Condensation and Large Cardinals - a simplified version of my dissertation

Peter Holy

May 24, 2013

Abstract

We give a corrected and simplified, self-contained account of the proof of the main theorem of the author's dissertation ([4]): We show that over any model of set theory we may perform a cofinality-preserving forcing to obtain a model of set theory which satisfies Local Club Condensation while preserving an ω -superstrong cardinal. To simplify reference, chapter numbers in this note correspond with chapter numbers in [4].

1 Canonical Functions

Lemma 1.1 Assume β has regular cardinality κ and for every $\gamma \leq \beta$, f_{γ} is a bijection from card γ to γ . Then there is a club of $\delta < \kappa$ such that

$$f_{\alpha}[\delta] = f_{\beta}[\delta] \cap \alpha \text{ for all } \alpha \in f_{\beta}[\delta] \setminus \kappa.$$

Proof: See [2] or [4].

2 Large Cardinal Basics

Definition 2.1 κ is ω -superstrong if there is an elementary embedding $j: \mathbf{V} \to \mathbf{M}$ with critical point κ such that $V_{j^{\omega}(\kappa)} \subseteq M$.¹

3 Forcing Basics

Definition 3.1 If P is a notion of forcing and η is a cardinal, we say that P is η^+ -strategically closed iff Player I has a winning strategy in the following two player game of perfect information: Player I and Player II alternately make moves where in each move, each player plays a condition of P. Player I has to start and play $\mathbf{1}_P$ in the first move. Player II is allowed to play any condition stronger than the condition just played by Player I in each of his moves. Player I has to play a condition stronger than all previously played conditions in each move, Player I has to make a move at every limit step of the game. We say that Player I wins if he can find conditions to play in any such game of length η^+ (arriving at η^+ , the game ends, no condition has to be played at stage η^+).

¹Such an embedding with $V_{j^{\omega}(\kappa)+1} \subseteq M$ is known to be inconsistent by Kunen's Theorem.

4 Local Club Condensation

The definition of Local Club Condensation applies to models **M** of set theory with a hierarchy of levels of the form $\langle M_{\alpha} : \alpha \in \text{Ord} \rangle$ with the properties that $\mathbf{M} = \bigcup_{\alpha \in \text{Ord}} M_{\alpha}$, each M_{α} is transitive, $\text{Ord}(M_{\alpha}) = \alpha$, if $\alpha < \beta$ then $M_{\alpha} \in M_{\beta}$ and if γ is a limit ordinal, $M_{\gamma} = \bigcup_{\alpha < \gamma} M_{\alpha}$. We will also let M_{α} denote the structure $(M_{\alpha}, \in, \langle M_{\beta} : \beta < \alpha \rangle)$, where context will usually clarify the intended meaning.

Local Club Condensation is the statement that if α has uncountable cardinality κ and $\mathcal{A}_{\alpha} = (M_{\alpha}, \in, \langle M_{\beta} : \beta < \alpha \rangle, ...)$ is a structure for a countable language, then there exists a continuous chain $\langle \mathcal{B}_{\gamma} : \omega \leq \gamma < \kappa \rangle$ of substructures of \mathcal{A}_{α} whose domains have union M_{α} , where each $\mathcal{B}_{\gamma} = (B_{\gamma}, \in, \langle M_{\beta} : \beta \in B_{\gamma} \rangle, ...)$ is s.t. $|B_{\gamma}| = |\gamma|, \gamma \subseteq B_{\gamma}$ and each $(B_{\gamma}, \in, \langle M_{\beta} : \beta \in B_{\gamma} \rangle)$ is isomorphic to some $(M_{\bar{\alpha}}, \in, \langle M_{\beta} : \beta < \bar{\alpha} \rangle).$

We will usually be in the situation that $\mathbf{M} = (\mathbf{L}[A], A)$ for some $A \subseteq \text{Ord}$ and $\langle M_{\alpha} : \alpha \in \text{Ord} \rangle = \langle L_{\alpha}[A] : \alpha \in \text{Ord} \rangle$. We say that \mathbf{M} is of the form $\mathbf{L}[A]$ in that case. The following will be useful in Section 8:

Lemma 4.1 Local Club Condensation is equivalent to the following, seemingly weaker statement: If α has uncountable cardinality κ , then the structure $\mathcal{A}_{\alpha} = (M_{\alpha}, \in, \langle M_{\beta} : \beta < \alpha \rangle, F)$ has a continuous chain $\langle \mathcal{B}_{\gamma} : \gamma \in C \rangle$ of substructures $\mathcal{B}_{\gamma} = (B_{\gamma}, \in, \langle M_{\beta} : \beta \in B_{\gamma} \rangle, F)$ of \mathcal{A}_{α} with $\bigcup_{\gamma \in C} B_{\gamma} = M_{\alpha}, C \subseteq \kappa$ is club, Cconsists only of cardinals if κ is a limit cardinal, each B_{γ} has cardinality card γ , contains γ as a subset and each $(B_{\gamma}, \in, \langle M_{\beta} : \beta \in B_{\gamma} \rangle)$ is isomorphic to some $(M_{\overline{\alpha}}, \in, \langle M_{\beta} : \beta < \overline{\alpha} \rangle)$, where F denotes the function $(f, x) \mapsto f(x)$ whenever $f \in M_{\alpha}$ is a function with $x \in \text{dom}(f)$.

Proof: See [4] or [2].

5 History, Motivation

See [4].

6 Forcing Acceptability

The corresponding chapter of [4] contains a number of serious mistakes and is somewhat misleading as well. A corrected account of all the material of that chapter (and more) has appeared in [3, Section 1].

7 A small history of fragments of Condensation

See [4].

8 Forcing Local Club Condensation

In this section we will show how to extend (by cofinality-preserving forcing) a given model V of set theory to a model of Local Club Condensation while preserving large cardinals. This is the central result of the thesis. We assume that the starting universe \mathbf{V} satisfies GCH. We will define a reverse Eastonlike class sized forcing P and show that there are P-generic extensions of the universe as desired. We will define P inductively. P_{ω} , the forcing up to ω is trivial. Assume P_{α} , the forcing P up to α is defined. Let S_{α} denote the lottery sum of all elements of the form $(0, f_{\alpha})$ and $(1, f_{\alpha})$ where f_{α} is a bijection from $\operatorname{card} \alpha$ to α in **V**. Let $\check{\mathbf{1}}$ denote the standard name for the weakest condition 1 of a forcing. We define P_{α}^{\oplus} to be a subset of $P_{\alpha} * S_{\alpha}$ which is not dense in $P_{\alpha} * S_{\alpha}$. Namely, let $P_{\alpha}^{\oplus} = \{(t, p(\alpha)(0)) \in P_{\alpha} * S_{\alpha} : t \in P_{\alpha} \land p(\alpha)(0) = \check{\mathbf{1}} \text{ or } \exists f_{\alpha} : \operatorname{card} \alpha \to \alpha \exists p_{\alpha} \ \mathbf{1}_{P_{\alpha}} \Vdash p_{\alpha} \in \{0, 1\} \land p(\alpha)(0) = (p_{\alpha}, \check{f}_{\alpha})\}$. A P_{α}^{\oplus} -generic G_{α}^{\oplus} thus either decides for $p_{\alpha} = 0$ or $p_{\alpha} = 1$ at stage α and chooses a ground C_{α}^{\oplus} . model bijection $f_{\alpha}^{G_{\alpha}^{\oplus}}$ from card α to α . We usually denote this bijection by f_{α} without making actual reference to the generic (or condition) that chose it as this should always be clear from context. For two compatible conditions s_0 and s_1 in S_{α} , let $s_0 \cup s_1$ denote the stronger of both. If G_{α}^{\oplus} is P_{α}^{\oplus} -generic, it specifies a predicate $g_{\alpha+1} \subseteq \alpha + 1$ (which we shall identify with a function $g_{\alpha+1} \colon \alpha + 1 \to 2)$ by

$$g_{\alpha+1}(\beta) = 1 \leftrightarrow G^{\oplus}_{\alpha} \text{ decides } p_{\beta} = 1.$$

If $\operatorname{card} \alpha = \omega$ or $\operatorname{card} \alpha$ is singular, we let $P_{\alpha+1} = P_{\alpha}^{\oplus}$. Whenever $\operatorname{card} \alpha > \omega$ is regular and G_{α}^{\oplus} is P_{α}^{\oplus} -generic with corresponding predicate $g = g_{\alpha+1}$, let $C(G_{\alpha}^{\oplus})$ denote the following forcing poset:

If card $\alpha = \theta^+$ is a successor cardinal, $q^{**} \in C(G^{\oplus}_{\alpha})$ iff

- q^{**} is a closed, bounded subset of $[\theta, \operatorname{card} \alpha)$ and
- $\forall \eta \in q^{**} g(\text{ot } f_{\alpha}[\eta]) = g(\alpha).$

