pα) = {sα

0 , . . . , s
α
n−1}. Now for each α < ω1, {β ∈

ω1 : ∃i, j sα
i < tβj } ⊇ κ \ α ∈ U , so by the finite intersection property of U ,

we can find i(α) and j(α) s.t. {β ∈ ω1 : sα
i(α) < tβj(α)} ∈ U . Again by the

finite intersection property of U , there must be i, j < n s.t. E = {α : i(α) =
i ∧ j(α) = j} ∈ U . But now if α1, α2 ∈ E, then there must be β > α1, α2

s.t. sα
i < tβj for α = α1, α2. Since A is a tree, this implies that sα1

i and
sα2
i are comparable, hence {sα

i : α ∈ E} may be extended to an uncountable
branch through A, a contradiction. 2

Theorem 2.58 Let T be a tree of height ω1. Assume that every node of
T is on some ω1-branch and that there are uncountably many ω1-branches.
Then there is a proper forcing notion PT forcing the following:

1. T has ℵ1 ω1-branches, i.e. ∃ b : ω1 × ω1 → T s.t. each set B′α =
{b(α, β) : β < ω1} is an end-segment of a branch of T enumerated in
its natural order, every ω1-branch is (modulo a countable set) equal to
B′α for some α < ω1 and the sets B′α form a partition of T .

2. There is a function g : T → ω s.t. ∀s < t in T , if g(s) = g(t), then
there is some (unique) α < ω1 s.t. {s, t} ⊆ B′α.

We call PT ”sealing the ω1-branches of T”.

Proof: By corollary 2.55, we may assume that T has ℵ1 ω1-branches {Bi : i <
ω1}, as if not, we can first force with R1∗Ṙ2. Let {B′i : i < ω1}, {xi : i < ω1},
A and P ′T be defined as they are in definition 2.56. Let PT := P ′T . Any
generic filter on P ′T induces a generic fG : A → ω (letting fG :=

⋃
G). Let

g : T → ω be defined by g(y) = fG(xα) for all y ∈ B′α. Then g satisfies 2.
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Finally, P ′T adds no ω1-branches through T , therefore 1 holds: Assume
b is an ω1-branch of T in VP ′T . As °P ′T ”ḃ is an ω1-branch through T”,
°P ′T ”∃n ∈ ω ∃ a⊆ ḃ |a| = ℵ1 ∧∀t ∈ a g(t) = n”. But this implies that for
some α < ω1, °P ′T ḃ ⊆ Bα, hence °P ′T ḃ = Bα ∈ V. 2

Corollary 2.59 PT seals the ω1-branches of T , i.e. if P ∈ VPT is a forcing
notion and ḃ ∈ VPT is a P -name for an ω1-branch of T , then

VPT |= °P ḃ ∈ VPT .

Proof: The proof is the same as the proof showing that P ′T adds no ω1-
branches through T in theorem 2.58 above. In fact, a stronger statement
follows by that proof: VPT |= °P ḃ ∈ V. 2

2.2.5 Almost disjoint coding

Let α be a regular cardinal, β > α ∈ Ord. Let A = (aξ)ξ<β be an almost
disjoint family of size |β| on α. Let B ⊆ β. Using A, we can force to add a
subset A of α such that A codes B in the following sense:

B = {ξ < β : |A ∩ aξ| < α}.

In the following, for q ⊆ β, let A¹q denote {aξ : ξ ∈ q}.

Definition 2.60 (Almost disjoint coding)

PA,B := [α]<α × [B]<α ordered by

(p, q) ≤ (p′, q′)↔ p end-extends p′, q ⊇ q′ and (p \ p′) ∩
⋃
A¹q = ∅.

PA,B is called the almost disjoint coding of B using A.

Lemma 2.61 For σ ∈ B, Dσ := {(p, q) ∈ PA,B : σ ∈ q} is dense in PA,B.

Proof: Given (p, q), extend it to (p, q ∪ {σ}) ≤ (p, q) to hit Dσ. 2

Lemma 2.62 For each ρ < α, σ ∈ (β \B), the set

Dρ,σ := {(p, q) ∈ PA,B : ot(p ∩ aσ) ≥ ρ}

is dense in PA,B.

Proof: Let (p, q) ∈ PA,B. Let S := aσ \
⋃A¹q = aσ \

⋃
ξ∈q(aσ ∩ aξ). Since

σ ∈| B, for ξ ∈ q, q ⊆ B, |aσ ∩ aξ| < α, hence |S| = α. Let p′ be obtained
from p by extending p by a subset of S of order-type ρ. On the one hand it
follows that ot(p′ ∩ aσ) ≥ ρ, on the other hand, since we have avoided every
aξ, ξ ∈ q in the construction of p′, (p′, q) ≤ (p, q). 2
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Now let G be generic for PA,B and let A :=
⋃{p : ∃q (p, q) ∈ G}. As G

meets all of the above dense sets, it follows that A codes B in the above-
mentioned sense, i.e. B = {ξ < β : |A ∩ aξ| < α}.

Lemma 2.63 PA,B is α-closed.

Proof: Let ρ < α, (pξ, qξ)ξ<ρ a decreasing sequence of conditions and let
p′ :=

⋃
ξ<ρ pξ, q′ :=

⋃
ξ<ρ qξ. If γ ∈ qξ, ξ < ρ, then p′ ∩ aγ = pξ ∩ aγ and

hence (p′ \ pξ) ∩ aγ = ∅, implying (p′, q′) ≤ (pξ, qξ). 2

Lemma 2.64 PA,B is |[α]<α|-linked. If |[α]<α|=α, PA,B is also α-centered.

Proof: If |[α]<α| = α, let f : PA,B → [α]<α ∼= α be the projection (p, q) 7→ p.
For a set W of size < α of conditions with the same first component p,
(p,

⋃
(p,q)∈W q) is stronger than any condition inW . Thus PA,B is α-centered.

Using the same f , PA,B is immediately seen to be |[α]<α|-linked. 2

Corollary 2.65 If α = ω or α is a strong limit cardinal, PA,B is α+-cc. 2

2.2.6 Almost disjoint coding of a function

In this variant of almost disjoint coding, we generically add a real b such
that for a given function f : A ⊆ 2ω → 2ω, b codes f(r) for every r ∈ A.

Let 〈si : i ∈ ω〉 be a recursive enumeration of 2<ω such that each s ∈ 2<ω

is enumerated before any of it’s proper extensions. Fix a recursive partition
of ω into infinitely many pieces Xi, i < ω. For a ∈ 2ω, define

fa := {j : a¹length(sj) = sj}

fa
i := {j : a¹length(sj) = sj ∧ length(sj) ∈ Xi}

{fa : a ∈ 2ω} is an almost disjoint family: Let r 6= s ∈ 2ω. Let k0 ∈ r4s 6= ∅,
then for all k ≥ k0, s¹k 6= r¹k, hence f r ∩ f s is finite. Obviously it follows
that {fa

i : a ∈ 2ω, i ∈ ω} is an almost disjoint family as well.

Definition 2.66 (Almost disjoint coding of a function)
Let A ⊆ 2ω, f : A→ 2ω. Define Pf as follows:

Pf := 2<ω × [
⋃

r∈A

({r} × f(r))]<ω ordered by

(s, g) ≤ (t, h)↔ s ⊇ t, g ⊇ h ∧ ∀ (a, i) ∈ h (s \ t) ∩ fa
i = ∅.

For a, b ∈ 2ω, let b¯ a := {i ∈ ω : b ∩ fa
i is finite}.

Lemma 2.67
For a ∈ A, i ∈ f(a), D := {(p, h) ∈ Pf : (a, i) ∈ h} is dense in Pf .
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Proof: Like lemma 2.61: For any condition (p, h) and any pair (a, i) as
above, (p, h ∪ {(a, i)}) is a condition extending (p, h). 2

Lemma 2.68 For each (a, i) ∈ A×ω such that i∈| f(a) and for each n ∈ ω,
D := {(p, h) ∈ Pf : (p ∩ fa

i ) \ n 6= ∅} is dense in Pf .

Proof: Like lemma 2.62: Let (p, h) ∈ Pf be arbitrary. As i∈| f(a), (a, i)∈| h,
so fa

i \
⋃

(s,j)∈h f
s
j must be infinite by almost disjointness. Picking k > n in

that latter set, (p ∪ {k}, h) is a condition in D extending (p, h). 2

Now let G be generic for Pf and let b :=
⋃{p : ∃q (p, q) ∈ G}. As G meets

all of the above dense sets, it follows that for all a ∈ A, f(a) = b¯ a.
Lemma 2.69 Pf is ℵ0-centered and thus ccc.

Proof: Like lemma 2.64: Let f : Pf → 2<ω ∼= ω be the projection (p, h) 7→ p.
If (pi, hi), i∈k, are conditions with the same first component, (p0,

⋃
i∈k hi)

is also a condition and is stronger than any (pi, hi), i ∈ k. 2

2.2.7 Reshaping

For A ⊆ ω1, we define the reshaping forcing as follows:

P := {p bnd⊆ ω1 : ∀ξ ≤ sup p L[ p ∩ ξ, A ∩ ξ] |= ξ ∼= ω},

ordered by end-extension, where p
bnd⊆ ω1 if p is a bounded subset of ω1.

Lemma 2.70 For each α < ω1, Dα := {p ∈ P : sup p ≥ α} is dense in P .

Proof: Let p0 be a condition in P with sup p0 = δ and let δ < α < ω1.
If α < δ + ω, we can choose an arbitrary p end-extending p0 such that
sup p = α to hit Dα. Otherwise, let E ⊆ [δ + 1, δ + ω) code the ∈-relation
on α and let p := p0 ∪ E ∪ [δ + ω, α). We show that p ∈ P : If ξ ≤ δ, then
L[p ∩ ξ,A ∩ ξ] |= ξ ∼= ω because p0 ∈ P . If δ < ξ < δ + ω, then there is
n ∈ ω such that L[p ∩ δ,A ∩ δ] |= ξ = δ + n ∼= ω, hence L[p ∩ ξ, A ∩ ξ] |=
ξ ∼= ω. If δ + ω ≤ ξ ≤ α, then, since L[p ∩ (δ + ω), A ∩ (δ + ω)] |= α ∼= ω,
L[p ∩ ξ,A ∩ ξ] |= ξ ∼= ω.

Obviously, p hits Dα and extends p0. 2

If G is generic for P , then we obtain H :=
⋃
G ⊆ ω1 such that

∀ξ < ω1 L[H ∩ ξ,A ∩ ξ] |= ξ ∼= ω.

This allows us to choose A′ ⊆ ω1 coding both A and H such that

∀ξ < ω1 L[A′ ∩ ξ] |= ξ ∼= ω.

We say that A′ is reshaped.
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2.3 Forcing Axioms

Definition 2.71

• Given a partial ordering P and a cardinal κ, the ”Forcing Axiom for
collections of κ antichains of P ”, in short FAκ(P ), is the following
statement:

For every collection {Iα : α < κ} of macs of P , there exists a filter
G ⊆ P s.t. ∀α < κ Iα ∩G 6= ∅.

• If P is a class of partial orderings, FAκ(P) is the statement that for
every P ∈ P, FAκ(P ) holds.

• If P is ccc, we write MAκ(P ) for FAκ(P ).

• Martin’s Axiom at κ, in short MAκ, is the statement that for every
ccc poset P , MAκ(P ) holds.

• Martin’s Axiom, in short MA, is the statement that for every κ < 2ℵ0,
MAκ holds.

• Given a partial ordering P and a cardinal κ, the ”Bounded Forcing
Axiom for collections of κ antichains of P ”, in short BFAκ(P ), is
the following statement: For every collection {Iα : α < κ} of macs of
B := B(P ), each of size at most κ, there exists a filter G ⊆ B s.t.
∀α < κ Iα ∩G 6= ∅.

• If P is a class of partial orderings, BFAκ(P) is the statement that for
every P ∈ P, BFAκ(P ) holds.

• The Bounded Proper Forcing Axiom BPFA is the statement that for
every proper poset P , BFAω1(P ).

• The Bounded Semiproper Forcing Axiom BSPFA is the statement that
for every semiproper poset P , BFAω1(P ).

• The Bounded Martin’s Maximum BMM is the statement that for every
poset P that preserves stationary subsets of ω1, BFAω1(P ).

Remarks: It is important to require maximal antichains of B(P ) instead
of P for the bounded forcing axioms, because for example {1} might be the
only maximal antichain of size ≤ κ of P for some p.o. P , making BFAκ(P )
a vacuous statement. Furthermore, note that we can equivalently work with
predense, dense or open dense sets in the above definition.

Fact 2.72 (Solovay, Tennenbaum) ([17], Theorem 16.13) Let κ > ℵ0 be
a regular cardinal. Then MA+2ℵ0 = κ is equiconsistent with ZFC. 2
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Lemma 2.73 MA2ℵ0 is false.

Proof: Let P be the poset adding a single Cohen real and for each h ∈ ω
2,

let Dh := {p ∈ P : ∃n ∈ dom(p) p(n) 6= h(n)}. Assuming that MA2ℵ0 holds,
we can find a filter G which meets Dh for any h ∈ ω

2. Let f :=
⋃
G, f ∈ ω

2.
Now for any h ∈ ω

2, since f ⊇ p for some p ∈ Dh, it follows that f 6= h; a
contradiction. 2
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3 Σ1
3 Absoluteness for Set Forcing

Theorem 3.1 (Friedman) [9] The following are equiconsistent:

1. Σ1
3 absoluteness for set forcing

2. Abs(Σ2(Hω1), set forcing)

3. ∃κ κ is reflecting

Proof: By corollary 1.56, 1 and 2 are equivalent.

