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Abstract

We give a corrected and simplified, self-contained account of the proof
of the main theorem of the author’s dissertation ([4]): We show that over
any model of set theory we may perform a cofinality-preserving forcing
to obtain a model of set theory which satisfies Local Club Condensation
while preserving an w-superstrong cardinal. To simplify reference, chapter
numbers in this note correspond with chapter numbers in [4].

1 Canonical Functions

Lemma 1.1 Assume 8 has regular cardinality x and for every v < 8, f, is a
bijection from card~y to vy. Then there is a club of § < k such that

fald] = fal0] N for all a € f5[d] \ k.
Proof: See [2] or [4].

2 Large Cardinal Basics

Definition 2.1 x is w-superstrong if there is an elementary embedding j: V —
M with critical point k such that Ve () C M1

3 Forcing Basics

Definition 3.1 If P is a notion of forcing and n is a cardinal, we say that P
is 0t -strategically closed iff Player I has a winning strategy in the following two
player game of perfect information: Player I and Player II alternately make
moves where in each mowve, each player plays a condition of P. Player I has to
start and play 1p in the first move. Player II is allowed to play any condition
stronger than the condition just played by Player I in each of his moves. Player
I has to play a condition stronger than all previously played conditions in each
move, Player I has to make a move at every limit step of the game. We say
that Player I wins if he can find conditions to play in any such game of length
nt (arriving at n*, the game ends, no condition has to be played at stage n™ ).

1Such an embedding with Vjw (k)41 € M is known to be inconsistent by Kunen’s Theorem.



4 Local Club Condensation

The definition of Local Club Condensation applies to models M of set theory
with a hierarchy of levels of the form (M, : a € Ord) with the properties that
M = Jn,cora Ma, each M, is transitive, Ord(M,) = a, if o < 3 then M, € Mg
and if v is a limit ordinal, M, = J, <y Mo. We will also let M, denote the
structure (M, €, (Ms: 5 < «)), where context will usually clarify the intended
meaning.

Local Club Condensation is the statement that if o has uncountable cardi-
nality k and Ay, = (Mg, €,(Mp: 8 < a),...) is a structure for a countable lan-
guage, then there exists a continuous chain (B, : w < v < k) of substructures of
A, whose domains have union M,,, where each B, = (B,, €, (Mg: B € B,),...)
is s.t. |B,| = |v|, v € By and each (B,, €,(Mg: € B,)) is isomorphic to some
(Mg, €,(Mg: 8 < a&)).

We will usually be in the situation that M = (L[A], A) for some A C Ord
and (M, : a € Ord) = (Ly[4]: a € Ord). We say that M is of the form L[A] in
that case. The following will be useful in Section 8:

Lemma 4.1 Local Club Condensation is equivalent to the following, seemingly
weaker statement: If o has uncountable cardinality x, then the structure A, =
(My,€,(Mg: B < a),F) has a continuous chain (B,: v € C) of substructures
By = (By,€,(Mg: B € By), F) of Aq with U, cc By = Mq, C C & is club, C
consists only of cardinals if k is a limit cardinal, each B, has cardinality card -y,
contains vy as a subset and each (B, €,(Mg: € By)) is isomorphic to some
(Mg, €,{Mg: 8 < &)), where F' denotes the function (f,z) — f(z) whenever
f € M, is a function with x € dom(f).

Proof: See [4] or [2].

5 History, Motivation

See [4].

6 Forcing Acceptability

The corresponding chapter of [4] contains a number of serious mistakes and is
somewhat misleading as well. A corrected account of all the material of that
chapter (and more) has appeared in [3, Section 1].

7 A small history of fragments of Condensation

See [4].



8 Forcing Local Club Condensation

In this section we will show how to extend (by cofinality-preserving forcing)
a given model V of set theory to a model of Local Club Condensation while
preserving large cardinals. This is the central result of the thesis. We assume
that the starting universe V satisfies GCH. We will define a reverse Easton-
like class sized forcing P and show that there are P-generic extensions of the
universe as desired. We will define P inductively. P,,, the forcing up to w is
trivial. Assume P,, the forcing P up to « is defined. Let S, denote the lottery
sum of all elements of the form (0, f,) and (1, f,) where f, is a bijection from
carda to a in V. Let 1 denote the standard name for the weakest condition
1 of a forcing. We define P® to be a subset of P, xS, which is not dense in
P, % S,. Namely, let P® = {(t,p(a)(0)) € Py * So:t € Py A p(a)(0) =1 or
3fa: carda — a Ip, 1p, IFpo € {0,1} A p(a)(0) = (Pas fo)}. A PP-generic
G2 thus either decides for p, = 0 or p, = 1 at stage o and chooses a ground
model bijection focf J from card a to . We usually denote this bijection by f,
without making actual reference to the generic (or condition) that chose it as
this should always be clear from context. For two compatible conditions sg
and s; in Sy, let so U sy denote the stronger of both. If G¥ is PP-generic,
it specifies a predicate go+1 C a + 1 (which we shall identify with a function
Jat1: @+ 1—2) by

Jat+1(B) = 1+ GY decides ps = 1.

If card @ = w or card « is singular, we let P, = P®. Whenever card a > w
is regular and G¥ is P®-generic with corresponding predicate g = gq41, let
C(G2) denote the following forcing poset:

If card e = 0T is a successor cardinal, ¢** € C(GY) iff

e ¢** is a closed, bounded subset of [0, card o) and

o V€ g™ g(ot fuln]) = g(a).
If card « is inaccessible, ¢** is a condition in C,(GP) iff

e ¢™* is a closed, bounded set of cardinals below card a and

o V€ g™ glot fu[n]) = g(a).