If card α is inaccessible, q^{**} is a condition in $C_{\alpha}(G_{\alpha}^{\oplus})$ iff

- q^{**} is a closed, bounded set of cardinals below card α and
- $\forall \eta \in q^{**} g(\text{ot } f_{\alpha}[\eta]) = g(\alpha).$

Conditions in $C(G_{\alpha}^{\oplus})$ are ordered by end-extension (in both cases). If card $\alpha > \omega$ is regular, we let $P_{\alpha+1} = P_{\alpha}^{\oplus} * C(G_{\alpha}^{\oplus})$. If $p(\alpha) = (p(\alpha)(0), p(\alpha)(1))$, we denote $p(\alpha)(0)$ by (p_{α}, f_{α}) and denote $p(\alpha)(1)$ by p_{α}^{**} . We write $p \upharpoonright \alpha^{\oplus}$ to denote $p \upharpoonright \alpha^{\frown} p(\alpha)(0) \in P_{\alpha}^{\oplus}$. For a condition $p \in P$ (or some P_{α}), we call $\{\gamma : p_{\gamma} \neq \check{\mathbf{I}}\}$ the string support of p and denote it by S-supp(p), we call $\{\gamma : p_{\gamma}^{**} \neq \check{\mathbf{I}}\}$ the club support of p and denote it by C-supp(p).

We finished the definition of the successor stages of our forcing. It remains to define its limit stages. Assume α is a limit ordinal and P_{γ} is defined for $\gamma < \alpha$, T is the inverse limit of $\langle P_{\gamma} : \gamma < \alpha \rangle$ and $p \in T$. Then $p \in P_{\alpha}$ if

1. if α is regular, S-supp(p) is bounded below α and

2. for every regular θ , card(C-supp $(p) \cap \theta^+$) < θ .²

Let P be the direct limit of $\langle P_{\alpha} : \alpha \in \text{Ord} \rangle$. We usually assume conditions to satisfy the following properties (possible as a dense subset of conditions does):

- A1. $\forall \gamma \ \mathbf{1}_{P_{\gamma} \oplus} \Vdash p_{\gamma}^{**} \in C(G_{\gamma}^{\oplus}).$
- A2. C-supp $(p) \subseteq$ S-supp(p).

We will at some points have to temporarily cease from assumption A1. We will explicitly mention whenever we do so.

Claim 8.1 (String Extendibility) Assume f is a function with domain $d \subseteq \alpha$ such that for every $\gamma \in d f(\gamma)$ is a P_{γ} -name which is forced by the trivial condition to equal either 0 or 1. Assume d is bounded below every regular cardinal. Then any given $p \in P_{\alpha}$ with S-supp $(p) \cap d = \emptyset$ can be extended to $q \leq p$ such that $\Vdash_{P_{\gamma}} q_{\gamma} = f(\gamma)$ whenever $\gamma \in d$. \Box

Definition 8.2 (strategically closed part of a condition) Given a cardinal $\eta < \alpha$ and $p \in P_{\alpha}$, we define $u_{\eta}(p) \in P_{\alpha}$ as follows:

• $(u_{\eta}(p))(\gamma)(0) = \begin{cases} \mathbf{1} & \text{if } \gamma < \eta \\ p(\gamma)(0) & \text{otherwise} \end{cases}$

•
$$(u_{\eta}(p))_{\gamma}^{**} = \begin{cases} \mathbf{1} & \text{if } \gamma < \eta^+\\ p_{\gamma}^{**} & \text{otherwise} \end{cases}$$

and call $u_{\eta}(p)$ the η^+ -strategically closed part of p. We let $u_{\eta}(P_{\alpha}) := \{u_{\eta}(p) : p \in P_{\alpha}\}$ and call it the η^+ -strategically closed part of P_{α} .

Note:

- The fact that $u_{\eta}(p) \in P_{\alpha}$ uses assumption A1.
- We may think of $u_{\eta}(p)$ as the condition extracting from p its choice of bits and bijections in the interval $[\eta, \eta^+)$ and everything at and above η^+ .
- The same definition applies to $p \in P_{\alpha}^{\oplus}$. It is usually the case that definitions and statements referring to some condition in P_{α} will have a natural equivalent for P_{α}^{\oplus} , explicit mention of which will be omitted most of the time.

The following claim will often be tacitly used. It was repeatedly used in [4] and [2] and in slightly different context in [3], but no proof was given in those papers.