2→3 : Assume that Abs(Σ2(Hω1), set forcing) holds. Let κ = ω1. Because
V |= κ regular, L |= κ regular. We show that Lκ≺Σ2 L: Let p ∈ HL

κ = Lκ

(see 1.43) and ϕ ∈ Σ2(Lκ) such that L |= ϕ(p). Choose some regular δ
s.t. Lδ |= ϕ(p) and force with coll(ω, {δ}). The following formula expresses
(see 1.44) that there exists a countable L-cardinal ξ s.t. Lξ |= ϕ(p) and it
obviously holds in the extension:

∃ ξ<ω1 ∀α < ω1 (ξ ∈ Lα → Lα |= ξ ∈ Card) ∧ p ∈ Lξ ∧ Lξ |= ϕ(p)

As for α < ω1, Lα ∈ Hω1 (see 1.40) and (Lα)Hω1 = Lα, the following formula
ψ(p) holds in Hω1 of our generic extension:

∃ ξ ∀α (ξ ∈ Lα → Lα |= ξ ∈ Card) ∧ p ∈ Lξ ∧ Lξ |= ϕ(p)

ψ(p) ∈ Σ2(Hω1), hence it also holds in (Hκ)V, and, again using absoluteness
of Lα, the following holds in V: There exists an L-cardinal ξ < κ s.t.
Lξ |= ϕ(p). But as ξ is an L-cardinal, Lξ = HL

ξ ≺Σ1 H
L
κ = Lκ by (1.43) and

(1.64), hence Σ2(Lξ) statements are upwards absolute between Lξ and Lκ

implying Lκ |= ϕ(p), hence Lκ≺Σ2 L. Because κ is a limit cardinal in L, it
follows that Lκ = (Hκ)L = (Vκ)L≺Σ2 L, hence L |= κ is reflecting.

3→1 : Assume that κ is reflecting. Then by theorem 1.69, κ is inaccessible.
Let G be generic for coll(ω, κ) over V, then V[G] |= κ = ω1. We show that
V[G] |= Σ1

3 absoluteness for set forcing: Upward absoluteness is given by
corollary 1.59. So let ϕ(r) be some Σ1

3(r) statement with r ∈ V[G] and let
Q ∈ V[G] be a p.o. such that V[G] |= °Q ϕ(r). We show that V[G] |= ϕ(r):
Choose a nice name ṙ for r ⊆ ω, i.e. a name of the form

⋃
n∈ω{ň} × An,

where, for each n, An is an antichain of coll(ω, κ) and note that the value
of ṙ is already decided in an initial segment coll(ω, β), β < κ of coll(ω, κ):
each An has cardinality < κ (see 2.47, 3) and, because κ is regular, we can
choose β < κ regular such that ∀n ∈ ω ∀q ∈ An dom(q) ⊆ β×ω. By lemma
2.48, G0 := G ∩ coll(ω, β) is coll(ω, β)-generic over V. Furthermore,

V[G0] |= ∃p °coll(ω,κ\β)p∗Q̇ ϕ(ř).
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Hence V[G0] |= ∃P °P ϕ(ř), therefore in V the following holds:

∃Ṗ ∃q ∈ G0 °coll(ω,β)q
(Ṗ is a partial order ∧ °Ṗ ϕ(ṙ)).

As q plays no role in the following, we may assume q = 1.
Because κ is reflecting in V and coll(ω, β) ∈ Hκ, there exist α < κ regular
and Ṗ ∈ Hα such that the following holds:

Hα |= °coll(ω,β) (Ṗ is a p.o. ∧ °Ṗ ϕ(ṙ)). (4)

We can also demand κ to reflect ∃y y= | ˙P(P )|, hence assume that | ˙P(P )|<α.
By corollary 2.44, (4) is equivalent to the following:

°coll(ω,β) Hα |= (Ṗ is a p.o. ∧ °Ṗ ϕ(ṙ)). (5)

Applying corollary 2.42 to the second conjunct of (5) yields:

°coll(ω,β) (Ṗ is a p.o. ∧ °Ṗ Hα |= ϕ(ṙ)). (6)

By upward absoluteness, °coll(ω,β)∗Ṗ ϕ(ṙ).

Let P := ṖG0 . By lemma 2.43, |P(P )| < α in VG0 . By lemma 2.48,
G1 := G ∩ coll(ω, {α}) is coll(ω, {α})-generic over V[G ∩ coll(ω, α)], and,
because G0 ⊆ G ∩ coll(ω, α), also over V[G0]. Because |P(P )| = ω in
V[G0][G1], there exists a generic GP ∈ V[G0][G1] for P over V[G0].

As V[G0] |= °P ϕ(ř), V[G0][GP ] |= ϕ(r).
V[G0][GP ] ⊆ V[G0][G1] ⊆ V[G], so, by upward absoluteness, V[G] |= ϕ(r)
and hence V[G] is a model for Σ1

3-absoluteness for set forcing. 2

Corollary 3.2 Σ1
3 absoluteness for set forcing is equiconsistent with ZFC.

Proof: This proof follows easily from the proof of the second direction of
the previous theorem. First, by lemma 1.66, choose any cardinal κ such
that Hκ≺Σ2 V. Let G be generic for coll(ω, κ) over V. Then V[G] is a
model of Σ1

3 absoluteness for set forcing: Let ϕ be some Σ1
3 statement and

let Q ∈ V[G] be a p.o. such that V[G] |= °Q ϕ. Hence V |= ∃P °P ϕ. By
our above choice of κ and by corollary 1.70,

∃α<κ regular ∃P ∈ Hα |P(P )|<α∧ °P ϕ(r)

G1 := G ∩ coll(ω, {α}) is coll(ω, {α})-generic over V. Because |P(P )| = ω
in V[G1], there exists a generic GP ∈ V[G1] for P over V. As V |= °P ϕ,
V[GP ] |= ϕ. V[GP ] ⊆ V[G1] ⊆ V[G], so, by corollary 1.58, V[G] |= ϕ and
hence V[G] is a model for Σ1

3-absoluteness for set forcing. 2
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4 Σ1(Hω2
) Absoluteness Results

4.1 Inconsistency Results

Theorem 4.1 Abs(Σ1(Hω2), set forcing) is false.

Proof: Let P be a poset collapsing ω1 and let G be generic for P . Let

ϕ ≡ ∃f : ω onto−−→ ωV
1 .

Then Hω2 |= ¬ϕ and HV[G]
ω2 |= ϕ. As ϕ ∈ Σ1(Hω2), the theorem follows. 2

Theorem 4.2 Abs(Σ1(Hω2), ω1-preserving) is false.

Proof: Assume Abs(Σ1(Hω2), ω1-preserving) holds. Let S be a stationary
and co-stationary subset of ω1 and let P be the forcing notion that adds a
closed unbounded subset of S while preserving ω1 defined in theorem 2.49
and let G be generic for P .

C club↔(∀α < ω1 ∃β ∈ C)(β>α ∧ sup(C ∩ α) ∈ C)

y = sup(B)↔(∀β ∈ B y ≥ β) ∧ (∀β < y ∃ γ ∈ B γ > β)

Both of the above are ∆0(Hω2) statements, so ”∃C C ⊆ S ∧ C club” is a
Σ1(Hω2) sentence which holds inHV[G]

ω2 . Hence it holds in Hω2 , contradicting
co-stationarity of S. 2

4.2 BFA and Σ1-absoluteness

Lemma 4.3 [14] Let P be a poset and assume °P ”Ṁ is a structure with
universe κ with κ-many relations (Ṙi : i < κ)” and BFAκ(P ) holds. If G is
a filter, let

• Ṙi
G

:= {(x1, . . . , xn) ∈ κn : ∃p∈G p ° Ṁ |= Ṙi(x̌1, . . . , x̌n)},

• M∗ := (κ, (Ṙi
G
)i<κ).

Then there exists a so-called ”sufficiently generic” filter G ⊆ P such that:

Whenever ϕ is a sentence such that °P Ṁ |= ϕ, then M∗ |= ϕ.

Proof: Let χ be a sufficiently large cardinal and let N be an elementary
submodel of (Hχ,∈, (β)β<κ, (P,≤), (Ṙi)i<κ) of size κ. By BFAκ(P ), we can
find a filter G ⊆ P such that the following hold:

• ∀α̇ ∈ N ((°P α̇ ∈ κ)→ (∃β ∈ κ∃p ∈ G p ° α̇ = β̌))

• ∀α1, . . . , αn ∈ κ, for all ϕ(x1, . . . , xn), there exists p ∈ G such that
either p ° Ṁ |= ϕ(α1, . . . , αn) or p ° Ṁ |= ¬ϕ(α1, . . . , αn).

We call such G a ”sufficiently generic” filter. The lemma now follows from
claim 1 and claim 2 below:
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Claim 1: For every quantifier-free ϕ(x1, . . . , xn) and β1, . . . , βn ∈ κ,

∃p∈G p ° Ṁ |= ϕ(β̌1, . . . , β̌n)↔M∗ |= ϕ(β1, . . . , βn).

Proof: By induction on formula complexity:

• If ϕ ≡ Ri(β1, . . . , βn), then the claim holds by our definition of Ṙi
G
.

• If ϕ ≡ ¬ψ and the claim holds for ψ, then

∃p∈G p ° Ṁ |= ϕ↔ @q∈G q ° Ṁ |= ψ↔¬M∗ |= ψ↔M∗ |= ϕ.

• If ϕ ≡ ψ1 ∧ ψ2 and the claim holds for ψ1 and ψ2, this is trivial.

Claim 2: For every formula ϕ(x1, . . . , xn) and every α̇1, . . . , α̇n ∈ N , if
°P Ṁ |= ϕ(α̇1, . . . , α̇n), then M∗ |= ϕ(α̇1

G, . . . , α̇n
G), where for α̇ s.t.

°P α̇ ∈ κ, α̇G = β↔∃p∈G p ° α̇ = β̌, which proves lemma 4.3.

Proof: First note that if °P Ṁ |= ϕ(α̇1, . . . , α̇n), then ∀i °P α̇i ∈ κ,
so because G is sufficiently generic, there exist β1, . . . , βn ∈ κ such that
∀i ∃p∈G p ° α̇i = β̌i and hence (°P Ṁ |= ϕ(α̇1, . . . , α̇n)) → (∃p∈G p °
Ṁ |= ϕ(β̌1, . . . , β̌n)). Also note that ∀i α̇i

G = βi. We show, by induc-
tion on formula complexity, that if ∃p ∈ G p ° Ṁ |= ϕ(β̌1, . . . , β̌n), then
M∗ |= ϕ(β1, . . . , βn), which is sufficient:

• If ϕ is quantifier-free, this follows from claim 1.

• If ϕ ≡ ∃xψ and claim 2 holds for ψ, (°P Ṁ |= ∃xψ(x, α̇1, . . . , α̇n))→
(∃ḃ ∈ N °P Ṁ |= ψ(ḃ, α̇1, . . . , α̇n)), so M∗ |= ψ(ḃG, β1, . . . , βn), hence
M∗ |= ∃xψ.

• If ϕ ≡ ∀xψ and claim 2 holds for ψ, (°P Ṁ |= ∀xψ(x, α̇1, . . . , α̇n))→
(∀ḃ ∈ N (°P ḃ ∈ κ → °P Ṁ |= ψ(ḃ, α̇1, . . . , α̇n))), hence for such
ḃ, M∗ |= ψ(ḃG, β1, . . . , βn). Because β̌G = β and ∀β ∈ κ β̌ ∈ N ,
M∗ |= ∀xψ. 2

Corollary 4.4 BFAκ(P )→ ¬ °P κ is collapsed.

Proof: Assume for a contradiction that °P κ is collapsed, i.e. there exist
names Ṁ and ḟ s.t. °P ḟ : κ → κ is a function, °P Ṁ = (κ, ḟ) and
°P Ṁ |= ∃λ∀ξ ∃α < λ ḟ(α) = ξ. By lemma 4.3, ∃λ < κ ∃f : λ onto−−→ κ, a
contradiction. 2

Definition 4.5 For any poset P , let Pp denote the poset below p. If B is a
boolean algebra, p ∈ B, let p̄ denote the (boolean) complement of p.
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Lemma 4.6 If B is a boolean algebra, then

(BFAκ(B) ∧ [[κ ∈ Card ]]B = p)→ BFAκ(Bp).

Proof: By corollary 4.4, since [[κ is collapsed]]Pp̄
= 1, we get ¬BFAκ(Pp̄).

So there exists a collection I = {Ii : i < κ} of macs of Pp̄, each of size at
most κ, such that in V, there exists no filter on Pp̄ meeting every Ii, i < κ.
We will use I to show that BFAκ(Pp) holds:

Let J = {Ji : i < κ} be an arbitrary collection of macs of Pp, each of
size at most κ, and let L := {Ii ∪Ji : i < κ}. For each i < κ, Ii ∪Ji is a mac
of P of size at most κ. By BFAκ(P ), there exists a filter G ∈ V meeting
each Ii ∪ Ji, i < κ. If for every i < κ, G ∩ Ii 6= ∅, then G ∩ Pp̄ is a filter
on Pp̄ meeting every set in I, contradicting our choice of I. Hence there is
i < κ such that G ∩ Ji 6= ∅. Since p̄⊥Ji, this implies ∀ i<κ G ∩ Ji 6= ∅.

Now G∩Pp is a filter on Pp meeting every set in J . Since J was chosen
arbitrary, this implies BFAκ(Pp). 2

Lemma 4.7 [14] Assume °P ”Ṁ = (κ, Ė) is a well-founded structure ∧
κ ∈ Card”, cf(κ) > ω and BFAκ(P ) holds. Then, for every sufficiently
generic filter G ⊆ P , M∗ := (κ, ĖG) is well-founded.

Proof: For each α < κ, let ṙα be a name for the canonical rank function for
(α, Ė), i.e. °P ” dom(ṙα) = α̌ ∧ ∀β < α̌ ṙα(β) = sup {ṙα(γ) + 1: γĖ β}”.
As °P κ ∈ Card, °P range(ṙα) ⊆ κ, so we can find Ṅ such that °P Ṅ =
(κ, Ė, (ṙα)α<κ). By lemma 4.3, for each α < κ, ṙαG is a rank function for
(α, ĖG), witnessing that (α, ĖG) is well-founded. Since cf(κ) > ω, this im-
plies that (κ, ĖG) is well-founded, since ill-foundedness had to be witnessed
by ill-foundedness on α for some α < κ. 2

Theorem 4.8 (Bagaria) [2] Let P be a partial ordering and κ an infinite
cardinal of uncountable cofinality. Then the following are equivalent:

1. BFAκ(P )

2. Abs(Σ1(Hκ+), P )

1→2 : Let ϕ ∈ Σ1({A}) with A ∈ Hκ+ , let B := B(P ) and assume
[[ϕ(A) ]]B = 1. We show that V |= ϕ(A) which suffices by lemma 1.60:

Let p := [[κ ∈ Card ]]B. By corollary 4.4, p 6= 0, by lemma 4.6,
BFAκ(Bp) holds. Since [[ϕ(A) ]]Bp

= 1, we can without loss of general-
ity work with Bp instead of B, i.e. we can assume that [[κ ∈ Card ]]B = 1.