Conditions in C'(G?) are ordered by end-extension (in both cases). If card o >
w is regular, we let Pyy1 = PP « C(GY). If p(a) = (p(a)(0),p(a)(1)), we
denote p(a)(0) by (pa, fo) and denote p(a)(1) by pi*. We write p[a® to denote
pla”p(a)(0) € P®. For a condition p € P (or some P,), we call {y: p, # 1}
the string support of p and denote it by S-supp(p), we call {y: p2* # 1} the
club support of p and denote it by C-supp(p).

We finished the definition of the successor stages of our forcing. It remains to
define its limit stages. Assume « is a limit ordinal and P, is defined for v < a,
T is the inverse limit of (P,: v < a) and p € T. Then p € P, if

1. if « is regular, S-supp(p) is bounded below « and



2. for every regular 6, card(C-supp(p) N 0+) < 6. 2

Let P be the direct limit of (P,: a € Ord). We usually assume conditions to
satisfy the following properties (possible as a dense subset of conditions does):

Al ¥y 1p e lbpy* € O(GY).
A2. C-supp(p) C S-supp(p).

We will at some points have to temporarily cease from assumption Al. We will
explicitly mention whenever we do so.

Claim 8.1 (String Extendibility) Assume f is a function with domain d C
a such that for every v € d f(v) is a Py-name which is forced by the trivial con-
dition to equal either 0 or 1. Assume d is bounded below every regular cardinal.
Then any given p € P, with S-supp(p) Nd = 0 can be extended to q < p such
that I-p_ gy = f() whenever vy € d. O

Definition 8.2 (strategically closed part of a condition) Given a cardi-
nalm < o and p € P,, we define u,(p) € P, as follows:

° (Un(p))('Y)(O) = { 11)(7)(0) if v <n

otherwise

1 dify<nt
s,k __
* (un(P)y" = { P otherwise

and call u,(p) the n" -strategically closed part of p. We let u,(Pa):= {u,(p): p €
P,} and call it the n-strategically closed part of P,.

Note:
e The fact that w,(p) € P, uses assumption Al.

e We may think of w, (p) as the condition extracting from p its choice of bits
and bijections in the interval [, n") and everything at and above ™.

e The same definition applies to p € PP. It is usually the case that defini-
tions and statements refering to some condition in P, will have a natural
equivalent for P¥ explicit mention of which will be omitted most of the
time.

The following claim will often be tacitly used. It was repeatedly used in [4]
and [2] and in slightly different context in [3], but no proof was given in those
papers.

Claim 8.3 Ifp € P,, n < a is a cardinal and q < p then there is v < q such
that ¢ < r (i.e. ¢ and r are equivalent) and u,(r) < uy,(p). Moreover if p and
q satisfy A1 and A2, so does r.

2The former condition is the reason why we called our forcing “Easton-like” earlier on.



Proof: Assume p € P,, n < « is a cardinal and ¢ < p. We want to construct
r < ¢ such that u,(r) < u,(p). We define r by induction on i < a. For i < 7,
let 7 (i) = q(i).

Abbume now that ¢ > 1 and r[7 is defined, r[i < q[i and u,(r[i) < u,(pli). If
p(i)(0) = 1, let r(i)(0) = q()(0), let r(i )( ) = p(i)(0) otherwise. If p(i)(0) = 1,
rlilkr(@)(0 ) q(i)(0) < q(i)(0) and w,(r[i) I-7(i)(0) = ¢(i)(0) < 1. Otherwise,
rli < qlilFp(i)(0) = ¢(i)(0) and so rlilkr(:)(0) = p(¢)(0) < ¢(i)(0). Also,

uy(r[i) IFr(i)(0) = p(i)(0) < p(i)(0).

Ifz<n+ let r7* = ¢f*. If i > n*, assume that r[i® is defined, r[i® < ¢[i®
and u, (4 )Sun( 1i%). Let

Ak

. g ifrli®eqG
| pf* otherwise

Then ri®IFr* = ¢* < ¢*. Let A be a maximal antichain below w,(r[i®)
that refines r[i®, i.e. for every a € A either a < r[i® or a L r[i®. If a < r[i?,
then albri* = ¢* < pf*. If a L r[i®, then albr* = pi* < pi*. Hence
Uy (r1i®) Ik rf* < pr*.

Summing up, 7[(i + 1) < q[(¢ + 1) and u,(r[(i + 1)) < uy(p[(i +1)). The
last statement of the claim is immediate from the definition of r. O

Definition 8.4 (small part of a condition)
If n < ais a cardinal and p € P, we define 1,(p) as follows:

e (In()(7)(0) :{ ;(y)(o) ZoJ;i?e;szeZ !

1 ifa>y>qt
ps"  otherwise

. oy ={

and call 1,(p) the n-sized part of p. 1,(p) is in general not a condition in P,.
Note also that 1,/(p) complements u,(p) in the sense that it carries exactly all
information about p not contained in u,(p).

Definition 8.5 (stable below 1) Assume (p':i < §) is a decreasing se-
quence of conditions in P of limit length § < n*, n < a a cardinal. We
say that (p': i < ) is stable below n™ iff

o (I,(p"): i < &) is eventually constant or

e 1) is singular and for every cardinal pn < m, (L,(p%): i < &) is eventually
constant.

Definition 8.6 If § is a reqular uncountable cardinal and 6 < 9 < v1 < 67,
then there is a club Cy., .y € 0 such that for every n € Cyy 41y

e £l 2 fori € {0,1} and
o f,[n] is a proper initial segment of f, [n].