Claim 8.3 If $p \in P_{\alpha}$, $\eta < \alpha$ is a cardinal and $q \leq p$ then there is $r \leq q$ such that $q \leq r$ (i.e. q and r are equivalent) and $u_{\eta}(r) \leq u_{\eta}(p)$. Moreover if p and q satisfy A1 and A2, so does r.

 $^{^2\}mathrm{The}$ former condition is the reason why we called our forcing "Easton-like" earlier on.

Proof: Assume $p \in P_{\alpha}$, $\eta < \alpha$ is a cardinal and $q \leq p$. We want to construct $r \leq q$ such that $u_{\eta}(r) \leq u_{\eta}(p)$. We define r by induction on $i < \alpha$. For $i < \eta$, let r(i) = q(i).

Assume now that $i \ge \eta$ and $r \upharpoonright i$ is defined, $r \upharpoonright i \le q \upharpoonright i$ and $u_\eta(r \upharpoonright i) \le u_\eta(p \upharpoonright i)$. If $p(i)(0) = \check{\mathbf{1}}$, let r(i)(0) = q(i)(0), let r(i)(0) = p(i)(0) otherwise. If $p(i)(0) = \check{\mathbf{1}}$, $r \upharpoonright i \Vdash r(i)(0) = q(i)(0) \le q(i)(0)$ and $u_\eta(r \upharpoonright i) \Vdash r(i)(0) = q(i)(0) \le \check{\mathbf{1}}$. Otherwise, $r \upharpoonright i \le q \upharpoonright i \Vdash p(i)(0) = q(i)(0)$ and so $r \upharpoonright i \vDash r(i)(0) = p(i)(0) \le q(i)(0)$. Also, $u_\eta(r \upharpoonright i) \vDash r(i)(0) = p(i)(0) \le p(i)(0)$.

If $i < \eta^+$, let $r_i^{**} = q_i^{**}$. If $i \ge \eta^+$, assume that $r \upharpoonright i^{\oplus}$ is defined, $r \upharpoonright i^{\oplus} \le q \upharpoonright i^{\oplus}$ and $u_\eta(r \upharpoonright i^{\oplus}) \le u_\eta(p \upharpoonright i^{\oplus})$. Let

$$r_i^{**} = \begin{cases} q_i^{**} & \text{if } r \upharpoonright i^{\oplus} \in G \\ p_i^{**} & \text{otherwise} \end{cases}.$$

Then $r \upharpoonright^{i\oplus} \Vdash r_i^{**} = q_i^{**} \leq q_i^{**}$. Let A be a maximal antichain below $u_\eta(r \upharpoonright^{i\oplus})$ that refines $r \upharpoonright^{i\oplus}$, i.e. for every $a \in A$ either $a \leq r \upharpoonright^{i\oplus}$ or $a \perp r \upharpoonright^{i\oplus}$. If $a \leq r \upharpoonright^{i\oplus}$, then $a \Vdash r_i^{**} = q_i^{**} \leq p_i^{**}$. If $a \perp r \upharpoonright^{i\oplus}$, then $a \Vdash r_i^{**} = p_i^{**} \leq p_i^{**}$. Hence $u_\eta(r \upharpoonright^{i\oplus}) \Vdash r_i^{**} \leq p_i^{**}$.

Summing up, $r \upharpoonright (i+1) \leq q \upharpoonright (i+1)$ and $u_{\eta}(r \upharpoonright (i+1)) \leq u_{\eta}(p \upharpoonright (i+1))$. The last statement of the claim is immediate from the definition of r. \Box

Definition 8.4 (small part of a condition)

If $\eta < \alpha$ is a cardinal and $p \in P_{\alpha}$, we define $l_{\eta}(p)$ as follows:

• $(l_{\eta}(p))(\gamma)(0) = \begin{cases} \mathbf{1} & \text{if } \alpha > \gamma \ge \eta \\ p(\gamma)(0) & \text{otherwise} \end{cases}$

•
$$(l_{\eta}(p))_{\gamma}^{**} = \begin{cases} \mathbf{1} & \text{if } \alpha > \gamma \ge \eta \\ p_{\gamma}^{**} & \text{otherwise} \end{cases}$$

and call $l_{\eta}(p)$ the η -sized part of p. $l_{\eta}(p)$ is in general not a condition in P_{α} . Note also that $l_{\eta}(p)$ complements $u_{\eta}(p)$ in the sense that it carries exactly all information about p not contained in $u_{\eta}(p)$.