Let λ be large enough s.t. [[ Ḣλ |= ϕ(A) ]]B = 1. Then there exists
Ṁ such that [[ Ṁ≺ (Ḣλ,∈, (y̌)y∈tcl({Ǎ})) ∧ |Ṁ | = κ ]]B = 1 in VB. There
exists Ė such that [[(Ṁ,∈, (y̌)y∈tcl({Ǎ})) ∼= (κ, Ė, (ďy)y∈tcl({Ǎ})) ]]B = 1. By
lemma 4.3 and lemma 4.7, using a sufficiently generic filter G ⊆ B given
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by BFAκ(B), M∗ := (κ, ĖG, ďA
G) |= ϕ(ďA

G) and ĖG is well-founded. Let
M′ be the transitive collapse of M∗ and note that by induction on rank(y),
applying lemma 4.3, it follows that for every y ∈ tcl({A}), dy

M′
= y. Hence

M′ |= ϕ(A) and, by upward absoluteness, V |= ϕ(A).

2→1 : Suppose I = {Iα : α<κ} is a collection of macs of B := B(P ), each
of size at most κ. Let X :=

⋃
I. Let B̄ = (B̄,≤B̄,⊥B̄) be an elementary

substructure of (B,≤B,⊥B) containing X of size κ. Let K = (κ,≤K ,⊥K)
be an isomorphic copy of (B̄,≤B̄,⊥B̄) and let π denote the isomorphism.
Notice that for every α < κ, π′′Iα is a mac of K. Let G be generic for B
over V. Then, (Hκ+)V[G] |= ”∃ X ⊆ κ, a filter generic for {π′′Iα : α < κ}”,
which is equivalent to ”∃X ⊆ κ (∀x, y ∈ X ∃z ∈ X z ≤K x∧z ≤K y)∧(∀x ∈
X ∀y ∈ κ x ≤K y → y ∈ X) ∧ (∀α < κ X ∩ π′′Iα 6= ∅)”. As ≤K∈ Hκ+ and
〈π′′Iα : α < κ〉 ∈ Hκ+ , this is a Σ1(Hκ+) sentence holding in any B-generic
extension of V. By Abs(Σ1(Hκ+), B), this sentence holds in Hκ+ .
Since π ∈ V, this implies BFAκ(B). 2

Observations:

• P κ+cc→ (BFAκ(P )↔FAκ(P ))

• Abs(Σ1(Hκ+), P )→ BFAκ(P ) also works for cf κ = ω

Corollary 4.9

1. MAω1↔Abs(Σ1(Hω2), ccc)

2. cf κ > ω → (MAκ↔Abs(Σ1(Hκ+), ccc))

3. Abs(Σ1(H2ℵ0 ), ccc))→ MA

4. (MA∧@κ (2ℵ0 = κ+ ∧ cf κ = ω))→ Abs(Σ1(H2ℵ0 ), ccc)

5. (MA∧∃κ (2ℵ0 = κ+ ∧ cf κ = ω))→ Abs(Σ1(Hκ), ccc)

Proof: 1 -3 are immediate. For 4, if 2ℵ0 is a limit cardinal, then the reg-
ular cardinals are unbounded in 2ℵ0 , hence MA → Abs(Σ1(H2ℵ0 ), ccc). If
∃κ 2ℵ0 = κ+ ∧ cf κ > ω, then MA → MAκ → Abs(Σ1(H2ℵ0 ), ccc). For 5,
if 2ℵ0 = κ+ and κ is a limit cardinal, Abs(Σ1(Hκ), ccc) again follows by
unboundedness of regular cardinals in κ. 2

Fact 2.72 implies the following:

Corollary 4.10 Let ν > ℵ0 be a regular cardinal such that @κ ν = κ+ ∧
cf κ = ω. Then Abs(Σ1(H2ℵ0 ), ccc)+2ℵ0 = ν) is equiconsistent with ZFC. 2

Corollary 4.11
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• BPFA↔Abs(Σ1(Hω2), proper),

• BSPFA↔Abs(Σ1(Hω2), semiproper),

• BMM↔Abs(Σ1(Hω2), stationary-preserving). 2

4.3 PE

In this section, we will show that Abs(Σ1(Hλ+), P ) is already implied by the
seemingly weaker principle PEλ(P ):

Definition 4.12 We say that A has a P-potential nontrivial endomorphism
if there is a forcing notion P ∈ P such that °P ”∃ f : A → A ∧ f is a
nontrivial homomorphism”.

Definition 4.13 PEλ(P) is the statement that for any stucture A of size
at most λ, if A has a P-potential nontrivial endomorphism, then A has a
nontrivial endomorphism.

Theorem 4.14 (Shelah) [14]
For any poset P and any cardinal λ of uncountable cofinality,

PEλ(P ) ↔ BFAλ(P ).

Proof: BFAλ(P )→ PEλ(P ) follows from theorem 4.8.
For the other direction, assume that P is a complete boolean algebra and

let (Ai : i ∈ I) be a system of λ maximal antichains of P of size at most λ.
We may assume that this is a directed system, i.e. for any i, j ∈ I, there is
k ∈ I such that Ak refines both Ai and Aj . Let us write i ≤ j for ”Ai refines
Aj”. (I,≤) now is a partially ordered directed set. Assuming PEλ(P ), we
will find a filter meeting all the sets Ai:

• Let M :=
⋃̇

i<λAi be the disjoint union of (Ai, i < λ).

• For i ∈ I, z ∈ Ai, let Ri,z := {(x, y) : x, y ∈ Ai, x = y ∨ x = z}.

• If i ≤ j, let hj
i be the projection function from Ai to Aj : for p ∈ Ai,

hj
i (p) is the unique element of Aj which is compatible to (and in fact

weaker than) p.

Note that the following holds:

• The functions hj
i commute, i.e. if i ≤ j ≤ k, then hk

i = hj
i ◦ hk

j .

• If i ≤ j and p ∈ Ai, then p ≤ hj
i (p).
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Let M := (M, (Ai)i∈I , (Ri,z)i∈I,z∈Ai , (h
j
i )i,j∈I,i<j), where we treat the sets

Ai, Ri,z, h
j
i as relations on M .

If G is a filter which meets all the sets Ai and for each i ∈ I, G ∩ Ai =
{yi(G)}, then we define a function fG : M → M as follows: for x ∈ Ai, let
fG(x) = yi(G). The following shows that fG is an endomorphism of M:

• Ai(x)→ Ai(fG(x)).

• Ri,z(x, y) → Ri,z(fG(x), fG(y)), because Ri,z → x, y ∈ Ai, hence
fG(x) = yi(G) = fG(y).

• y = hj
i (x)→ fG(y) = hj

i (fG(x)), because yj(G) ≥ yi(G) for i < j.

So M has a potential nontrivial endomorphism, as |M| = λ, by PEλ(P ) we
know that M really has a nontrivial endomorphism. Finally we will show
how a nontrivial endomorphism F of M defines a filter G∗ meetings all the
sets Ai: Choose y0 = f(x0) 6= x0, x0 ∈ Ai0 . Then we prove the following:

1. ∀j ≤ i0 F ¹Aj 6= id¹Aj .

• If hi0
j (x) = x0, then hi0

j (F (x)) = y0, so F (x) 6= x.

2. ∀j ≤ i0 F ¹Aj is constant; let pj denote the value of F on Aj .

• Let x ∈ Aj , F (x) 6= x. Then for all y ∈ Aj , we have (x, y) ∈ Rj,x,
so (F (x), F (y)) ∈ Rj,x. Because F (x) 6= x, F (x) = F (y) follows.

3. {pj : j ≤ i0} generates a filter G∗ meeting all sets Ai.
(which proves the theorem)

• If j ≤ i≤ i0, then hi
j(pj) = pi and pj ≤ pi. Since {j ∈ I : j ≤ i0}

is directed, {pj : j≤ i0} is directed and generates a filter G∗. For
any i∈I there is j≤ i satisfying j≤ i0, so Ai ∩G∗={hi

j(pj)}. 2

Observation: Since by theorem 4.8, BFAλ(P )↔Abs(Σ1(Hλ+), P ), it fol-
lows that for any partial order P and any cardinal λ of uncountable cofinality,

PEλ(P )↔Abs(Σ1(Hλ+), P ).
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5 The Consistency Strength of BPFA

In the following theorems, we will show that BPFA is equiconsistent with a
reflecting cardinal. In the first theorem, we will show that a model with a
reflecting cardinal allows us to construct a forcing extension of that model
in which Abs(Σ1(Hω2), proper) holds, and therefore BPFA holds by theorem
4.8. The proof of this theorem is based on the proof given in [14], where
it is shown that a model with a reflecting cardinal allows us to construct a
forcing extension of that model in which PE(proper) holds, yielding BPFA
to hold by theorem 4.14 above:

Lemma 5.1 Let P be a forcing notion, P ∈ Hλ and χ > 2λ regular. Then
P is proper iff Hχ |= P proper.

Proof: Since Hλ ∈ Hχ, the description of properness in fact 2.15, 2 is
absolute between Hχ and V. 2

Lemma 5.2 Assume that κ is reflecting, λ < κ is a regular cardinal, ϕ(x)
is a Σ1-formula and a ∈ Hλ. If there exists a proper forcing notion P such
that °P ϕ(ǎ), then there is such a proper forcing notion in Hκ.

Proof: Fix P , let χ be sufficiently large s.t. χ regular, Hχ |= ”P proper,
∃µ P ∈Hµ, 2µ exists, °P ϕ(ǎ)”. Now we use the fact that κ is reflecting: we
can find δ < κ, δ > λ, δ regular such that Hδ |= ”∃ν ∃Q ∈ Hν Qproper∧
°Q ϕ(ǎ) ∧ 2ν exists.” Fix such Q. By lemma 5.1, Q is really proper. By
corollary 2.44, °Q Hδ |= ϕ(ǎ). Since ϕ is Σ1, it is upwards absolute and
hence °Q ϕ(ǎ). 2

Lemma 5.3 Let P ∈ Hκ. Then ”κ reflecting” implies ” °P κ reflecting”.

Proof: Let P ∈ Hλ, λ < κ. Assume that °P ”Hχ |= ϕ(ȧ) ∧ ȧ ∈ Hκ”.
By lemma 2.42, we may assume that ȧ ∈ Hκ. By corollary 2.44, we have
Hχ |= °P ϕ(ȧ), so - because κ is reflecting - there is δ < κ, δ > λ such
that Hδ |= °P ϕ(ȧ), hence by corollary 2.44, °P Hδ |= ϕ(ȧ). Because
|P | < λ < δ, δ remains a cardinal in any P -generic extension. 2
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Theorem 5.4 (Shelah) [14]

Con(∃κ reflecting)→ Con(Abs(Σ1(Hω2), proper))↔Con(BPFA).

Proof: The equivalence on the right follows from theorem 4.8 above. For
the first implication, assume that κ is reflecting. We define a countable
support iteration (Pi, Q̇i : i < κ) of proper forcing notions with the following
properties for all i < κ:

1. Pi ∈ Hκ.

2. Q̇i is a Pi-name, °i ”Q̇i is proper, Q̇i ∈ Hκ”.

3. °i 2ℵ1 < κ.

4. At each stage i we choose a Σ1 formula ϕi(x) and some ȧi such that
°i ȧi ∈ Hω2 , such that if for some stage i0 there are ϕ(x) ∈ Σ1(x) and
ȧ such that °i0 ȧ ∈ Hω2 , then there is some j > i0 such that ϕj ≡ ϕ
and °j ȧj = ȧ.

5. °i”if there is a proper forcing notion in Hκ forcing ϕi(ȧi) to hold, then
Q̇i is such a forcing notion”.

6. Pκ |= κ-cc.

7. Whenever ḃ is a Pκ-name for an element of Hω2 , then there are i < κ
and a Pi-name ȧ such that °κ ḃ = ȧ.

Such construction is possible:

• 2 follows from 5 letting Q̇i be a name for a trivial forcing notion if
°i”there is no proper forcing notion in Hκ forcing ϕ(ȧi) to hold”.

• Let P0 be a trivial forcing. Then 1 follows by induction on i < κ - if
Pi ∈ Hκ and °i Q̇i ∈ Hκ, then |Pi ∗ Q̇i| < κ and hence Pi+1 ∈ Hκ:
First, we may, since κ is inaccessible, assume without loss of generality,
that °i Q̇i ⊆ λi for some λi < κ. To each ẋ such that °i ẋ ∈ Q̇i, we
assign a function fẋ : Pi → λi + 1 such that for any p ∈ Pi

1. p ° ẋ = γ → fẋ(p) = γ

2. (@ γ < λi p ° ẋ = γ) → fẋ(p) = λi

Now if fẋ0 = fẋ1 , then °i ẋ0 = ẋ1. As there are less than κ-many such
functions (κ is inaccessible), this implies |Pi+1| < κ.

If i is a limit ordinal, i < κ, then because Pi is a countable support
iteration, |Pi | ≤ (supα<i |Pα|)ℵ0 · iℵ0 < κ, hence Pi ∈ Hκ.

• 3 follows from 1 and lemma 5.3, because they imply °i κ inaccessible.
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• For 4, note that |Hω2 | = 2ℵ1 , hence °i”there are only 2ℵ1 formulas
with parameter in Hω2”. By 3, °i 2ℵ1 < κ.

• 6 follows from 1 using theorem 2.36.