For v €10,07), we let C, be the club {n < 6: fy[n] 2 n}. Whenever v C [0,07)
s of size less than 0 and at least 2, we let

CU = ﬂ C{VOv’Yl}'
{7071} Cv

In any of the above cases, we call C,, the separating club for v.



Definition 8.7 (Strategic Belowness)
Assume o < a, 0 is reqular, p € P, and q < pla’. We say that q is strategically
below p at 0 if C-supp(p) N [0,07) =0, if 0 > & or all of the following hold:

(i) ¥y € C-supp(p)N[B, 07) below o, q|y forces that p, has a Pyyp(s-supp(q)no) -
name,

(i) ¥y € C-supp(p) N[0,0") below o/, q[v® forces max ¢2* > sup(S-supp(p) N
¢) and sup(S-supp(q) N0) > maxp>*,

(iii) sup(S-supp(q)N0) is greater than some element of Cc_supp(p)njo,o+) greater
than sup(S-supp(p) N O) and

(iv) if 0 is inaccessible, sup(S-supp(q) N @) > card(C-supp(p) N [#,67)).

Ifn < o < a, nis a cardinal and q¢ < pla’, we say that q is n*-strategically
below p if for every reqular @ > n, q is strategically below p at 0. It is immediate
that if ng < m1 are both cardinals and q is noT -strategically below p then q is
T -strategically below p.

Note: The common case will be when o/ = « in the above. If p € P,, q € Py,
o/ < a and q is nT-strategically below p, then g is n*-strategically below pla’.
The reverse direction of this implication will usually not hold, as in general
Clauses (iii) and (iv) get weaker as « gets smaller.

Claim 8.8 (Persistence of Strategic Belowness)

o Ifa < a*, p,q € Py and q is nT-strategically below p, then qla is nT-
strategically below pla.

e Forp,q,r € P, and a cardinal n < «, if q is 5" -strategically below p and
r < g, then r is n7 -strategically below p.

e Forp,q,r € Py and a cardinal n < «, if ¢ < p and r is n*-strategically
below q, then r is 0" -strategically below p.

Proof: Follows straightforward from definition 8.7. O

Notation: Assume (s’: i < ) is a decreasing sequence of conditions in S,.
Then (s': i < 0) is eventually constant and we denote it’s limit by (J,_;5s".
Given a decreasing sequence of conditions (p': ¢ < §) in P, of limit length 9,
we say that r = (r(d): 0 < a) is the componentwise union of (p*: i < §) if for
every v < a, 7(y) = ((14, f4),73*) where f, = fI = ff/’l whenever p’ specifies a
bijection from cardy to v and
Ty = Up; and rfy* = U(pl):*
1<d i<d
*

7 is usually not a condition in P, as the r}* are not necessarily names for closed
sets, but the supports of r can be calculated as if r were a condition by letting

S-supp(r) = {y: 7, #1} = U S-supp(p’)

1<y



and § 4
Csupp(r) = {7: 12" # 1} = | C-supp(p').

i<y

Definition 8.9 (Strategic lower bound) Given a cardinal n < « and a se-
quence (p': i < §) of conditions in P, of limit length 6 < n* which is stable
below n, form their componentwise union r. S-supp(r) is bounded below every
reqular cardinal, C-supp(r) N 0 has size less than 0 for every reqular 6. We
would like to obtain a condition q € P, with the following properties for every

v € C-supp(r), v = n*:
{1) CIW@ - Got fylsuprz*] = Ty
(&) kk ok *k
(2) qlv®IFgy* =73 U{supri*}.

Other components of q should be equal to the respective components of r. If
such q exists, we call g the n™-strategic lower bound for (p': i < 6). Whenever
we want to apply the above, we will be in a situation where each supri* will
have been decided by any lower bound of (p'lv®:i < &) to equal an actual
ordinal value (and is not just a name for an ordinal). It is immediate from the
definitions that if our desired q exists as a condition in P,, then q is a greatest
lower bound for (p': i < §).

Claim 8.10 (Existence of strategic lower bounds)

Assume n < « is a cardinal, (p': i < ) is a sequence of conditions in P, of
limit length 6 < 0t which is stable below nt such that p'*' is nt-strategically
below p* for alli < §. Then the n -strategic lower bound q for (p': i < ) ewists.

Proof: By induction on o > n*. If a = 5™, the claim follows by stability of
(p':i < &) below n*. For any v < «, given that the claim holds within P,
it immediately follows that it holds within P?. We want to show the claim
holds for «, i.e. show that the nT-strategic lower bound ¢® for (p®: i < §) exists.
Inductively, for v < a, let g7 be the nt-strategic lower bound for (p’[vy: i < 6),
let q”’EB be the nt-strategic lower bound for (p'|y®:i < §). We will also use
that if 79 < 71 < «, then ¢" vy < ¢”. Thus we also have to show that if
v < a, then ¢*y < ¢7. Let r be the componentwise union of (p*: i < §). We
first show that the sequence (p’: i < §) has the property that for every regular
0 € [n*,a), either C-supp(p’) N [0,07) =0 for all i < § or the following hold:

(i
(ii

(iii

) sup(S-supp(r) N @) > sup(S-supp(p’) N ) for all i < 4,

) for v € C-supp(r) N[0, 07), q“*@ I-sup r3* = sup(S-supp(r) N 6),

) for v € C-supp(r) N [0,07), f[sup(S-supp(r) N 0)] 2 sup(S-supp(r) N ),
) for 49 < 71 both in C-supp(r)N[6,6%), f.,[sup(S-supp(r) N6)] is a proper
initial segment of £, [sup(S-supp(r) N 6)]

(iv

(v) for v € C-supp(r) N [0,67), ¢7 forces that 7, has a Pyyp(s-supp(r)ng)-name.