Definition 8.5 (stable below η^+) Assume $\langle p^i : i < \delta \rangle$ is a decreasing sequence of conditions in $P_{<\alpha}$ of limit length $\delta < \eta^+$, $\eta < \alpha$ a cardinal. We say that $\langle p^i : i < \delta \rangle$ is stable below η^+ iff

- $\langle l_n(p^i) : i < \delta \rangle$ is eventually constant or
- η is singular and for every cardinal $\mu < \eta$, $\langle l_{\mu}(p^{i}) : i < \delta \rangle$ is eventually constant.

Definition 8.6 If θ is a regular uncountable cardinal and $\theta \leq \gamma_0 < \gamma_1 < \theta^+$, then there is a club $C_{\{\gamma_0,\gamma_1\}} \subseteq \theta$ such that for every $\eta \in C_{\{\gamma_0,\gamma_1\}}$

- $f_{\gamma_i}[\eta] \supseteq \eta$ for $i \in \{0, 1\}$ and
- $f_{\gamma_0}[\eta]$ is a proper initial segment of $f_{\gamma_1}[\eta]$.

For $\gamma \in [\theta, \theta^+)$, we let C_{γ} be the club $\{\eta < \theta : f_{\gamma}[\eta] \supseteq \eta\}$. Whenever $v \subseteq [\theta, \theta^+)$ is of size less than θ and at least 2, we let

$$C_v := \bigcap_{\{\gamma_0, \gamma_1\} \subseteq v} C_{\{\gamma_0, \gamma_1\}}.$$

In any of the above cases, we call C_v the separating club for v.

Definition 8.7 (Strategic Belowness)

Assume $\alpha' \leq \alpha$, θ is regular, $p \in P_{\alpha}$ and $q \leq p \upharpoonright \alpha'$. We say that q is strategically below p at θ if C-supp $(p) \cap [\theta, \theta^+) = \emptyset$, if $\theta \geq \alpha'$ or all of the following hold:

- (i) $\forall \gamma \in \text{C-supp}(p) \cap [\theta, \theta^+)$ below α' , $q \upharpoonright \gamma$ forces that p_{γ} has a $P_{\sup(\text{S-supp}(q) \cap \theta)}$ -name,
- (*ii*) $\forall \gamma \in \text{C-supp}(p) \cap [\theta, \theta^+)$ below $\alpha', q \upharpoonright \gamma^{\oplus}$ forces $\max q_{\gamma}^{**} > \sup(\text{S-supp}(p) \cap \theta)$ and $\sup(\text{S-supp}(q) \cap \theta) > \max p_{\gamma}^{**}$,
- (iii) $\sup(S\operatorname{-supp}(q)\cap\theta)$ is greater than some element of $C_{C\operatorname{-supp}(p)\cap[\theta,\theta^+)}$ greater than $\sup(S\operatorname{-supp}(p)\cap\theta)$ and
- (iv) if θ is inaccessible, $\sup(S\operatorname{-supp}(q) \cap \theta) > \operatorname{card}(C\operatorname{-supp}(p) \cap [\theta, \theta^+))$.

If $\eta < \alpha' \leq \alpha$, η is a cardinal and $q \leq p \upharpoonright \alpha'$, we say that q is η^+ -strategically below p if for every regular $\theta > \eta$, q is strategically below p at θ . It is immediate that if $\eta_0 < \eta_1$ are both cardinals and q is η_0^+ -strategically below p then q is η_1^+ -strategically below p.

Note: The common case will be when $\alpha' = \alpha$ in the above. If $p \in P_{\alpha}, q \in P_{\alpha'}, \alpha' < \alpha$ and q is η^+ -strategically below p, then q is η^+ -strategically below $p \restriction \alpha'$. The reverse direction of this implication will usually not hold, as in general Clauses (iii) and (iv) get weaker as α gets smaller.

Claim 8.8 (Persistence of Strategic Belowness)

- If $\alpha < \alpha^*$, $p, q \in P_{\alpha^*}$ and q is η^+ -strategically below p, then $q \upharpoonright \alpha$ is η^+ -strategically below $p \upharpoonright \alpha$.
- For $p, q, r \in P_{\alpha}$ and a cardinal $\eta < \alpha$, if q is η^+ -strategically below p and $r \leq q$, then r is η^+ -strategically below p.
- For $p, q, r \in P_{\alpha}$ and a cardinal $\eta < \alpha$, if $q \leq p$ and r is η^+ -strategically below q, then r is η^+ -strategically below p.