• For 7, note that by theorem 2.35, since Pκ is proper, it does not collapse
ω1; by 7, Pκ does not collapse κ; it follows that °κ ω1 < κ. Let ḃ be
a Pκ-name for an element of Hω2 . We can assume that °κ ḃ ⊆ ω1,
since we can code every element of Hω2 into a subset of ω1 (similar
to definition 1.30) and the decoding is ∆1 (similar to lemma 1.31).
Furthermore we can assume that ḃ is a nice name of the form ḃ =⋃

α<ω1
{α̌} × Aα where each Aα is an antichain of Pκ. Since by 6,

every antichain of Pκ is of size < κ, it follows that ḃ ∈ Hκ. Since Pκ

is a countable support iteration and cf κ > ω, each condition in the
Pκ-name ḃ has bounded support in κ, hence there is γ < κ such that
s(p) ⊂ γ for each condition p appearing in ḃ. Let ḃ′ be the Pγ-name
obtained from ḃ by replacing each condition p appearing in ḃ by p¹γ.
It follows that °κ ḃ′ = ḃ.

From these properties we can now show °κ Abs(Σ1(Hω2), proper): Let ȧ
be a Pκ-name for an element of Hω2 , let ϕ(x) be a Σ1 formula, let Q̇ be a
Pκ-name for a proper forcing notion and assume that

°κ ” °Q̇ ϕ(ȧ)”.

By 7, we may assume that for some large enough i < κ, ȧ is a Pi-name. By
4, we may assume °κ ȧ = ȧi. Now letting R be the Pi-name (Pκ/Gi) ∗ Q̇,
applying fact 2.40, we get

°i ” °R ϕi(ȧi)”.

By lemma 5.3, °i κ reflecting, so by the definition of Q̇i, by lemma 5.2 and
since R is proper (by fact 2.41), we get that °i+1 ϕi(ȧi). So by lemma 2.33,
since ϕi is Σ1 (and hence upwards absolute), °κ ϕi(ȧi), hence °κ ϕ(ȧ). 2

[14] also mentions that by a similar proof, the following can be shown:

Fact 5.5 [14]

Con(∃κ reflecting)→ Con(PE(semiproper))→ Con(BSPFA). 2
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Theorem 5.6 (Shelah) [14] If BPFA holds, then ω2 is reflecting in L.

Proof: Assume BPFA. Let κ := ω2. It is clear that κ is regular in L.

Claim 5.7 Without loss of generality we may assume:

1. 0] does not exist, i.e. the covering lemma holds for L.

2. ℵ2
ℵ1 = ℵ2.

3. There is A ⊆ ω2 such that

(x ⊂ Ord ∧ |x| ≤ ℵ1) → x ∈ L[A].

Proof:

1. If 0] exists, then Lκ≺L (see 1.77), hence κ is reflecting in L (see 1.69).

2. Let Q := coll(ℵ2, {ℵℵ1
2 }). Since Q is ω2-closed, Q is proper and Q adds

no new sets of size ℵ1, hence VQ |= Abs(Σ1(Hω2), proper) and hence
VQ |= BPFA. Moreover, ℵV2 = ℵVQ

2 and VQ |= ℵℵ1
2 = ℵ2.

3. Assuming 2, there are only ℵ2 functions from ω1 to ω2, so we can code
every function from ω1 to ω2 into A ⊆ ω2; it follows that ∀ f : ω1→
ω2 f ∈ L[A] and hence ℵL[A]

2 = ℵ2.

Now, assuming 1, every set x of ordinals of size ≤ ℵ1 can be covered
by some y ∈ L, |y| = ℵ1. Let j : y → ot( y) be order-preserving, then
j[x] ∈ L[A], since by the above, every bounded subset of ω2 is already
in L[A] (and j[x] is such). Since j (and hence j−1) ∈ L, it follows that
x ∈ L[A]. 2Claim 5.7

Proof of theorem 5.6 continued:
Let ϕ(x) be a formula, a ∈ Lκ and assume that χ > κ, Lχ |= ϕ(a) and χ is
a regular cardinal in L. By lemma 1.71 we may assume that χ is a (regular)
cardinal in L[A] or even in V. We have to find an L-cardinal χ′ < κ such
that a ∈ Lχ′ and Lχ′ |= ϕ(a):

Let Q0 := coll(ℵ1, {Lχ[A]}) i.e. the set of countable partial functions
from ω1 to Lχ[A] ordered by extension (note that we only defined coll(γ, S)
for S ⊂ Ord, but exactly the same definition works for S ⊂ V).

In VQ0 , let T be the following tree: Elements of T are of the form
(〈µi : i < α〉, 〈fij : i ≤ j < α〉), abbreviated as 〈µi, fij : i ≤ j < α〉, where
the µi are ordinals less than χ, the fij are a system of commuting order-
preserving embeddings (fij : µi → µj) and α < ω1. T is ordered by the
relation ”is an initial segment of ”.

If B is a branch of T (in VQ0 or any bigger universe) of length δB,
then B defines a directed system 〈µi, fij : i ≤ j < δB〉 of well-orders. Let
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(γB, <B) be the direct limit of this system. If δB = ω1, then (γB, <B)
is a well-order, since any infinite descending sequence in the direct limit
would already appear in some node of T (ω1 is regular), contradicting well-
foundedness of (µi,∈) for some i < ω1.

Let Q1 := PT be the forcing ”sealing the ω1-branches of T ” as defined in
theorem 2.58, which is possible since T fulfills all the necessary requirements,
i.e. T has height ω1, has uncountably many ω1-branches and every node of
T is on some ω1-branch. We let P := Q0 ∗Q1. P is proper.

In VP , we define a model M as follows: Let Ω be a sufficiently large regu-
lar cardinal of VP and let (M,∈) be an elementary submodel of (HΩ

VP
,∈)

of size ℵ1 containing all necessary information, in particular M ⊇ Lχ[A],
which is possible since in VP , |Lχ[A]| = ℵ1.

We now expand (M,∈) to M by adding the following functions, relations
and constants:

• a constant for each element of Lξ, where ξ is chosen such that a ∈ Lξ;

• relations M0,M1 which are interpreted as M ∩HΩ
V,M ∩HΩ

VQ0 ;

• constants χ,A, κ, T, g, b, where b is the function enumerating the bran-
ches of T and g is the specializing function g : T → ω, both defined in
theorem 2.58;

• a function c : χ × ω1 → χ such that, for all δ < χ, if cf(δ) = ℵ1, then
c(δ, ·) : ω1 → δ is increasing and cofinal in δ.

Since M , the underlying set of M, has cardinality ℵ1, we can find an isomor-
phic model M̄ = (ω1, Ē, χ̄, . . .). In V, we have names for all those elements
of VP : ˙̄M, ˙̄E, ˙̄χ, . . .; because BPFA holds, by lemma 4.3, there exists a
sufficiently generic filter G ∈ V for M̄, such that, applying lemma 4.7:

1. (ω1,
˙̄EG) is well-founded.

2. If ψ is a closed formula such that °P M |= ψ, then ˙̄MG |= ψ.

Now let M′ := (M ′,∈, χ′, . . .) be the Mostowski collapse of ˙̄MG and let
M′

0 := (M ′
0,∈) and M′

1 := (M ′
1,∈) be inner models of M′.

Claim 5.8

1. °P M |= ”L[A] |= κ = ℵ2”

2. ℵ1
M′

= ℵ1
V

Proof: Since M is elementary in some sufficiently large HΩ and L[A] is
absolute between VP and V, 1 is equivalent to L[A] |= κ = ℵ2, which was
one of our assumptions in claim 5.7. 2 now follows from 1 :
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• °P M |= ”L[A] |= κ = ℵ2” → °P M |= κ ≤ ℵ2

• °P ℵ1
V ∈ Card, so °P M |= ℵ1

V ∈ Card

Since ℵ1
V < κ, °P M |= ℵ1 = ℵ1

V, hence ℵ1
M′

= ℵ1
V. 2Claim 5.8

With the following two claims, we will finish the proof of theorem 5.6:

Claim 5.9 Lχ′ |= ϕ(a).

Claim 5.10 L |= χ′ ∈ Card.

Proof of Claim 5.9: χ′ ∈ M ′, since M′ satisfies a large fragment of
ZFC, this implies Lχ′ ⊆ M ′. For each y ∈ Lξ, let cy be the associated
constant symbol. By induction on rank(y), ∀ y ∈ Lξ y = cy

M′
. Since

°P M |= ”Lχ |= ϕ(a)”, we thus have M′ |= ”Lχ′ |= ϕ(a)”. But Lχ′ ⊆ M ′,
so Lχ′ |= ϕ(a). 2Claim 5.9

Proof of Claim 5.10: In L[A′], let µ be the cardinality of χ′ and - again
in L[A′] - let ν := µ+. We will use the following to finish our proof:

Claim 5.11 ν ⊂M ′.

We will show that χ′ is a cardinal in L[A′], which is clearly sufficient:
Assume χ′ ∈| CardL[A′], then µ < χ′ and since ν is a cardinal in L[A′],
we can find γ < ν such that Lγ [A′] |= ∃f : µ onto−−→ χ′. By claim 5.11,
γ ∈ M ′, so by the absoluteness properties of relative constructibility and
because M′ satisfies a large fragment of ZFC, we have Lγ [A′] ⊆ M ′, so
M′ |= L[A′] |= χ′ ∈| Card. But we also have °P M |= L[A] |= χ ∈ Card by
our choice of χ, a contradiction. 2Claim 5.10

Claim 5.12 Assume µ < χ′. Then the following hold:

1. ∀ δ (cfL[A](δ) > ℵ0 → cf(δ) > ℵ0)

2. °P ”∀ δ < χ (cfL[A](δ) > ℵ0 → cf(δ) = ℵ1)”

3. (M′ |= cfL[A′](µ) > ℵ0) → (M′ |= cf(µ) = ℵ1)

4. (M′ |= cf(µ) = ℵ1)→ cf(µ) = ℵ1

Proof:

1. Follows directly from our choice of A.
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2. Use 1 and the fact that, since P is proper, cf(δ) > ℵ0 →°P cf(δ) > ℵ0:
For a contradiction, assume that cf(δ) > ℵ0 and in some P -generic
extension V[H], cf(δ) = ℵ0, so there exists a sequence s of length ω
which is cofinal in δ. In V, let S be the set of all countable subsets
of δ, i.e. S := [δ]ℵ0 . Clearly, S is stationary in [δ]ℵ0 . In V[H], let
C := {c : c ⊇ s}∩ [δ]ℵ0 . Clearly, C is club in [δ]ℵ0 and C ∩S = ∅, since
not set in C could be an element of V for this would imply cf(δ) = ℵ0.
Now since C ∩ S = ∅, P cannot be proper, a contradiction.

Since δ < χ and °P χ < ℵ2, it follows that °P cf(δ) = ℵ1.

3. Follows from 2, the fact that M≺HΩ for some sufficiently large Ω,
and the fact that µ < χ′.

4. If M′ |= cf(µ) = ℵ1, then the function c′(µ, ·) is increasing and cofinal
in µ in length ω1

M′
= ω1

V, see claim 5.8, 2. 2Claim 5.12

Proof of Claim 5.11: We will distinguish two cases, according to cf(µ):

1. cf(µ) = ℵ0:

From claim 5.12, 3 and 4, we get M′ |= L[A′] |= cf(µ) = ℵ0. Let
M′ |= ”ν1 is the L[A′]-successor of µ”. We will show that ν1 = ν,
which suffices since M ′ is transitive.

Assume for a contradiction that ν1 < ν. Working in L[A′], we have
|[µ]ℵ0 | = ν, since |[µ]ℵ0 | ≤ 2µ = ν and |[µ]ℵ0 | = µℵ0 ≥ ν since cf(µ) =
ℵ0. Furthermore |Lν1 [A

′]| = ν1 < ν. So we can find y ∈ [µ]ℵ0 such
that y ∈ Lγ [A′] \ Lν1 [A

′] for some γ < ν.

Working in V, |γ| = ℵ1, hence |Lγ [A′]| = ℵ1, so let Lγ [A′] =
⋃

i<ω1
Xi,

where 〈Xi : i < ω1〉 is a continuous increasing chain of countable ele-
mentary submodels of Lγ [A′] with y,A′ ∈ X0. In M′

1, we can find a
continuous increasing sequence 〈Yi : i < ω1〉 of countable elementary
submodels of Lµ[A′] with

⋃
i<ω1

Yi = Lµ[A′] and A′ ∈ Y0 (note that
M′

1 |= µ < χ′, hence M′
1 |= |µ| = ℵ1).

Because both sequences Xi and Yi are club in [Lµ[A′]]ℵ0 , we can find
i < ω1 such that Xi ∩ Lµ[A′] = Yi. Fix such i:

Let j : (Xi,∈, A′, Yi) → (Lγ̂ [Â],∈, Â, Lµ̂[Â]) be the collapsing isomor-
phism (A′ and Yi viewed as unary predicates). Note that Yi = Xi ∩
Lµ[A′] is a transitive subset of Xi (i.e. x ∈ Yi ∧ z ∈ x∩Xi → z ∈ Yi),
so j¹Yi is the Mostowski collapse of (Yi,∈); since Yi ∈ M′

1 and M′
1

satisfies a large fragment of ZFC, it follows that j¹Yi ∈ M ′
1 and

Â ∈M ′
1. Also, j(y) ∈ Lγ̂ [Â] ⊆M ′

1 (since γ̂ < ℵ1), so we can compute
y = {α : (j¹Yi)(α) ∈ j(y)} in M′

1 (since y ⊆ µ < χ′ ∈M ′
1). But

M′ |= ”[µ]ℵ0 ∩M ′
1 = [µ]ℵ0 ∩M ′

0 = [µ]ℵ0 ∩ L[A′] ”.
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The first equality holds because Q0 is a σ-closed forcing notion and
hence does not add any new countable sets, the second because of our
assumption in claim 5.7, 3 :

°P M |= ”[|χ|L[A]]ℵ0 ∩M0 = [|χ|L[A]]ℵ0 ∩ L[A] ”

holds because M≺HΩ for some sufficiently large Ω and because, by
the above-mentioned assumption, [|χ|L[A]]ℵ0 = [|χ|L[A]]ℵ0 ∩ L[A].

Hence M′ |= y ∈ L[A′], so, since y ⊆ µ and L[A′] |= µ+ = ν1,
M′ |= y ∈ Lν1 [A

′], a contradiction to our choice of y.