(vi) if 6 is inaccessible, sup(S-supp(r) N #) > card(C-supp(r) N [0, 07)).



Properties (i) and (ii) immediately follow from Property (ii) in Definition 8.7.
Properties (iii) and (iv) follow as Property (iii) in Definition 8.7 implies that
for every regular 6 € [nT,a), sup(S-supp(r) N ) belongs to Co supp(r)n[e.o+)-
Property (v) follows from Property (i) in Definition 8.7, Property (vi) follows
from Property (iv) in Definition 8.7.

Now we show, using (i)-(vi), that we can form the T -strategic lower bound
q for (p*: i < §) as in definition 8.9: Assume 6 € [n*, a) is regular, cardy = 6.
Given (i)-(iv), ¢*° decides sup r>* and forces ot f, [supr3*] > sup(S-supp(r) N0)
to be distinct from ot f¢[supr;*] for every §{ <. By (v), g7 forces that 7, has a
Pyup rz+-name, allowing us to satisfy (1) as in definition 8.9. (2) in definition 8.9
can obviously be satisfied. Finally (vi) implies that S-supp(q) \ S-supp(r) (and
hence S-supp(q)) is bounded below every regular cardinal and hence ¢ actually
is a condition in P,. O

Note: To be exact, note that we assumed our conditions p to satisfy property
Al: Vy 1p e IFps* € C(GY). This will usually not be the case for ¢ as obtained
above. But, as can be seen from the construction, it will be the case that

Yy un () IV® IFgi* € C(GD).

Thus we may replace g by an equivalent and 5™ -strategically equivalent ¢’
satisfying A1, where we say that ¢ and ¢ are n™-strategically equivalent iff

uy(q") < uy(q) and uy(q) < uy(q').

Claim 8.11 (Induced Strategic Belowness)

Assume n < « is a cardinal, o is a limit ordinal, p,q € P,, (a;: j < cof a) is
cofinal in a and increasing with oy > 1 such that for every j < cof o, qlay; is
nt-strategically below p. Then q is 0+ -strategically below p.

Proof: Immediate from definition 8.7. O

Claim 8.12 (Existence of induced strategic lower bounds)

Assume n < « is a cardinal, o is a limit ordinal, k = carda, (p':i < 6) is a
sequence of conditions of limit length § < n* in Py, (a;: j < cof ) is cofinal
in « and increasing such that ag > n and:

e Vi < § there exists n < cof a such that p e, is nt-strategically below
pt and pan,, @) = pila,, ).

o Vj < cof o there are unboundedly many i < & for which there exists n > j
s.t. ptlay, is nt-strategically below p.

Then the 0™ -strategic lower bound for (p*: i < &) exists and is n*-strategically
below p°.

Proof: By Claims 8.8 and 8.10, we know that for every j < cof o, the n™-
strategic lower bound for (p*|«;: i < §) exists and denote it by ¢7. Let p° be the
componentwise union of the ¢/, j < cof o, and note that whenever j < k < cof «,
q* < ¢’ and for every v of regular cardinality, ((¢’ )51 j < cof a) is eventually
constant. It is thus easily seen that p° is a condition in P, extending each p.
The final statement of the claim follows by claims 8.8 and 8.11. O



Definition 8.13 (reducing a dense set) If D is a dense subset of P, and
n < « is a cardinal, we say that q reduces D below n if for every r € P, with
un(r) < uy(q), there is s < r with uy(s) = uy(r) and s meets D in the sense
that Ad € D s < d.

Definition 8.14 (equivalent dense set) If P is a notion of forcing and D C
P we say that D is an equivalent dense subset of P if for every p € P there is
de D sothatd <p andp <d, i.e. p and d are equivalent.

The central technical theorem of our paper at its core will establish that our
iteration P is A-distributive. Before stating that theorem, we will provide the
reader with the definition of A-distributivity, which is originally given in [1] and
restated here in a less general version, slightly adapted to our iteration P:

Definition 8.15 We say P, is A-distributive if whenever (D;: i < card a) are
dense subsets of P, and p € P,, there is ¢ < p which reduces D; below i* for
every i, where we let i = w for finite i.

Now we adapt this definition to the context of class forcing:

Definition 8.16 We say that P is A-distributive at & if whenever (D;: i < k)
is a definable sequence of dense classes of P and p € P, then there is ¢ < p
which reduces D; below it for every i. We say that P is A-distributive if P is
A-distributive at k for every uncountable cardinal k.

Theorem 8.17 Suppose w < 1 < «a, n € Card and k = carda. Then the
following hold:

1. [Strategic Successors, Strategic Closure]
If o* > «, p € P,-, then for any q < pla there exists r < q which is n*-
strategically below p. If n is reqular we can additionally ensure that 1, (r) =
1,(q), therefore u,(P,) and u,(PL) are both nT-strategically closed.

2. [Early Information]

If p € Py, then there is ¢ < p so that qi® forces that ¢;* has a P,-name
for some v < cardi whenever i € C-supp(q), ¢ > n* and a Py-name for
some v < v if cardi = v+ and v > 1 is singular. Moreover there is such
q for which ¢; has a Py-name for some v < cardi whenever cardi > 1 is
singular or equal to w. If q satisfies all of the above, we say that q has
early information above n. If n = w, we say that q has early information.
If n is regular, we can ensure that 1,/(q) = l,(p) in the above.

3. [Smallness of the iteration]
If « is reqular, P, has a dense subset of size a. Otherwise P, has a dense
subset of size a™.