Proof: Follows straightforward from definition 8.7. \Box

Notation: Assume $\langle s^i : i < \delta \rangle$ is a decreasing sequence of conditions in S_{α} . Then $\langle s^i : i < \delta \rangle$ is eventually constant and we denote it's limit by $\bigcup_{i < \delta} s^i$. Given a decreasing sequence of conditions $\langle p^i : i < \delta \rangle$ in P_{α} of limit length δ , we say that $r = \langle r(\delta) : \delta < \alpha \rangle$ is the componentwise union of $\langle p^i : i < \delta \rangle$ if for every $\gamma < \alpha$, $r(\gamma) = ((r_{\gamma}, f_{\gamma}), r_{\gamma}^{**})$ where $f_{\gamma} = f_{\gamma}^r = f_{\gamma}^{p^i}$ whenever p^i specifies a bijection from card γ to γ and

$$r_{\gamma} = \bigcup_{i < \delta} p_{\gamma}^{i} \text{ and } r_{\gamma}^{**} = \bigcup_{i < \delta} (p^{i})_{\gamma}^{**}.$$

r is usually not a condition in P_{α} as the r_{γ}^{**} are not necessarily names for closed sets, but the supports of r can be calculated as if r were a condition by letting

$$S-\operatorname{supp}(r) = \{\gamma \colon r_{\gamma} \neq \check{\mathbf{1}}\} = \bigcup_{i < \gamma} S-\operatorname{supp}(p^{i})$$

$$C\operatorname{-supp}(r) = \{\gamma \colon r_{\gamma}^{**} \neq \check{\mathbf{1}}\} = \bigcup_{i < \gamma} C\operatorname{-supp}(p^{i}).$$

Definition 8.9 (Strategic lower bound) Given a cardinal $\eta < \alpha$ and a sequence $\langle p^i : i < \delta \rangle$ of conditions in P_{α} of limit length $\delta < \eta^+$ which is stable below η^+ , form their componentwise union r. S-supp(r) is bounded below every regular cardinal, C-supp(r) $\cap \theta^+$ has size less than θ for every regular θ . We would like to obtain a condition $q \in P_{\alpha}$ with the following properties for every $\gamma \in C$ -supp(r), $\gamma \ge \eta^+$:

- (1) $q \upharpoonright \gamma^{\oplus} \Vdash q_{\text{ot } f_{\gamma}[\sup r_{\gamma}^{**}]} = r_{\gamma}.$
- (2) $q \upharpoonright \gamma^{\oplus} \Vdash q_{\gamma}^{**} = r_{\gamma}^{**} \cup \{\sup r_{\gamma}^{**}\}.$

Other components of q should be equal to the respective components of r. If such q exists, we call q the η^+ -strategic lower bound for $\langle p^i : i < \delta \rangle$. Whenever we want to apply the above, we will be in a situation where each $\sup r_{\gamma}^{**}$ will have been decided by any lower bound of $\langle p^i | \gamma^{\oplus} : i < \delta \rangle$ to equal an actual ordinal value (and is not just a name for an ordinal). It is immediate from the definitions that if our desired q exists as a condition in P_{α} , then q is a greatest lower bound for $\langle p^i : i < \delta \rangle$.

Claim 8.10 (Existence of strategic lower bounds)

Assume $\eta < \alpha$ is a cardinal, $\langle p^i : i < \delta \rangle$ is a sequence of conditions in P_α of limit length $\delta < \eta^+$ which is stable below η^+ such that p^{i+1} is η^+ -strategically below p^i for all $i < \delta$. Then the η^+ -strategic lower bound q for $\langle p^i : i < \delta \rangle$ exists.

Proof: By induction on $\alpha \geq \eta^+$. If $\alpha = \eta^+$, the claim follows by stability of $\langle p^i : i < \delta \rangle$ below η^+ . For any $\gamma < \alpha$, given that the claim holds within P_{γ} , it immediately follows that it holds within P_{γ}^{\oplus} . We want to show the claim holds for α , i.e. show that the η^+ -strategic lower bound q^{α} for $\langle p^i : i < \delta \rangle$ exists. Inductively, for $\gamma < \alpha$, let q^{γ} be the η^+ -strategic lower bound for $\langle p^i | \gamma^{\oplus} : i < \delta \rangle$, let $q^{\gamma^{\oplus}}$ be the η^+ -strategic lower bound for $\langle p^i | \gamma^{\oplus} : i < \delta \rangle$. We will also use that if $\gamma_0 < \gamma_1 < \alpha$, then $q^{\gamma_1} | \gamma_0 \leq q^{\gamma_0}$. Thus we also have to show that if $\gamma < \alpha$, then $q^{\alpha} | \gamma \leq q^{\gamma}$. Let r be the componentwise union of $\langle p^i : i < \delta \rangle$. We first show that the sequence $\langle p^i : i < \delta \rangle$ has the property that for every regular $\theta \in [\eta^+, \alpha)$, either C-supp $(p^i) \cap [\theta, \theta^+) = \emptyset$ for all $i < \delta$ or the following hold:

- (i) $\sup(S\operatorname{supp}(r) \cap \theta) > \sup(S\operatorname{supp}(p^i) \cap \theta)$ for all $i < \delta$,
- (ii) for $\gamma \in \text{C-supp}(r) \cap [\theta, \theta^+), q^{\gamma^{\oplus}} \Vdash \sup r_{\gamma}^{**} = \sup(\text{S-supp}(r) \cap \theta),$
- (iii) for $\gamma \in \text{C-supp}(r) \cap [\theta, \theta^+)$, $f_{\gamma}[\sup(\text{S-supp}(r) \cap \theta)] \supseteq \sup(\text{S-supp}(r) \cap \theta)$,
- (iv) for $\gamma_0 < \gamma_1$ both in C-supp $(r) \cap [\theta, \theta^+)$, $f_{\gamma_0}[\sup(\text{S-supp}(r) \cap \theta)]$ is a proper initial segment of $f_{\gamma_1}[\sup(\text{S-supp}(r) \cap \theta)]$
- (v) for $\gamma \in \text{C-supp}(r) \cap [\theta, \theta^+)$, q^{γ} forces that r_{γ} has a $P_{\text{sup}(\text{S-supp}(r) \cap \theta)}$ -name.
- (vi) if θ is inaccessible, $\sup(S\operatorname{-supp}(r) \cap \theta) \ge \operatorname{card}(C\operatorname{-supp}(r) \cap [\theta, \theta^+)).$

and

Properties (i) and (ii) immediately follow from Property (ii) in Definition 8.7. Properties (iii) and (iv) follow as Property (iii) in Definition 8.7 implies that for every regular $\theta \in [\eta^+, \alpha)$, $\sup(\text{S-supp}(r) \cap \theta)$ belongs to $C_{\text{C-supp}(r) \cap [\theta, \theta^+)}$. Property (v) follows from Property (i) in Definition 8.7, Property (vi) follows from Property (iv) in Definition 8.7.

Now we show, using (i)-(vi), that we can form the η^+ -strategic lower bound q for $\langle p^i : i < \delta \rangle$ as in definition 8.9: Assume $\theta \in [\eta^+, \alpha)$ is regular, card $\gamma = \theta$. Given (i)-(iv), $q^{\gamma^{\oplus}}$ decides sup r_{γ}^{**} and forces of $f_{\gamma}[\sup r_{\gamma}^{**}] \ge \sup(\text{S-supp}(r) \cap \theta)$ to be distinct from ot $f_{\xi}[\sup r_{\xi}^{**}]$ for every $\xi < \gamma$. By (v), q^{γ} forces that r_{γ} has a $P_{\sup r_{\gamma}^{**}}$ -name, allowing us to satisfy (1) as in definition 8.9. (2) in definition 8.9 can obviously be satisfied. Finally (vi) implies that $\text{S-supp}(q) \setminus \text{S-supp}(r)$ (and hence S-supp(q)) is bounded below every regular cardinal and hence q actually is a condition in P_{α} . \Box

Note: To be exact, note that we assumed our conditions p to satisfy property A1: $\forall \gamma \ \mathbf{1}_{P_{\gamma}^{\oplus}} \Vdash p_{\gamma}^{**} \in C(G_{\gamma}^{\oplus})$. This will usually not be the case for q as obtained above. But, as can be seen from the construction, it will be the case that

$$\forall \gamma \ u_{\eta}(q) \restriction \gamma^{\oplus} \Vdash q_{\gamma}^{**} \in C(G_{\gamma}^{\oplus}).$$

Thus we may replace q by an equivalent and η^+ -strategically equivalent q' satisfying A1, where we say that q and q' are η^+ -strategically equivalent iff $u_\eta(q') \leq u_\eta(q)$ and $u_\eta(q) \leq u_\eta(q')$.

Claim 8.11 (Induced Strategic Belowness)

Assume $\eta < \alpha$ is a cardinal, α is a limit ordinal, $p, q \in P_{\alpha}$, $\langle \alpha_j : j < \operatorname{cof} \alpha \rangle$ is cofinal in α and increasing with $\alpha_0 > \eta$ such that for every $j < \operatorname{cof} \alpha$, $q \upharpoonright \alpha_j$ is η^+ -strategically below p. Then q is η^+ -strategically below p.