2. cf(µ) = ℵ1:

We let γ < ν and show that γ ∈M ′:

Since L[A′] |= |γ| = µ, in L[A′] we can find an increasing sequence
〈Aξ : ξ < µ〉 such that γ =

⋃
ξ<µAξ where each Aξ has cardinality < µ

in L[A′]. Let αξ := ot(Aξ) for each ξ < µ, then the inclusion maps from
Aξ into Aζ naturally induce order-preserving functions fξζ : αξ → αζ .

Let B := 〈αξ, fξζ : ξ ≤ ζ < µ〉 and write B¹β for 〈αξ, fξζ : ξ ≤ ζ < β〉,
β < µ. Like above, it follows that the direct limit of the system
B is a well-ordered set and has order type γ, since each element of
γ is canonically connected to some element of the direct limit and
vice versa. B ∈ L[A′], but each initial segment B¹β is already in
Lµ[A′], since it can be coded by a bounded subset of µ. Since Lµ[A′] ⊆
Lχ′ [A′] ⊆M ′

1, we know that ∀β<µ B¹β ∈M ′
1.

In M′
1, cf(µ) = ℵ1 since µ ≤ χ′ < ℵ2

M′
1 , so we let 〈ξi : i < ω1〉

be an increasing cofinal subsequence of µ. Let βi := αξi and hij :=
fξiξj . Note that the direct limit of the system 〈βi, hij : i ≤ j < ω1〉
is still a well-ordered set of ot γ, since every element of the direct
limit of B can be identified with an element of this thinned out direct
limit canonically. For each δ < ω1, we know that the sequence bδ :=
〈βi, hij : i ≤ j < δ〉 is in M ′

1 and M′
1 |= bδ ∈ T ′.

Now we can (in V) find an uncountable set C ⊆ ω1 and n ∈ ω such that
∀ δ ∈ C g′(bδ) = n. By the properties of g and hence g′, we have that
for each δ1 < δ2 ∈ C, there is a unique branchBα

′ = {b′(α, β) : β < ω1}
with {bδ1 , bδ2} ⊆ Bα

′. α might depend on {δ1, δ2}, but since for α 6= β,
Bα

′ ∩Bβ
′ = ∅, we must have the same α for all δ ∈ C.

So 〈bδ : δ ∈ C〉 is cofinal on some branch Bα
′ ∈ M ′. So γ, the

order-type of the directed system defined by Bα
′ has to be in M ′.

2Claim 5.11 2Theorem 5.6

Corollary 5.13 By fact 5.5, we also get the following:

• Con(BPFA)↔Con(∃κ reflecting)↔Con(BSPFA)
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6 More on Σ1
3 Absoluteness

Theorem 6.1 [2]
For any poset P , Abs(Σ1(Hω2), P )→ Σ1

3 Absoluteness for P .

Proof: Let a ⊆ ω, let ϕ(a) ≡ ∃x ⊆ ω ∀y ⊆ ω ∃z ⊆ ω ψ(x, y, z, a) be a Σ1
3-

formula, let B := B(P ), assume [[ϕ(ǎ) ]]B = 1 and Abs(Σ1(Hω2), P ) holds.
Note that this implies [[ωV

1 ∈ Card ]]B = 1. By corollary 1.58,

[[∃x⊆ω (Lω1 [ǎ, x] |= ∀y⊆ω ∃z⊆ω ψ(x, y, z, ǎ)) ]]B = 1.

Since the map α 7→ Lα[a, x] is Σ1(a, x)-definable, the sentence

∃x⊆ω (Lω1 [a, x] |= ∀y⊆ω ∃z⊆ω ψ(x, y, z, a)) (7)

is Σ1(a, ω1) - it is equivalent to: ∃x⊆ω ∀α∈ω1 ∀y∈Lα[a, x] y⊆ω →
∃β∈ω1 ∃z∈Lβ[a, x] (z⊆ω ∧ ψ(x, y, z, a)).

By Abs(Σ1(Hω2), P ), (7) holds in V. So, for some x0⊆ω,

V |= ”Lω1 [a, x0] |= ∀y⊆ω ∃z⊆ω ψ(x0, y, z, a)”.

By upward absoluteness, V |=∀y⊆ω ∃z⊆ω ψ(x0, y, z, a), hence V |=ϕ(a). 2

Corollary 6.2

1. MAω1 → Abs(Σ2(Hω1), ccc)

2. BPFA→ Abs(Σ2(Hω1), proper)

3. BSPFA→ Abs(Σ2(Hω1), semiproper)

4. BMM→ Abs(Σ2(Hω1), stationary-preserving)

Observation:
It is easy to see that the implications 2 -4 above cannot be reversed, since
BMM → BSPFA → BPFA → MAω1 → ¬CH (MA2ℵ0 is inconsistent with
ZFC by lemma 2.73), but each of the absoluteness principles in 2 -4 remains
true after collapsing the continuum to ω1 by coll(ω1, {2ℵ0}), which is σ-closed
(and therefore proper), hence they are all consistent with CH. After the
next theorem, we will be able to show that also the implication in 1 above
cannot be reversed.
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6.1 Σ1
3-absoluteness for proper forcing

Theorem 6.3 (Friedman) [12][11]
Σ1

3-absoluteness for proper forcing is equiconsistent with ZFC.

Proof: By an ω1-iteration P0 of proper forcings with countable support it-
eration, we produce a generic G0 such that L[G0] satisfies Σ1

3-absoluteness
for proper forcing for formulas with parameters in L which is possible since
by GCH, there are only ℵ1 reals in L, properness is preserved by count-
able support iteration and Σ1

3-formulas are upwards absolute for set-forcing
extensions by corollary 1.59.

We can assume that |P0| = ℵ1 in L[G0], as if necessary we can follow
P0 by a Lévy Collapse with countable conditions to ω1: P0 ∈ HL

θ for some
regular L-cardinal θ. Let C0 := coll(ω1, {HL

θ })L[G0] and let H0 be generic
for C0 over L[G0]. C0 ⊆ H

L[G0]
θ , since each f ∈ C0 is a function with

countable domain from ω1 into HL
θ , i.e. f ∈ HL[G0]

θ , hence H0 ⊆ HL[G0]
θ and

in L[G0,H0], both G0 and H0 have cardinality ℵ1, so we can find X0 ⊆ ω1

such that L[X0] = L[G0,H0].

Now repeat the above over the model L[X0], guaranteeing with a proper
countable support iteration of length ω1 that proper absoluteness holds in
L[(X0, X1)] for Σ1

3-formulas with real parameters from L[X0] and X1 ⊆ ω1.
Repeat this for ω1 stages, producing L[〈Xi : i < ω1〉], a model where proper
absoluteness holds for Σ1

3-formulas with parameters in
⋃

i<ω1
L[〈Xj : j < i〉]:

If λ is a limit ordinal and for each γ < λ, we have a model L[〈Xi : i <
γ〉] satisfying proper absoluteness for Σ1

3-formulas with real parameters in⋃
j<γ L[〈Xi : i < j〉], then L[〈Xi : i < λ〉] is our desired model at stage λ. If

λ = γ + 1 ≥ 2 and we have a suitable model M = L[〈Xi : i < γ〉], then, by
lemma 1.53, M |= GCH and we can proceed over M as we did over L above
to obtain a suitable model at stage λ.

Every real in L[〈Xi : i < ω1〉] belongs to L[〈Xj : j < i〉] for some i < ω1:
For every β < ω1, let Yβ := 〈Xi ∩ β : i < β〉. Since each Yβ is countable, it
can be coded into a subset of ω, hence we can find X ⊆ ω1 such that for
each limit ordinal β < ω1, X ∩ β codes Yβ and X codes 〈Xi : i < ω1〉.

Assume r is a real in L[〈Xi : i < ω1〉] = L[X]. Then r belongs to
some countable, elementary submodel M of Lω1 [X], which is transitive by
corollary 1.51. By lemma 1.52, M = Lβ[X ∩ β] for some β < ω1, hence
r ∈M ⊆ L[X ∩ β] = L[〈Xi ∩ β : i < β〉] ⊆ L[〈Xi : i < β〉].

Thus L[〈Xi : i < ω1〉] is a model of Σ1
3-absoluteness for proper forcing. 2

The same proof (using a revised countable support iteration of semiproper
forcings) yields the following:
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Theorem 6.4 (Friedman) [12]
Σ1

3-absoluteness for semiproper forcing is equiconsistent with ZFC. 2

As announced before, we can now conclude that the implication in corol-
lary 6.2, 1 cannot be reversed:

Corollary 6.5 Abs(Σ2(Hω1), ccc) 6→ MAω1

Proof: By lemma 2.73, MAω1 → ¬CH.
We show that Abs(Σ2(Hω1), ccc) is consistent with CH:
Applying theorem 6.3, let M be a model for Abs(Σ2(Hω1), proper) and let
C := coll(ω1, {2ℵ0})M. Then, since C is proper, Abs(Σ2(Hω1), proper) still
holds in MC , implying MC |= Abs(Σ2(Hω1), ccc) ∧ CH. 2

6.2 Σ1
3-absoluteness for ω1-preserving forcing

Theorem 6.6 (Friedman, Bagaria) [9] Suppose ω1 = ω1
L. Then Σ1

3-
absoluteness fails for some ω1-preserving forcing.

Proof: For each countably infinite ordinal α, let gα be the <L-least function
mapping ω onto α. For each n ∈ ω, fix λn such that Sn := {α : gα(n) = λn}
is stationary, which is possible by fact 1.26, since for each fixed n ∈ ω,
gα(n) < α, hence α 7→ gα(n) is regressive. By theorem 2.49, we may add,
preserving ω1, a club subset Cn of Sn. Let Gn be generic for this forcing.
In V[Gn],

∃Cn ⊆ ω1 club: ∀ξ, χ ∈ Cn gξ(n) = gχ(n).

By using the method of almost disjoint coding of a function (section 2.2.6),
we may add a real bn such that whenever a ∈ P(ω) ∩ L codes a countable
ordinal (in the sense of definition 1.30), then bn¯ a codes the least member
of Cn that is strictly larger than that ordinal. Before we can continue with
the main proof, we need the following:

Lemma 6.7 If Lη[bn] is admissible, then Lη is amenable.

Proof: Pairing, Union, Infinity, Cartesian Product and Σ0-Comprehension
all hold in Lη because they hold both in Lη[bn] and L, hence the (unique)
required sets can be found in their intersection, Lη. 2

Lemma 6.8 If Lη is amenable, Lη |= θ ∼= ω, then Lη |= ∃ c ⊆ ω c codes θ.

Proof: Lη |= ∃f : θ ∼= ω, by Σ0-Comprehension, Lη |= ∃f : (θ + 1) ∼= ω.
Choose such f and note that (θ + 1) = tcl({θ}). Lη |= ∃ω × ω, so we can
define E := {(x, z) ∈ ω × ω : f−1(x) ∈ f−1(z)} using Σ0-Comprehension. It
follows that f : (tcl({θ}),∈) ∼= (ω,E). Let r := {i ∈ ω : ∃x ∈ E Γ(a) = i}.
Then r ∈ Lη and r codes θ. 2
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Lemma 6.9 If M = Lη[bn] is a countable admissible set such that

M |= every ordinal is constructibly countable,

then η ∈ Cn.

Proof: Let θ < η and let c ∈ Lη be a subset of ω coding θ. By admissibility
of M , bn ¯ c ∈M . bn ¯ c codes a member ζ of Cn greater than θ. Ebn¯c =:
E ∈ M by Σ0-Comprehension and since Γ ∈ M . We can define the graph
of πE , the collapsing map of E, as a binary Σ1-predicate on M : πE(x, z)↔
∃F : tclE(x)→ tcl({z})∀y ∈ tclE(x) F (y) = {F (t) : tEy} ∧ F (x) = z.

Hence by Σ1-Collection, range(πE¹field(E)) = tcl({ζ}) ∈ M . Since M is
transitive, ζ ∈M , henceforth ζ < η. Hence Cn is unbounded in η. As Cn is
closed, η ∈ Cn. 2

Proof of theorem 6.6 continued: Let ϕ(η, bn) be a formula expressing

Lη[bn] |= KP ∧ every ordinal is constructibly countable.

Our construction has added a real bn such that

∀θ1<θ2<θ3<ω1(ϕ(θ1, bn)∧ϕ(θ2, bn)∧ϕ(θ3, bn))→Lθ3 [bn] |=gθ1(n)=gθ2(n) :

Let i ∈ {1, 2}. If ϕ(θ3, bn) holds, then Lθ3 |= θi
∼= ω, since gθi was defined

to be the <L-least function mapping ω onto θi, it follows that gθi ∈ Lθ3 ⊆
Lθ3 [bn]. Since ϕ(θi, bn) implies θi ∈ Cn (lemma 6.9), the above follows.

The above statement (call it ν(bn, n)) is Π1(bn, n)Hω1 , hence ∃b ⊆ ω ν(b, n)
is Σ2(n)Hω1 . Assuming that Σ1

3-absoluteness holds for ω1-preserving forcing,
it will be true in the ground model, witnessed by some Bn ⊆ ω.

Consider Lω1 [Bn]: It is a model of KP ⊆ ZF− and believes that every
ordinal is constructibly countable. Therefore there is a club Dn := {η <
ω1 : Lη[Bn]≺Lω1 [Bn]} in the ground model such that each η ∈ Dn satisfies
ϕ(η,Bn). Let D :=

⋂
n<ω Dn. D is a club. If θ1 < θ2 < θ3 ∈ D, then

∀n ∈ ω Lθ3 |= gθ1(n) = gθ2(n), a contradiction. Hence Σ1
3-absoluteness fails

for some ω1-preserving forcing. 2

Corollary 6.10 Σ1
3-absoluteness for ω1-preserving forcing implies that ω1

is inaccessible to reals.

Proof: In the above theorem, start with L[x], x ⊆ ω instead of L. Like
above, show that Σ1

3(x)-absoluteness for ω1-preserving forcing implies that
ω1 > ω

L[x]
1 (using fact 1.46). 2

Corollary 6.11 Σ1
3-absoluteness for ω1-preserving forcing is equiconsistent

with the existence of a reflecting cardinal.