4. [Chain Condition]
Assume n is reqular. If J is an antichain of Py such that u,(p) || un(q)
whenever p and q are in J, then |J| <.

5. [Reducing dense sets]



o Assume 1 is reqular and (D;: i < n) is a collection of dense subsets
of P,. Then any condition in P, can be strengthened to a condition
q with the same n-sized part so that for every i < mn, q reduces D;
below .

o Assume n < « is singular and (D;: i < ) is a collection of dense
subsets of P,. Then for any ( < n, any condition in P, can be
strengthened to a condition q with the same (-sized part so that for
every ¢ < n there exists n; < n so that q reduces D; below n;.

o P, is A-distributive.
6. [Early names]

o Assume 1 is reqular and f is a Po-name for an ordinal-valued func-
tion with domain n. Then any condition in P, can be strengthened to
a condition q with the same n-sized part forcing that for every i <n,
there is a maximal antichain of size at most n below q deciding f(z),
where for every element a of that antichain, u,(a) = u,y(q). We say
that q reduces f below m. In particular, such q forces that f has a
P, -name for some v < nt.

o Letn < « be a singular cardinal. Let f be a P,-name for an ordinal-
valued function with domain n. Then for any ( < n, any condition
i P, can be strengthened to a condition q with the same (-sized
part, forcing that for every i < m, there is a maximal antichain of
size less than n below q deciding f(z), where for every element a of
that antichain, u,(a) = u,(q). We say that q reduces f below n. In
particular, such q forces thatf has a P,-name.

7. [Preservation of the GCH]
After forcing with P,, GCH holds.

8. [Covering, Preservation of Cofinalities]
For every cardinal 0, for every p € P, and every P,-name & for a set of
ordinals of size 0 there is a set X in 'V of size 0 and an extension q of p
such that ql-x C X. Therefore forcing with P, preserves all cofinalities.

9. [Club Extendibility]
If I Caisst card(INOT) <0 for every regqular 0, I € Uy, ppuiarl0s0")
and (0*: i € I) is s.t. 6; < cardi for every i € I, then for every p € P,,
there is ¢ < p s.t. Vi € I q|i® IFmaxq}* > §;. Moreover if n < card min [
is reqular, there is such q with 1,/(q) = 1,,(p).

Proof: By induction on «a.

Proof of 1 and 2: Starting from p and ¢ as in the statement of 1, we will
find r < ¢ which is n*-strategically below p and has early information above
7 and thus prove 1 and 2 simultaneously. We distinguish several cases for «
assuming that 7 < k, as 1 is immediate and 2 is easy otherwise. Note that
(iii) and (iv) in Definition 8.7 are always easy to satisfy by choosing r such
that sup(supp(r) N @) is sufficiently large whenever C-supp(p) N [0,07) # @ and
0 € (n,a) is regular. We will thus ignore (iii) and (iv) in the following and
concentrate only on making (i) and (ii) in Definition 8.7 hold.
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Case 1: a =+ 1 is a successor ordinal Using 6 inductively, if card g is
regular, strengthen ¢ to ¢* s.t. ¢* |3 forces that (¢*)s = qs has a Psyp s-supp(g*)ns-
name by first reducing gg below 1 and then sufficiently increasing S-supp(g*).
If card § is singular, reduce gz below 1, which ensures that (¢*)s = g has a
P, -name for some v < 7. Also make sure that ¢*[3% reduces q5" below n and
let (¢")5" = ¢5". Now we use 1 and 2 inductively to find r < g* such that r[3 is
nt-strategically below p and has early information above 1. Choose § such that

e § > n,sup(S-supp(p) N k),
e ¢*|39 forces that § > sup(q*)E* and
o ot f5[d] > sup(S-supp(r) N ).

Let rg = (¢%)p, 75" = (¢")5" U {0} and let 74 s,5) be a Py p,5)-name which is
forced by 7| to equal 753. Then r < ¢ is n*-strategically below p and has early
information above 7, as desired.

Case 2: « is a limit ordinal, cof @« = x If k is singular, 1 is trivial. To
show 2 holds, first ensure that gg has a P,-name for some v < & for every § €
S-supp(q) N [k, @) using 6 inductively and 1. 2 then follows using 2 inductively.
Assume & is regular and let @ = sup(C-supp(¢)Na) < a. Use 1 and 2 inductively
to find r < ¢ such that r|a is nT-strategically below p, has early information
above 1 and r[a, ) = g[a, ). Then r < q is 5T -strategically below p and has
early information above 7, as desired.

Case 3: « is a limit ordinal, cof @« < k Let n* = max{n,cof a}. Let
(a;: i < cof @) be an increasing sequence that is cofinal in a with ag > (n*)*.
We build a decreasing sequence of conditions (q*: i < cof ) as follows.

o Let ¢° be such that ¢°Ja is nt-strategically below g.

e Given ¢, let ¢'T! be so that ¢**!]a; is (n*)T-strategically below ¢’, has
early information above n* and ¢"*1[a;, o) = ¢'[ay, ).

e If § < cof a is a limit ordinal, let ¢° be the (n*)T-strategic lower bound of
{q": i < &), which exists by Claim 8.12.

q=°f® < qis (n*)*-strategically below p by Claim 8.12 and has early information
above n*, hence by our assumption on ¢° above, ¢°°f @ is n*-strategically below
p. We may choose r < ¢°°f @ such that [ has early information above 1 and
rlao, a) = ¢! *[ag, a). Then 7 is as desired.