Proof: Follows directly from corollary 6.10 and theorem 6.15 below. 2
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6.3 Σ1
3-absoluteness for class forcing

We are going to show that Σ1
3-absoluteness for ω1-preserving class forcing

is false. Our proof will make use of the following two theorems, which we
will not give proofs of in this paper:

Theorem 6.12 (Jensen’s Coding Theorem) ([10], section 4.3)
Suppose (M,A) is a model of ZFC. Then there is an (M,A)-definable class
forcing P such that if G ⊆ P is P -generic over (M,A):

• (M [G], A,G) |= ZFC.

• (M [G], A,G) |= ∃r ⊆ ω V = L[r] ∧A,G are definable from r.

Moreover, P preserves cardinals and cofinalities. 2

Theorem 6.13 ([5], Theorem 1) Let M be a transitive model of ZFC s.t.
M |= V = L[b] for some b ⊆ ω. Then there is an M -definable class P of
conditions such that if N is a P -generic extension of M , then:

• N is a model of ZFC, N |= ∃a ⊆ ω V = L[a].

• ∀α ∈ OrdN Lα[a] 6|= ZFC.

Moreover, P preserves ω1. 2

Theorem 6.14 [9] Suppose M is a model of ZFC. Then there is an ω1-
preserving class-generic extension N of M and a Σ1

3-sentence with real pa-
rameters from M which is true in N and false in M .

Proof: By theorem 6.12, M can be extended to a model of the form L[r],
r ⊆ ω. By theorem 6.13, L[r] can be extended to a model of the form L[s],
s ⊆ ω, such that in L[s], ∀α ∈ Ord Lα 6|= ZFC.

Hence the following holds in L[s] (let ]ZFC ⊆ ω := {]ϕ : ϕ ∈ ZF}):

Hω1 |= ∃s ⊆ ω ∀α ∈ Ord∃g ∈ ω g ∈ ]ZFC ∧ Sat(Lα[s], F¬(g)).

As the above statement is ΣHω1
2 , it is equivalent to some sentence ϕ ∈ Σ1

3.

Work in M and assume for a contradiction that ϕ holds. Let s ⊆ ω be
some witness for ϕ. Note that ϕ implies that ω1 is not inaccessible to reals,
since otherwise Lω1 [s] |= ZFC, hence by a Löwenheim-Skolem argument,
∃α < ω1 Lα[s] |= ZFC, contradicting ϕ. By corollary 6.10, it follows that
already Σ1

3-absoluteness for ω1-preserving set forcing fails in M . 2
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6.4 Σ1
3-absoluteness for proper forcing & ω1 inaccessible to

reals

Theorem 6.15 (Friedman) [12] ”Σ1
3-absoluteness for proper forcing and

ω1 is inaccessible to reals” is equiconsistent with the existence of a reflecting
cardinal.

Proof: Assume first that there exists a reflecting cardinal κ. Like in the-
orem 3.1, let G be generic for coll(ω, κ) to obtain a model V[G] where
Σ1

3-absoluteness holds for arbitrary set-forcing and (by corollary 6.10) ω1 is
inaccessible to reals.

For the other direction, assume that Σ1
3-absoluteness holds for proper

forcings and that ω1 is inaccessible to reals. We may assume that ω1 is not
Mahlo in L, since otherwise Lω1 |= ∃κ reflecting (see corollary 1.75). We
will show that ω1 is reflecting in L:

Let κ denote ωV
1 and assume that for some L-cardinal λ ≥ κ, some closed

formula ϕ(x) and some x ∈ Lκ, Lλ |= ϕ(x). We may assume that 0] does
not exist, as otherwise κ is reflecting in L by corollary 1.77.

In a countably closed set-forcing extension, there is A ⊆ ω1 such that:

• λ < ω2, in fact, λ is less than the height of the least transitive model
of ZF− containing A and κ,

• P(ω1) ⊆ L[A], in particular, ω2 = ω
L[A]
2 .

A is obtained as follows: Let δ > λ be a singular strong limit cardinal of
uncountable cofinality. Since 0] does not exist, we have δ+ = (δ+)L and
2δ = δ+ (see lemma 1.81 and lemma 1.28). Now we force with Coll :=
coll(ω1, {δ}), since δ<ω = δ, Coll is δ+-cc (see lemma 2.47, 2) and hence
δ+ = ωVColl

2 = (δ+)L. As Coll is σ-closed, P(ω)V
Coll

= P(ω)V, since δ is
a strong limit cardinal in V, 2ℵ0 < δ, hence in VColl, |P(ω)| = 2ℵ0 = ω1.
In VColl, any S ⊆ ω1 has a name Ṡ in V, of the form

⋃
γ<ω1
{γ̌} ×Aγ with

Aγ ⊆ Coll. Since in V, |Coll | = δ, there are only δ+ such names, implying
VColl |= 2ω1 = ℵ2. So in VColl, we can find B ⊆ ω2 coding every subset of
ω1. Now we code B by A ⊆ ω1 with a σ-closed almost disjoint forcing to
obtain a σ-closed (and therefore proper) extension in which every subset of
ω1 belongs to L[A]: In VColl, let G ⊆ ω1 code a surjection from ω1 onto δ.
Since δ+ = (δ+)L, L[G] |= ω2 = δ+. So we can choose an almost disjoint
family A on ω1 of size δ+, A ∈ L[G]. Now we force with the σ-closed al-
most disjoint coding PA,B and work in W := VColl∗PA,B : Choose A ⊆ ω1

such that A codes both G and the set coding B obtained by forcing with
PA,B. Since every subset of ω1 in VColl is an element of L[A], it follows that
(Hω2)

VColl ⊆ Lω2 [A]. Moreover, (Hω2)
W ⊆ Lω2 [A] = (Hω2)

L[A]: Work in
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W. For x ∈ Hω2 , let Ex ⊆ ω1 code x. Ex has a nice name in VColl, of the
form Ėx =

⋃
γ∈ω1
{γ̌} × Aγ , where each Aγ is an antichain of PA,B. Since

ω1
ℵ0 = 2ℵ0 = ω1 in VColl, by lemma 2.64, PA,B is ω1-centered and therefore

ω2-cc. Hence ∀γ < ω1 |Aγ | ≤ ω1, i.e. Ėx ∈ (Hω2)
VColl ⊆ Lω2 [A]. Since we

can decode the generic g for PA,B from A, g ∈ L[A], hence Ex = Ėx
g ∈ L[A]

- in fact, Ex ∈ Lω2 [A], hence x ∈ Lω2 [A]. Also note that, since PA,B is σ-
closed, W |= CH. Furthermore we may demand that A also codes λ in W,
which gives us the property that λ is less than the height of the least transi-
tive model of ZF− containing A, i.e. λ ∈M for every transitive M |= ZF−

s.t. A ∈M , in particular this gives us λ < ω2.

In L[A], the following holds:

(∗) If Lα[A] |= ZF− ∧ α > κ, then Lα[A] |= ∃λ ∈ CardL Lλ |= ϕ(x).

Now we add A∗ ⊆ κ with the following improved version of (∗):

(∗∗) If Lα[A∗ ∩ γ] |= ”ZF− ∧ α > γ = ω1”, then

Lα[A∗ ∩ γ] |= ∃λ ∈ CardL Lλ |= ϕ(x).

A∗ is obtained as follows:

P := {p bnd⊆ ω1 : ∀γ ≤ sup p ∀α > γ (∗ ∗ ∗)(p, γ, α)}

where p
bnd⊆ ω1 iff p is a bounded subset of ω1 and (∗ ∗ ∗)(p, γ, α) is the

condition that if Lα[A ∩ γ, p ∩ γ] |=”ZF−∧ γ=ω1”, then

Lα[A ∩ γ, p ∩ γ] |= ∃λ ∈ CardL Lλ |= ϕ(x)

and P is ordered by end-extension.

Lemma 6.16 The generic for P is unbounded in ω1.

Proof: Given p0 and ξ < ω1, Dξ := {p ∈ P : ξ ≤ sup p} will be hit by the
following condition p ≤ p0: Let δ := sup p0, assume δ < ξ < ω1 and let
E ⊆ [δ + 1, δ + ω) code the ∈-relation on ξ. If p0 ∪ [δ + 1, ξ] is a condition
in P , we can choose p like that. Otherwise, consider p := p0 ∪E ∪ [δ+ω, ξ];
if this a condition, we can choose p like that, and indeed this is a condition
in P , since if γ is a limit ordinal, γ ≤ ξ, α > γ, γ = ω

Lα[A∩γ,p∩γ]
1 > δ and

Lα[A∩γ, p∩γ] |= ZF−, then E ∈ Lα[A∩γ, p∩γ], hence Lα[A∩γ, p∩γ] |= ξ ∼=
ω, a contradiction, implying that for no such γ and α, Lα[A∩γ, p∩γ] |= ZF−,
hence (∗ ∗ ∗)(p, γ, α) holds for all γ and α to be considered. 2

Lemma 6.17 P is proper.
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Proof: We show that for club-many countable N≺Lω2 [A], each condition
p ∈ N can be extended to a condition q such that q forces the generic to
intersect D ∩ N whenever D is a dense set in N . We take all countable
N≺Lω2 [A] which have A as element and tcl({x}) as subset. Suppose that
p ∈ N and let N ∼= N̄ = Lγ [A ∩ β] with β = ω1

N̄ .
Since we assumed that κ is not Mahlo in L, the set of regular cardinals

below κ is not stationary in L, i.e. there exists a club C ⊆ κ in L consisting
of singular L-cardinals only. By elementarity of N, there exists such C
in N . Consider the structure (N,∈, A, C) with A,C as unary predicates
interpreted as A ∩ N , C ∩ N . By lemma 1.50, κ ∩ N = β < κ, hence
C ∩N ⊆ β and C ∩ β is unbounded in β, implying β ∈ C and hence β is a
singular L-cardinal. As β = ω1

N̄ , N̄ |= β is a regular cardinal. So we have

• Lγ |= β is a regular cardinal,

• L |= β is a singular cardinal.

If γ were some ordinal ≥ (β+)L, then Lγ would correctly compute singularity
of β; it follows that β < γ < (β+)L, implying that γ is not an L-cardinal.
Let µ be the least ordinal such that γ is collapsed in Lµ (µ < (β+)L).

We will build q to be an extension of p of length β, as the union of
conditions of length less than β. Then (∗ ∗ ∗)(q,< β, α) always holds due to
the fact that q is the union of conditions of length less than β.

(∗ ∗ ∗)(q, β,< γ) holds by elementarity of N in Lω2 [A]:

Lω2 [A] |= ∀α > ω1 Lα[A] |= ZF− → Lα[A] |= ∃λ ∈ CardL Lλ |= ϕ(x),

since A ∈ N and tcl({x}) ⊆ N , the same holds in N̄, i.e.: N̄ = Lγ [A ∩ β] |=
∀α > ω1 Lα[A∩β] |= ZF− → Lα[A∩β] |= ∃λ ∈ CardL Lλ |= ϕ(x), therefore
∀α (β < α < γ∧Lα[A∩β] |= ZF−)→ Lα[A∩β] |= ∃λ ∈ CardL Lλ |= ϕ(x).
Now if β < α < γ and Lα[A ∩ β, q] |= ZF−, then also Lα[A ∩ β] |= ZF−

(since Lα[A ∩ β] = (L[A ∩ β])Lα[A∩β,q]) and so by the above, Lα[A ∩ β] |=
∃λ ∈ CardL Lλ |= ϕ(x) and the same holds in Lα[A ∩ β, q].

(∗ ∗ ∗)(q, β, γ) also holds by elementarity of N in Lω2 [A], since Lω2 [A] |=
∃λ ∈ CardL Lλ |= ϕ(x), so Lγ [A ∩ β, q] |= ∃λ ∈ CardL Lλ |= ϕ(x).

(∗∗∗)(q, β, α) also holds for γ < α < µ, as in this case any cardinal of Lγ

is also a cardinal of Lα: Since µ is least such that γ is collapsed in Lµ, γ is a
cardinal in Lα for γ < α < µ. Assume Lγ |= λ ∈ Card and Lα |= λ∈| Card

for some λ, i.e. λ < γ and Lα |= ∃ν < λ∃f : ν onto−−→ λ. But such f would be
inside Lγ , since γ is a cardinal in Lα, a contradiction.

As we have observed above, there is λ such that Lγ [A∩β] |= λ ∈ CardL∧
Lλ |= ϕ(x). Since also Lα |= λ ∈ CardL, Lα[A ∩ β, q] |= λ ∈ CardL, i.e.
(∗ ∗ ∗)(q, β, α) holds.
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Thus it suffices to build q extending p of length β as the union of conditions
of length less than β in a way that β is collapsed in Lµ′ [A∩β, q], where µ′ ≥ µ
is least such that Lµ′ [A∩ β, q] |= ZF− (and henceforth Lµ′ [A∩ β] |= ZF−),
for then (∗ ∗ ∗)(q, β, α) is vacuous for α ≥ µ, since the left hand side of the
implication in (∗ ∗ ∗)(q, β, α) cannot hold.

γ is collapsed in Lµ′ . If β is collapsed in Lµ′ [A ∩ β], then any union of
conditions of length less than β will again be a condition, since β is also
collapsed in Lµ′ [A ∩ β, q]. So assume that β is not collapsed in Lµ′ [A ∩ β],
i.e. β = ω1

Lµ′ [A∩β]. Since Lγ [A ∩ β] |= @ω2 and γ < µ′, Lµ′ [A ∩ β] |= γ ∼= β.
So we can write Lγ [A ∩ β] as the union of a continuous increasing chain of
elementary submodels of Lγ [A ∩ β] of the form 〈Mi : i < β〉 where each Mi

is countable in Lµ′ [A ∩ β], the chain itself belongs to Lµ′ [A ∩ β] and for all
i < β, Mi∩β ∈Mi+1. Let B be the set of intersections of the models of this
chain with β, a club in β. We will choose an ω-sequence p = p0 ≥ p1 ≥ . . .
of conditions below p such that each pn belongs to N , each dense set in N
is forced by some pn to intersect the generic and if q =

⋃{pn : n ∈ ω}, then
{η ∈ B : η ∈ q} is a cofinal subset of B of order-type ω. Then β is collapsed
in Lµ′ [A ∩ β, q], as desired.