Proof of 3: We prove that D, := {p € P,: (V8 6 is a singular cardinal —
Vv € S-supp(p)N[h,07) 3¢ < 6 p, has a Pe-name) A (V0 € Card 3y S-supp(p)N
[0,67) =[0,7))} has an equivalent dense subset E, of size « if « is regular and
of size o if « is singular. Note that D,, itself is dense in P, by 2.

If « is regular, conditions in P, have bounded support below «, thus the claim
follows by 3 inductively.

If « = f+ 1 is a successor ordinal, assume p € D, and Dg has an equivalent
dense subset Ej of size at inductively. If « is regular, pg can be identified with
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an antichain of Eg below p[B. Since for any two elements ag, a; of such an
antichain, u,(ag) || us(a1), such an antichain will have size at most k using 4
inductively, thus there are " -many possible choices for pg. pj* can be identified
with a collection of less than k-many antichains of Eg below p[/3, each element-
wise paired with ordinals below &, thus using similar arguments as before, there
are aT-many possible choices for Pg If card 8 is singular, pg has a P,-name
for some v < card 8 and hence there are less than a-many possible choices for
pp in this case. This yields that P, has a dense subset of size alpha™.

If « is singular and p € D, we can modify p to an equivalent p’ such that for
every v < a, p'|v € E,. Hence P, has a dense subset of size H,Y<a AT <atT.

Proof of 4: Assume J is an antichain of P, such that whenever p and ¢ are
in J, uy(p) || uyn(q). We may assume that all conditions in J are from E, and
have early information. Assume for a contradiction that J has size at least
nt. By 3 inductively, p|n is the same for nT-many conditions in J and thus we
may assume it is the same for all conditions in J. By GCH and a A-system
argument, there is W C J of size n* and a size less than 7 subset A of T such
that C-supp(p) N C-supp(q) N [n,n7) = A whenever p # g are both in W. But
using that GCH holds after forcing with P, by 7 inductively, it follows that for
nt-many conditions p in W, (p(i)(1): ¢ € A) is the same (modulo equivalence).
But - using the assumption that wu,(p) || u,(¢g) - any two such conditions are
compatible, thus W (and hence also J) is not an antichain.

Proof of 5:

Claim 8.18 Assume p € P,, D is a dense subset of P, and v < « is regular.
Then there is ¢ < p s.t. 1,(q) = l,(p) and q reduces D below v.

Proof: Build a decreasing sequence of conditions in P, below p as follows: Let
p® = p. Choose ¢° so that ¢° < p° and ¢ € D. By possibly passing to
an equivalent condition, we may also ensure that wu,(¢°) < u,(p®). At stage
j 41, let p 1 < p® be any condition incompatible to all ¢¥, k < j, such that
u, (PP 1) = u,(¢?) if such exists and choose ¢/*1 such that:

o gL < pith
e ¢/t1 € D and

e u,(¢?*1) is chosen according to the strategy for v -strategic closure below
<uu(qk): k<)

At limit stages j < vT, let p/ < p° be a condition which is incompatible to all
q®, k < j so that for all k < j, u,(p?) < u,(q*) if such exists. Note that a p
satisfying the latter condition can always be found by the strategic choice of the
u,(q*). Choose ¢/ < p’ so that ¢/ € D and u,(¢’) < u,(p’). Proceed until at
some stage j no condition p’ as above can be chosen. By 4, this will be the case
for some j < v*. We can then find ¢ € P, so that u,(q) < u,(q") for every
k < jandl,(q) =1,(p). By our construction, g reduces D below v. O

Using the claim for ¥ = 7, the case of regular n follows immediately, applying
1 once more. For the case of 7 < « singular, choose a continuous, cofinal in 7,
increasing sequence (n;: i < cof n) of cardinals where each 7,41 is regular and
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no > cof n. Build a sequence of conditions {q': i < cof ) so that ¢**! = ¢* for
limit ordinals ¢ and otherwise ¢! reduces the first n;-many given dense sets
below n;, 1, (¢"t) = 1, (¢") and u,, (¢"™) is chosen according to the strategy for
(n;)*-strategic closure of u,, (P,) for each i < cofn. At limit stages i < cof 7,
we may take lower bounds of the conditions obtained so far using stability of the
obtained sequence of conditions below 7; together with (n);)T-strategic closure
of uy, (Py) provided by 1.

Proof of 6: Apply 5 to reduce the dense sets D; of conditions which decide

f@),i<n.

Proof of 7 and 8: These follow from A-distributivity of P,, see [1], Lemma
2.10 and Lemma 2.13.

Proof of 9: Given p € Py, I C a and (6°: i € I) as in the statement of the
claim, let p’ < p be such that for every 6 with I N [6,07) # (), we have that
sup(supp(p')NO) > sup({6°: i € IN[H,07)}). Now let ¢ < p’ be n*-strategically
below p’ (or wy-strategically below p’ if no n < card min I is specified). It follows
that ¢ is as desired. If n < cardmin [ is regular, we may easily ensure that
l,(¢) = l,(p) in the above.

Corollary 8.19 P preserves ZFC, cofinalities, cardinals and the GCH.

Proof: By Lemma 2.23 of [1], A-distributivity of P implies that P is tame
and hence preserves ZFC and cofinalities. GCH preservation is immediate from
Theorem 8.17, Clauses 7 and 6. O

Note: For every i of regular cardinality, |J,csp;™ is club in cardi for any
P-generic G. This is immediate from theorem 8.17, 9 above.

Claim 8.20 P forces Local Club Condensation.

Proof: We will verify the equivalent form of Local Club Condensation introduced
in Lemma 4.1. Let G be P-generic. Let A be the generic predicate obtained
from G, ie. « € A+3Jp € G plal-p, = 1. Note that V[G]=L[A] as any
set of ordinals in V is coded into A. We claim that (M, : o € Ord) witnesses
Local Club Condensation in V[G] with M,=L4[A]. First assume « has regular
uncountable cardinality . Note that for 8 € o\ k we have A(5) = A(ot f3[d])
for all ¢ in the club (¢ p5" C k. It follows that for a club C of § < x, A(B) =
A(ot fg[d]) and moreover fz[d] = fo[0]NS for all B € f,[0]\ k; this is seen using
Lemma 1.1. Let, as in Lemma 4.1, F denote the function (f, z) — f(z) whenever
f € M, is a function with € dom(f). Let M} = (M,,€,(Ms: 8 < ), F,...)
be a Skolemized structure for a countable language and for any X C « let
MZ(X) be the least substructure of M containing X as a subset. Consider the
continuous chain (M (f,[d]): § € D), where D consists of all elements ¢ of C
s.t. 0 = fo[0]) Nk and f,[0] = MZ(fo[0]) N Ord. Then MZ(f.[d]) condenses for
each 6 € D.

It remains to verify Local Club Condensation for o when « has singular
cardinality k. Suppose that 8 > o and S € V is a Pg-name for a structure

13



(M, €, (Mg: B < a),F,...) for a countable language in L[A] such that the S-
closure of k is all of M, with F' as above. We show that any condition p € Pg
has an extension ¢* which forces that there is a continuous chain (Y,: vy € C)
of condensing substructures of S whose domains (yy: v € C) have union M,
such that (y, N Ord: v € C) belongs to the ground model, where C' is a closed
unbounded subset of Card Nk, each ¥y, has cardinality v and contains v as a
subset. Choose C' to be any club subset of Card Nk of ordertype cof k whose
minimum is either w or a singular cardinal and is at least cof k. Choose some
large (w.r.t. 8), regular v.

Let p° = p. We may assume C-supp(p”) N [0F,07F) # 0 for every 6 € C. Given

¢ let (M}: 0 > minC, C-supp(p’) N [0,07) # 0) be a sequence of domains of
elementary submodels of H, such that each M} has size less than 6, is transitive
below 6 and contains 6, p’, S and (Mg : j < i) as elements. Moreover make sure
that Méo C Mél whenever 6y < #; and that M;+ = UéeCrw M; whenever v is a
limit point of C'. Latter is possible as min C' > cof k and we may thus sufficiently
enlarge the Mg;, & € CNy, after choosing Mnyr D) U5€Cﬁ,y M§+ in the first place.
Choose p'™! < p’ such that p"™! reduces every dense subset of Pz in M} below
card M}, is wq-strategically below p’ and such that sup(S-supp(p'™') N @) >
card(M}) and > M} N 6 whenever C-supp(p’) N [0,0F) # 0.

Let r be the componentwise union of (p: i < w), let ¢ be the w;-strategic lower
bound. Let y, := ., M’lﬁ for every v € C'. We have obtained the following
properties for every v € C"

1) y, is transitive below 7T,

2) yy N [y,7%) = S-supp(r) N [y,77),

)y

)y

3) yy N[y, 7" F) = Csupp(r) N [yF, 7)),

4) q forces that the S-closure of Yy~ intersected with Ord equals y., and
) q
)

5) gq forces that ANy, has a P, ~.,+-name.

(
(
(
(
(
(

6) (yy: v € C) is continuous and increasing,.

(1) is immediate as each M,i+ is transitive below 71, (2) and (3) follow by
easy density and elementarity arguments. For (4), it suffices to show that the
S-closure of Mf%+ intersected with the ordinals is forced by ¢ to be contained

in Mfyiz for every i < w: We required that M}# € Méil Thus D = {t €
Pg: tI-(S-closure of M;Jr) N Ord is covered by a ground model set of size v} is
dense in Py using clause 8 of Theorem 8.17, contained (as an element) in Mfyil
and will thus be hit by p'*2; (4) now follows as p*2 € Mfff: using elementarity,
pit2 forces that we can cover the S-closure of Mnyr by a set in M;f of size ~;
as v C Mfff, this covering set will be contained (as a subset) in Mfyiz (5)
follows similar to (4) , using easy density arguments. (6) is immediate by our
requirements on the Mg.

Let 7., be the collapsing map of y,. If £ € y, N [y,7T1), fe is a bijection
from 7" to &, hence fel(y, N~T) is a bijection from y, Ny to y, N & by

14



elementarity, i.e. m,(£) = ot(fe[y4NyT]), therefore g(m(¢)) = r(§). Now extend
q to ¢* such that for every & € y,, £ > 71, we have ¢*(m,(§)) = r(€); this is
possible since if v is inaccessible, sup(S-supp(r) Nvy) = cardy, and whenever
C-supp(r) N [0,0%) # 0 and @ is inaccessible, sup(r*) = sup(S-supp(r) N 6) >
sup(C' N )T for every ¢ € C-supp(r) N[0, 07") by easy density arguments, hence
when we form g out of r and have to set g(ot f¢[sup(rf*)]) to be equal to ¢(() for
¢ € C-supp(r) N [#,0"), we do not make any new requirements in the interval
[v,7%) - note that ot f¢[sup(rg*)] > sup(r{*). We thus made sure ¢* forces
Condensation for ., for every vy € C. O

Theorem 8.21 Local Club Condensation is consistent with the existence of an
w-superstrong cardinal.