To define 〈pn : n ∈ ω〉, enumerate the dense D ∈ N in an ω-sequence
〈Dn : n ∈ ω〉 and choose a cofinal subsetB0 ofB of order-type ω. Inductively,
choose pn as follows: If pn is defined then first extend pn to p′n of length
sup(pn)+ω, such that at the ω new ordinals, p′n codes some Mi ∩β =: xn ∈
B0, where both Dn and p′n belong to Mi+1: assume pn ∈ N ; since pn

bnd⊆ ω1,
letting π be the collapsing map of N, it follows that π(pn) = pn, and for
every bounded subset of ω1 in N , the same holds, hence every bounded
subset of ω1 in N is an element of some Mj . Since every ordinal below β is
seen to be countable in N, it follows that N |= x ∼= ω for every x ∈ B, hence
also Lγ [A ∩ β] |= x ∼= ω, by elementarity it follows that for every Mj such
that x ∈ Mj , it holds that Mj |= x ∼= ω. Since Mj |= ZF−, it follows that
if x ∈ Mj then there is a real in Mj coding x. So let i be least such that
Dn ∈ Mi+1 and xn ∈ B0. By our assumption about the Mi-chain, it holds
that xn ∈Mi+1, hence Mi+1 contains p′n.

Since xn ∈ Mi+1, we can further extend p′n to p′′n ∈ Mi+1 by setting
p′′n := p′n ∪ {xn}. Note that if α > δ > sup(pn), δ ≤ sup(p′′n) and Lα[A ∩
δ, p′′n ∩ δ] |= ZF−, then it collapses δ, hence p′′n is actually a condition.

Finally, we choose pn+1 ≤ p′′n to belong to Dn ∩Mi+1: Since Dn ∈ N ,
N |= ”Dn is dense” and Dn consists of bounded subsets of ω1 in N , which
remain unchanged under π, it follows that π(Dn) = Dn ∩N , π(Dn) is dense
in Lγ [A∩ β], hence by elementarity, Dn ∩Mi+1 is dense in Mi+1, so we can
obtain Dn∩Mi+1 3 pn+1 ≤ pn with the additional property that no element
of the form Mj ∩ β, j > i is an element of pn+1 (since none of them is an
element of Mi+1). This implies that {ν ∈ B : ν ∈ q} is a cofinal subset of B
of order-type ω, as desired. 2
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Proof of theorem 6.15 continued: Let A∗ code A and the generic H for P
such that A∗ := {2β : β ∈ A} ∪ {2β + 1: β ∈ ⋃

H}. Thus A∗ satisfies the
condition in (∗∗), since this is guaranteed for countable γ by the definition
of P and for γ = ω1 by construction of A.

As κ is not Mahlo in L, there is a club C ⊆ κ, C ∈ L, consisting of L-
singular cardinals. Let 〈χi : i < κ〉 be the increasing enumeration of C ∪{0}
and for each i let Si be a real coding the countable ordinal χi+1. Let D :=
{χi + n : i < κ ∧ n ∈ Si}. Then χ ∼= ω implies L[D ∩ χ] |= χ ∼= ω, since if
for some i, χ = χi+1, then L[D ∩ (χi + ω)] |= χ ∼= ω, if χ is a limit point
of C, then L[D ∩ χ] |= β ∼= ω for all β < χ, assuming ¬L[D ∩ χ] |= χ ∼= ω
thus implies L[D ∩ χ] |= χ = ω1, a contradiction since χ is a singular L-
cardinal by assumption; if for some i < κ, χi < χ < χi+1, it also holds that
L[D ∩ χ] |= χ ∼= ω by construction of D. Let A∗∗ code D and A∗ such that
A∗∗ = {2β : β ∈ A∗} ∪ {2β + 1: β ∈ D}. Now A∗∗ satisfies the condition in
(∗∗) and χ ∼= ω → L[A∗∗ ∩ χ] |= χ ∼= ω.

Now we codeA∗∗ by a realR such that for all α, if Lα[R] |= ”ZF−, ∃γ = ω1

and ∀χ (χ ∼= ω → L[A∗∗ ∩ χ] |= χ ∼= ω)”, then

(∗ ∗ ∗∗) Lα[R] |= ∃λ ∈ CardL Lλ |= ϕ(x) :

We choose distinct reals Rχ, χ < ω1, such that Rχ can be defined uni-
formely in L[A∗∗ ∩ χ]: Let R0 be the <L-least real. Having constructed
(Rξ)ξ<χ, we let Rχ := the <L[A∗∗∩χ]-least real distinct from (Rξ)ξ<χ, which
exists as L[A∗∗ ∩ χ] |= χ ∼= ω. Let B := (Rξ)ξ<ω1 . By lemma 1.23, we may
assume that (Rχ)χ<ω1 in fact is an almost disjoint family on ω.

Now we force with the almost disjoint coding PB,A∗∗ to code A∗∗ by a
real R. It follows that ∀β < ω1 β ∈ A∗∗↔|R ∩Rβ| < ω.

If Lα[R] |= ”ZF− ∧ γ = ω1 ∧ ∀χ (χ ∼= ω → L[A∗∗ ∩ χ] |= χ ∼= ω)”, then
(Rξ)ξ<γ is definable in Lα[R]: By induction, if (Rξ)ξ<χ is definable for some
χ < γ = ω1

Lα[R] in Lα[R], this allows us to define A∗∗ ∩ χ. Since χ < γ,
Lα[R] |= χ ∼= ω and hence by our above assumption Lα[A∗∗ ∩ χ] |= χ ∼= ω,
so there is a real distinct from (Rξ)ξ<χ in Lα[A∗∗ ∩ χ], so we let Rχ be the
least real distinct from (Rξ)ξ<χ in Lα[A∗∗ ∩ χ].

We finally get that if Lα[R] is as above, then A∗∗ ∩ ωLα[R]
1 is definable in

Lα[R], so the following holds in our final forcing extension:

∀α < ω1 Lα[R] |= ”ZF−∧∃γ = ω1∧∀χ (χ ∼= ω → L[A∗∗∩χ] |= χ ∼= ω)” →

Lα[R] |= ∃λ ∈ CardL Lλ |= ϕ(x).

The above is a Π1(Hω1)-condition on R, so by Abs(Σ2(Hω1), proper), it fol-
lows that the condition holds for some real R in V.
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Assume Lα[R] |= ”ZF− ∧ ∃γ = ω1 ∧ ∀χ (χ ∼= ω → L[A∗∗ ∩ χ] |= χ ∼= ω)”
and α≥ω1. Then the same holds in some countable elementary submodel
of Lα[R] of the form Lα′ [R] for some α′ < ω1. Applying our above result, it
follows that, again by elementarity, Lα[R] |= ∃λ ∈ CardL Lλ |= ϕ(x).

By our assumption that ω1 is inaccessible to reals, it follows that Lω1 [R] |=
∃ω1. Furthermore Lω1 [R] |= ZF− ∧∀χ (χ ∼= ω → L[A∗∗ ∩χ] |= χ ∼= ω)”. So
Lω1 [R] |= ∃λ ∈ CardL Lλ |= ϕ(x) and hence we obtain that

∃λ < ω1 λ ∈ CardL ∧ Lλ |= ϕ(x),

i.e. κ = ωV
1 is reflecting in L. 2

6.5 Σ1
3-absoluteness for stationary-preserving forcing

Theorem 6.18 (Friedman) [12] Σ1
3-absoluteness for stationary-preserv-

ing forcing implies that ω1 is inaccessible to reals.

Corollary 6.19 Σ1
3-absoluteness for stationary-preserving forcing is equi-

consistent with the existence of a reflecting cardinal.

Proof: Follows immediately from theorem 3.1 and theorem 6.15. 2

Before we start the proof of theorem 6.18, we need the following:

Lemma 6.20 [12] If R] does not exist for some R ⊆ ω and λ ⊆ Ord, then
λ is constructible from a real r in a stationary-preserving forcing extension,
moreover, in this extension, Hω2 = Lω2 [r].

Proof: First we produce A ⊆ ω1 by a countably-closed forcing such that
in the extension Hω2 = Lω2 [A] and λ ∈ Hω2 , which works very much like
in theorem 6.15, we will give a sketch here (note our remark in section
1.7.5 about the relativization of results about 0], which we will use in the
following): Let δ > supλ be a singular strong limit cardinal of uncountable
cofinality. Since R] does not exist, δ+ = (δ+)L[R] and 2δ = δ+. Now we
force with Coll := coll(ω1, {δ}). It follows that δ+ = ωVColl

2 = (δ+)L[R],
P(ω)V

Coll
= P(ω)V, VColl |= |P(ω)| = 2ℵ0 = ω1 and VColl |= 2ℵ1 = ℵ2. So

in VColl, we can find B ⊆ ω2 coding every subset of ω1. Now we code B
by A ⊆ ω1 with a σ-closed almost disjoint forcing to obtain an extension in
which Hω2 = Lω2 [A] and (obviously) λ ∈ Hω2 : In VColl, let G ⊆ ω1 code
a surjection from ω1 onto δ. Since δ+ = (δ+)L[R], L[R,G] |= δ+ = ω2, so
we can choose an almost disjoint family A on ω1 of size δ+, A ∈ L[R,G].
Now we force with the σ-closed almost disjoint coding PA,B and work in
W := VColl∗PA,B : Choose A ⊆ ω1 such that A codes R,G and the set
coding B obtained by forcing with PA,B. Now we conclude, exactly as we
did in theorem 6.15, that Hω2

W = Lω2 [A] and W |= CH.
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Let P be the reshaping forcing for A, introduced in section 2.2.7. We
will show that P is stationary-preserving (in W). Assuming this, let G be
P -generic, F :=

⋃
G and A∗ := {2β : β ∈ A}∪{2β+1: β ∈ F}. As towards

the end of the proof of theorem 6.15, we can choose a sequence (Rα)α<ω1

of almost disjoint reals such that Rα is uniformely definable in L[A∗ ∩ α]
and let B := (Rα, α < ω1). We then force with the almost disjoint coding
PB,A∗ to code A∗ by a real r, resulting in a stationary-preserving extension
in which λ ∈ Lω2 [r] and Hω2 = Lω2 [r]: Obviously, Hω2

W ⊆ Lω2 [r]. Since
|P | = ω1 and PB,A∗ is ω1-cc, the claim follows as in the proof of theorem
6.15, using nice names for subsets of ω1.

Now we are going to complete the proof of lemma 6.20 by showing that
P is stationary-preserving in W:

Lemma 6.21 P , the reshaping for A, is stationary-preserving in W.

Proof: First we repeat the definition of reshaping given in section 2.2.7:

P := {p bnd⊆ ω1 : ∀α ≤ sup p L[A ∩ α, p ∩ α] |= α ∼= ω}

Working in W, given p ∈ P , a stationary X ⊆ ω1 and a name σ for a club
in ω1 (in the extension), let C ⊆ ω1 be club such that:

1. (α ∈ C ∧ β < α) → (p ∈ Lα[A] ∧ ∀q ≤ p q ∈ Lα[A] → (∃r ≤ q r ∈
Lα[A] ∧ r ° β∗ ∈ σ for some β∗ such that β < β∗ < α)),

2. α ∈ C → C ∩ α ∈ L[A ∩ α],

3. α ∈ C → Lα[A] |= ∀β ∃r ⊆ ω r codes β.

We are going to show that such a club can be constructed. Assuming this,
we will now prove our present lemma:

Choose α as a limit point of C such that α ∈ X, which is possible since the
limit points of C are also club. Let 〈γn : n ∈ ω〉 be any increasing ω-sequence
contained in C with supremum α. We inductively define conditions qn with
supremum γn as follows: Let q0 be the <L[A]-least extension of p ∈ Lγ0 [A]
with supremum γ0; by property 3 above, q0 ∈ Lγ1 [A]. If qn ∈ Lγn+1 [A]
is defined, let q′n be the <L[A]-least extension of qn such that γn ∈ q′n and
∃βn > γn q

′
n ° βn ∈ σ; by property 1 above, it follows that this is possible

and moreover q′n ∈ Lγn+1 [A]. Also, letting γ′n := sup q′n, property 1 implies
that γ′n is less than the least element of C above γn. Let Rn be a real
coding the ordinal γn+1 and extend q′n to q′′n of length γ′n + ω by setting
γ′n+k ∈ q′′n↔ k ∈ Rn. Then qn+1 is obtained extending q′′n to have supremum
γn+1, adding all successor ordinals above γ′n +ω. Since q′n is a condition and
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by definition of q′′n, it follows that qn+1 is a condition. By property 3 above,
qn+1 ∈ Lγn+2 [A].

Let q :=
⋃

n∈ω qn. Then {γ ∈ C ∩ [γ0, α) : γ ∈ q} = {γn : n ∈ ω}
(this holds since all elements of C have to be limit ordinals by definition
of C). By property 2 above, {γn : n ∈ ω} belongs to L[A ∩ α, q], therefore
L[A ∩ α, q] |= α ∼= ω, i.e. q is a condition.

As q forces that σ∩α is unbounded in α, q ° α ∈ σ. Since α was chosen
to belong to X, we have q ° X ∩ σ 6= ∅.

Now we are going to finish the proof of lemma 6.21 (and therefore also
lemma 6.20) by showing that a club C ⊆ ω1 with the above-claimed prop-
erties can be constructed. We can assume that σ is a nice name of the form
σ =

⋃
j<ω1
{ǰ} ×Aj where Aj ⊆ P is an antichain. Since |P | = ℵ1, we have

both P and σ as elements of Hω2 = Lω2 [A]:

Lemma 6.22 Using the notation of lemma 6.21 above, there exists a club
C ⊆ ω1 such that:

1. (α ∈ C ∧ β < α) → (p ∈ Lα[A] ∧ ∀q ≤ p q ∈ Lα[A] → (∃r ≤ q r ∈
Lα[A] ∧ r ° β∗ ∈ σ for some β∗ such that β < β∗ < α)),

2. α ∈ C → C ∩ α ∈ L[A ∩ α].

3. α ∈ C → Lα[A] |= ∀β ∃r ⊆ ω r codes β.