Proof: Assume k is w-superstrong, witnessed by the embedding j: V — M.
Let P be the Local Club Condensation forcing as defined at the beginning of this
section. We want to show that forcing with P may preserve the w-superstrength
of k. Let P* denote the M-version of P (using the definition of P in M). Note
that for every n < w, Pjn(y = P*n(m). We want to find a V-generic G C P
and an M-generic G* C P* such that j”G C G* and V[G]ju(.) C M[G*] After
finding a suitable Pj.(.)-generic Gjw (), we will let G be Gjw(r) N P K)
We will let G* be the filter generated by G o (1) together w1th the 1mage oé G
under j. V[Gljo(ey € M[G*] follows as every element of V|[G];w(.) has a P-
name in Vn () for some n < w by Clause 6 of Theorem 8.17. We have to show
the following;:

1. G% is P;‘W(K)—generic over M.

w(ﬁ
2. G* is P*-generic over M.

3. We can choose Gjw () in such a way that j”Gje () € G “ ()"

We will assume 3 for the moment and proof 1 and 2 using 3. We will then
proof 3 without using either 1 or 2. Assume that j is given by an ultrapower
embedding, which means that every element of M is of the form j(f)(a) where
J has domain Hj.(,) and a belongs to Hjw (-

Proof of 1: Suppose D € M is dense on P, () and write D as j(f)(a) where
dom(f) = Vju(x) and a € Vjn+1(,) for some n € w. Choose p € G« () such that
p reduces f(a) below j"(x) whenever a belongs to Vj»(.) and f(a) is dense on

Pj (). The existence of p follows from Clause 5 of Theorem 8.17, using that

Vijn(x) has size j"(x). Then j(p) belongs to j"G () € G;w(ﬁ) by 3 and reduces
D below j" (k). Hence E := {q € Pju+2(y: ¢~ j(p)[i""%(k), j*(r)) € D} is
dense below j(p) "2 (k) in Pjn+2(,). Since G jn+2(,) contains j(p)[j"+?(x) and
is Pjnt2(,)-generic over M, Gjni2(,) N E # (). Choose ¢ in that intersection.
Then g~ (p)[7"* (), 7 (%)) € DGl

Proof of 2: Like 1, using that j”G C G* as an immediate consequence of 3.

Proof of 3: We will specify a master condition g € Pju(,) so that ¢ € Gju(y)
ensures "G () € G;‘.W(K). Let G be the canonical name in V for the Pjo(1)-
generic. We define r by letting, for all v > j(k):
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r(M0) = Upeq i()(0)(0) and 737 = U, i (0)3"

As we did earlier, we write S-supp(r) for {v: 7(7)(0) # 1} and C-supp(r)
for {y: rz* # 1}. It is easily observed that S-supp(r) is bounded below every
regular cardinal and that card(C-supp(r) N @*+) < 6 for every regular cardinal
6. We want to form ¢ out of r by setting, for every v € C-supp(r):

e g7®IF qu* = 7’,*;* U {sup 3t
o If v 2> j(/{)+a choose qot f. [sup ri*] such that QT’Y I- dot £, [sup rIe] = T,

We also set ¢(7)(0) = r()(0) for y in S-supp(r) and let components other than
the above have value 1. The following Claim will finish the proof of Theorem
8.21:

Claim 8.22 1. g€ ij(,{).
2. q extends j(p) whenever plk = 1.

3. Whenever p < q, p € G, then p < j(p); hence if p € Gju(y), then j(p) €
ij(,i), i.€. j”ij(H) - G;“’(m)'

Proof of 1: We want to define, for every cardinal 6 > j(x)* with C-supp(r) N
[0,0%) # 0 a model My: Choose some large (w.r.t. j*(x)), regular (in M)
v € range(j), fix a well-ordering R of H;-1(,) and let My be the Skolem Hull of

sup(S-supp(r) N ) U (C-supp(r) N [0, 01)) in H,™ according to j(R).
Claim 8.23 For all 6 with C-supp(r) N [6,01) # 0,

e My N6 =sup(S-supp(r) Ng) =supry*.

e MyNnh,07) = C-supp(r)N6,0").

Proof: For the first statement, assume £ € My, £ < 6. Then £ can be defined
using finite sets of parameters Sy C sup(S-supp(r) N ¢) and S; C C-supp(r) N
[0,6%). Choose p € G so that Sy C S-supp(j(p) N#) and S; € C-supp(j(p)) N
[0,60%). Let t < p in G be such that whenever C-supp(p) N [p,p") # 0,
sup(S-supp(#)Np) > sup(H ™~ (sup(S-supp(p)Np)U(C-supp(p)Np, p+)))Np)-
It follows that & < sup(S-supp(j(¢)) N6 < sup(S-supp(r) N @), which is equal to
supr;* by the usual arguments. The proof of the second statement is similar.
O

Let 7y denote the collapsing map of My and note that for v € C-supp(r)N|[f, 07),
mo(y) = ot fv(suprf/*). By the usual arguments, it follows that our above
definition of ¢ has no conflicting requirements and ¢ has appropriate supports
in order to be a condition in Pju ().

Proof of 2: Observe that C-supp(r)N[j(x),j(kT)) = j”[k, k) and sup () =
k. Hence mj()(v) = j~(7) for v € C-supp(r) N [j(k),j(xT)). This, together

with the ususal argument at cardinals > j(x) implies 2.

Proof of 8: Assume p < q. Then p < j(p) as p[k = j(p)Ix and p[k, j¥(k)) <
q § ](p) [’iajw(’i))' DClaim 8.22 UTheorem 8.21
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Note: Many other (smaller) large cardinal properties can be preserved while
forcing with P, for example measurable cardinals.

9 A possible future application

See [3], where this is turned into an actual application.
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