Proof: We let γ := ω
L[A]
2 and

C := {α < ω1 : α = ω1 ∩ hLγ [A](α ∪ {p, σ,A})},

where hLγ [A](X) denotes the Skolem hull of X in Lγ [A] and we require our
Skolem functions to always pick the least possible elements.
Let Mα denote hLγ [A](α ∪ {p, σ,A}).

Claim 1: Property 1 (from above) holds.
Proof: Assume α ∈ C. Then p ∈ Mα, Lγ [A] |= ∃δ < ω1 p ∈ Lδ[A], hence
by elementarity, Mα |= ∃δ < ω1 p ∈ Lδ[A], since α = ω1 ∩Mα, we obtain
∃δ < α p ∈ Lδ[A]Mα , since δ ⊆Mα, Lδ[A]Mα = Lδ[A] ⊆ Lα[A].

Furthermore,

Lγ [A] |= ∀q ∈ P ∀β < ω1 ∃r ≤ q ∃β∗ β < β∗ < ω1 ∧ r °P β∗ ∈ σ.

Note that we can define P in Mα as above, which gives us PMα = P ∩Lα[A].
By elementarity (of Mα in Lγ [A]), we get

∀q∈P ∩Lα[A] ∀β<α ∃r≤q r∈P ∩Lα[A] ∃β∗ β<β∗<α∧Mα |= r ° β∗∈σ.
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It remains to show that (Mα |= r ° β∗ ∈ σ)→ (r ° β∗ ∈ σ):
Note that

(r ° β∗ ∈ σ) ↔ (∃a ∈ Aβ∗ r ≤ a)
and

(Mα |= r ° β∗ ∈ σ) ↔ (∃a ∈ Aβ∗ ∩ Lα[A] r ≤ a).
But if r ∈ Lα[A], then a ≥ r → a ∈ Lα[A], since then a = r ∩ δ for some
δ < α, which gives us

(∃a ∈ Aβ∗ r ≤ a) ↔ (∃a ∈ Aβ∗ ∩ Lα[A] r ≤ a).
2Claim 1

Claim 2: C is club.
Proof: Assume α1 < α2 < . . . ∈ C. We show that α :=

⋃
i<ω αi ∈ C:

Obviously, Mα =
⋃

i<ω Mαi , hence ω1 ∩Mα =
⋃

i<ω(ω1 ∩Mαi) =
⋃

i<ω αi =
α, i.e. α ∈ C, hence C is closed.

Now assume α ∈ C. We have to find β > α, β ∈ C: Let β := ω1∩Mα+1,
then β ⊆Mα+1, hence Mα+1 = Mβ, hence β = ω1∩Mβ, i.e. β ∈ C. 2Claim 2

Claim 3: Property 2 (from above) holds.
Proof: Assume α ∈ C. Mα is a countable elementary submodel of Lγ [A],
hence its transitive collapse is of the form Lξ[A∩ α], which is an element of
L[A ∩ α]. Let π denote the collapsing map.

C ∩ α = {β < α : β = ω1 ∩ hLγ [A](β ∪ {p, σ,A})}.
Now Mβ = hLγ [A](β ∪ {p, σ,A}) = hMα(β ∪ {p, σ,A}) by elementarity. Col-
lapsing Mα, it follows that π(Mβ) = hLξ[A∩α](β ∪ {p, π(σ), π(A)}). Finally,

C ∩ α = {β < α : β = α ∩ hLξ[A∩α](β ∪ {p, π(σ), π(A)})},
so C ∩ α ∈ L[A ∩ α]. 2Claim 3

Claim 4: Property 3 (from above) holds.
Proof: Obvious, since α ∈ C → (Lα[A] |= ZF− ∧ Lα[A] |= ∀β β ∼= ω).
2Claim 4 2Lemma 6.22 2Lemma 6.21 2Lemma 6.20

Proof of Theorem 6.18: Suppose that Σ1
3-absoluteness for stationary-

preserving forcing holds and ω1 is not inaccessible to reals. Thus for some
real s, ω1 = ω

L[s]
1 , hence s] does not exist. So by lemma 6.20, in a stationary-

preserving forcing extension, Hω2 = Lω2 [r] for some real r. We argue in this
extension:

For any A ⊆ ω1, consider the function fA : ω1 → ω1 defined by

fA(α) = the least β such that Lβ+1[r,A ∩ α] |= α ∼= ω.
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Note that since ω1 = ω
L[r]
1 , fA is well-defined.

We say that B ⊆ ω1 is faster than A iff fA < fB on a club.

Lemma 6.23 For any A, there is a faster B in a further stationary-preserv-
ing forcing extension.

Given this lemma, we prove theorem 6.18: Set A0 = R0 = ∅. By lemma
6.23, there is A1 which is faster than A0 in a stationary-preserving forcing
extension. A1, together with a club C1 witnessing that A1 is faster than A0

can be coded by a real R1 by a ccc almost disjoint coding; moreover we can
use an almost disjoint family A of size ω1 on ω which is an element of Lω2 [r]
to code A1, C1. In particular, we can choose A such that A = 〈ai : i ∈
ω1〉 and for each i < ω1, ai = {π(bi ∩ n) : n ∈ ω} where π is some fixed
arithmetical bijection 2<ω → ω and 〈bi : i < ω1〉 is such that for all i < ω1,
bi :=the <L[r]-least real distinct from bj , j < i. Thus in this model,

∃r ∃R1 ∀α < ω1 (α ∈ C(R1))→ (fA(R1)(α) < f∅(α)),

where C(R1) denotes the club C1 and A(R1) denotes set A1 coded by R1

s.t. α ∈ C(R1)↔|R1 ∩ a2α| < ω and α ∈ A(R1)↔|R1 ∩ a2α+1| < ω.

Claim: The above statement is equivalent to a Σ2(Hω1)-statement.
Proof: We give a sketch. First note that for a fixed β < ω1, F = 〈ai : i < β〉
is ∆1(Hω1), since G = 〈bi : i < β〉 is ∆1(Hω1) since

x = bi↔x = min
<L[r]

{y ∈ L[r] : y ⊆ ω ∧ ∀j < i y 6= bj}

is ∆1(Hω1):

• Π1: ∀j < i x 6= bj ∧ ∀y ⊆ ω(∀j < i y 6= bj)→ y ≥L[r] x

• Σ1: ∃γ x ∈ Lγ [r] ∧ ∀j < i x 6= bj ∧
∀y ∈ Lγ [r] (y ⊆ ω ∧ (∀j < i y 6= bj)→ y ≥L[r] x.

Furthermore,

1. α ∈ C(R1)↔|R1 ∩ a2α| < ω,

2. A(R1) ∩ α = {β < α : |R1 ∩ F (2β + 1)| < ω},
3. fA(R1)(α) < f∅(α)↔

min{β : Lβ+1[A(R1) ∩ α] |= α ∼= ω} < min{β : Lβ+1 |= α ∼= ω}.
So ”α ∈ C(R1)” is ∆0(Hω1) and ”fA(R1)(α) < f∅(α)” is Π1(Hω1), since
x ⊆ ω is finite iff ∃n∈ω ∀m∈x m<n, which proves our claim. 2Claim

70



Proof of Theorem 6.18 continued: By Σ1
3-absoluteness for stationary-

preserving forcing, the above statement holds in the ground model V. But
we can repeat this, obtaining An+1

′ which is faster than An
′ for each n.

Thus on a club, ∀n ∈ ω fAn+1
′ < fAn

′ , a contradiction. 2Theorem 6.18

Proof of Lemma 6.23: Consider the forcing P whose conditions are pairs
(b, c) where

c
bnd⊆ ω1, c closed, b ⊆ max c,

∀α ∈ c LfA(α)[r, b ∩ α] |= α ∼= ω

and conditions are ordered by

(b0, c0) ≤ (b1, c1) iff c0 end-extends c1 and b0 ∩max c1 = b1.

Claim: Any condition (b, c) can be extended to increase max c above any
countable ordinal γ.

Proof: Hω2 = Lω2 [r,A] |= ¬ω1
∼= ω. As in claim 2 of lemma 6.22, we

obtain that {α < ω1 : α = ω1 ∩ hLω2 [r,A](α ∪ {r,A})} is club, so we can
choose α > γ inside. As hLω2 [r,A](α ∪ {r,A}) |= ¬ω1

∼= ω, observing the
transitive collapse, Lξ[r,A ∩ α] |= ¬α ∼= ω, hence fA(α) ≥ ξ > α. Hence
we obtain a condition by adding α to c and extending b to any b′ ⊆ α
such that Lξ[r, b′] |= α ∼= ω: As Lξ[r] |= ZF−, there is a bijection π : α →
α × α, π ∈ Lξ[r]. Choose π as the <L[r]-least such bijection. Let f be a
surjection f : ω → α. Note that ot(α \max c) = α, so we can use f to set
(max c+ γ) ∈ b′ :↔ π(γ) ∈ f for all γ < α. As π ∈ Lξ[r], b′ ∈ Lξ[r, b′] and
α ∈ Lξ[r], it follows that f ∈ Lξ[r, b′], implying Lξ[r, b′] |= α ∼= ω and finally
LfA(α)[r, b′] |= α ∼= ω. 2Claim

Thus if G is P -generic, then B :=
⋃{b : ∃c (b, c) ∈ G} is faster than A

which is witnessed by the club C :=
⋃{c : ∃b (b, c) ∈ G}.

It remains to show that P is stationary-preserving: Suppose b = (b, c) ∈ P ,
X is stationary and σ is a P -name for a club. Similar to lemma 6.22, we let
γ := ω

L[r]
2 and define C0 ⊇ C1 as

C0 := {α < ω1 : α = ω1 ∩ hLγ [r](α ∪ {p, σ, r})},

C1 := {α < ω1 : α = ω1 ∩ hLγ+ω [r](α ∪ {p, σ, r, γ})}.
We obtain the following properties:

1. (α ∈ C0 ∧ β < α) → (p ∈ Lα[r] ∧ ∀q ≤ p q ∈ Lα[r] → (∃r ≤ q r ∈
Lα[r] ∧ r ° β∗ ∈ σ for some β∗ such that β < β∗ < α)),

2. α ∈ C1 → (fA(α) > α ∧ C0 ∩ α ∈ LfA(α)[r]).
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Let Mα := hLγ [r](α ∪ {p, σ, r}), Nα := hLγ+ω [r](α ∪ {p, σ, r, γ}). Similar
to lemma 6.22 it follows that C0 and C1 are club and satisfy property 1.
We have to show that C1 ⊆ C0 and that property 2 holds: If α ∈ C1,
i.e. α = ω1 ∩ Nα, then α = ω1 ∩ (Nα ∩ Lγ [r]) and since Nα≺Lγ+ω[r],
it follows that (Nα ∩ Lγ [r])≺Lγ [r]: Assume (Nα ∩ Lγ [r]) |= ϕ(n1, . . . , nk).
Since Nα∩Lγ [r] = (Lγ [r])Nα and Nα≺Lγ+ω[r], this is equivalent to Lγ [r] |=
ϕ(n1, . . . , nk). Altogether this implies that α = ω1 ∩Mα, as (ω1 ∩Mα) ⊆
(ω1 ∩ (Nα ∩ Lγ [r])) and ω1 ∩Mα ⊇ α; hence, α ∈ C0.

To show that property 2 holds, assume α ∈ C1, i.e. α = ω1 ∩ Nα.
Since Nα≺Lγ+ω[r] = Lγ+ω[r,A] (A ∈ Lγ [r]) and Lγ+ω[r,A] |= ¬ω1

∼= ω,
observing the transitive collapse, we have Lξ[r,A ∩ α] |= ¬α ∼= ω, hence
fA(α) ≥ ξ > α.

Now we show that, still assuming α ∈ C1, C0 ∩ α ∈ LfA(α)[r]:
Nα≺Lγ+ω[r], hence its transitive collapse is of the form Lξ[r], ξ < ω1. Let π
denote the collapsing map. Now Mβ = hLγ [r](β∪{p, σ, r})} = hNα∩Lγ [r](β∪
{p, σ,A})} by elementarity (Nα ∩ Lγ [r]≺Lγ [r]). Collapsing Nα, it follows
that π(Mβ) = hLπ(γ)[r](β ∪ {p, π(σ), r})}. Finally,

C0 ∩ α = {β < α : β = α ∩ hLπ(γ)[r](β ∪ {p, π(σ), r})}

and since fA(α) ≥ ξ > π(γ) > α, we have C0 ∩ α ∈ LfA(α)[r].

Thus we have shown that clubs C0 ⊇ C1 with the above-claimed properties
exist. Now, using those clubs, we finish the proof of lemma 6.23:

Choose α ∈ limC1 ∩X and let 〈γn : n ∈ ω〉 be an increasing ω-sequence
contained in C1 with supremum α. We inductively define conditions qn =
(bn, cn) with max cn = γn as follows: Set q0 to be the L[r]-least extension
of p ∈ Lγ0 [r] such that max c0 = γ0; similar to lemma 6.21, it follows that
q0 ∈ Lγ1 [r]. If qn ∈ Lγn+1 [r] is defined, let q′n = (b′n, c′n) be the <L[r]-least
extension of qn such that γn ∈ b′n and ∃βn > γn q′n ° βn ∈ σ; by property
1 above, it follows that this is possible and moreover q′n ∈ Lγn+1 [A]. Also,
letting γ′n := max c′n, property 1 implies that γ′n is less than the least element
of C0 above γn. Again similar to lemma 6.21, set cn+1 := c′n ∪ {γn+1} and
extend b′n to bn+1 ⊆ γn+1 such that (bn+1, cn+1) is a condition in Lγn+2 [r].

Let b :=
⋃

n∈ω bn and c :=
⋃

n∈ω cn ∪ {α}. Then {γ ∈ C0 ∩ [γ0, α) : γ ∈
b} = {γn : n ∈ ω} (this holds since all elements of C0 have to be limit
ordinals by definition of C0). By property 2 above, {γn : n ∈ ω} belongs to
LfA(α)[r, b], therefore LfA(α)[r, b] |= α ∼= ω, i.e. q := (b, c) is a condition.

As q forces that σ∩α is unbounded in α, q ° α ∈ σ. Since α was chosen
to belong to X, we have q ° X ∩ σ 6= ∅. 2Lemma 6.23
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