Proof: Immediate from definition 8.7. \Box

Claim 8.12 (Existence of induced strategic lower bounds)

Assume $\eta < \alpha$ is a cardinal, α is a limit ordinal, $\kappa = \operatorname{card} \alpha$, $\langle p^i : i < \delta \rangle$ is a sequence of conditions of limit length $\delta < \eta^+$ in P_{α} , $\langle \alpha_j : j < \operatorname{cof} \alpha \rangle$ is cofinal in α and increasing such that $\alpha_0 > \eta$ and:

- $\forall i < \delta$ there exists $n < \operatorname{cof} \alpha$ such that $p^{i+1} \upharpoonright \alpha_n$ is η^+ -strategically below p^i and $p^{i+1}[\alpha_n, \alpha) = p^i[\alpha_n, \alpha)$.
- $\forall j < \operatorname{cof} \alpha$ there are unboundedly many $i < \delta$ for which there exists $n \ge j$ s.t. $p^{i+1} \upharpoonright \alpha_n$ is η^+ -strategically below p^i .

Then the η^+ -strategic lower bound for $\langle p^i : i < \delta \rangle$ exists and is η^+ -strategically below p^0 .

Proof: By Claims 8.8 and 8.10, we know that for every $j < \operatorname{cof} \alpha$, the η^+ strategic lower bound for $\langle p^i | \alpha_j : i < \delta \rangle$ exists and denote it by q^j . Let p^{δ} be the
componentwise union of the q^j , $j < \operatorname{cof} \alpha$, and note that whenever $j < k < \operatorname{cof} \alpha$, $q^k \leq q^j$ and for every γ of regular cardinality, $\langle (q^j)_{\gamma}^{**} : j < \operatorname{cof} \alpha \rangle$ is eventually
constant. It is thus easily seen that p^{δ} is a condition in P_{α} extending each p^i .
The final statement of the claim follows by claims 8.8 and 8.11. \Box

Definition 8.13 (reducing a dense set) If D is a dense subset of P_{α} and $\eta < \alpha$ is a cardinal, we say that q reduces D below η if for every $r \in P_{\alpha}$ with $u_{\eta}(r) \leq u_{\eta}(q)$, there is $s \leq r$ with $u_{\eta}(s) = u_{\eta}(r)$ and s meets D in the sense that $\exists d \in D \ s \leq d$.

Definition 8.14 (equivalent dense set) If P is a notion of forcing and $D \subseteq P$ we say that D is an equivalent dense subset of P if for every $p \in P$ there is $d \in D$ so that $d \leq p$ and $p \leq d$, i.e. p and d are equivalent.

The central technical theorem of our paper at its core will establish that our iteration P is Δ -distributive. Before stating that theorem, we will provide the reader with the definition of Δ -distributivity, which is originally given in [1] and restated here in a less general version, slightly adapted to our iteration P:

Definition 8.15 We say P_{α} is Δ -distributive if whenever $\langle D_i : i < \operatorname{card} \alpha \rangle$ are dense subsets of P_{α} and $p \in P_{\alpha}$, there is $q \leq p$ which reduces D_i below i^+ for every i, where we let $i^+ = \omega$ for finite i.

Now we adapt this definition to the context of class forcing:

Definition 8.16 We say that P is Δ -distributive at κ if whenever $\langle D_i : i < \kappa \rangle$ is a definable sequence of dense classes of P and $p \in P$, then there is $q \leq p$ which reduces D_i below i^+ for every i. We say that P is Δ -distributive if P is Δ -distributive at κ for every uncountable cardinal κ .

Theorem 8.17 Suppose $\omega \leq \eta < \alpha, \eta \in \text{Card}$ and $\kappa = \text{card } \alpha$. Then the following hold:

1. [Strategic Successors, Strategic Closure] If $\alpha^* \ge \alpha$, $p \in P_{\alpha^*}$, then for any $q \le p \upharpoonright \alpha$ there exists $r \le q$ which is η^+ -

strategically below p. If η is regular we can additionally ensure that $l_{\eta}(r) = l_{\eta}(q)$, therefore $u_{\eta}(P_{\alpha})$ and $u_{\eta}(P_{\alpha}^{\oplus})$ are both η^+ -strategically closed.

2. [Early Information]

If $p \in P_{\alpha}$, then there is $q \leq p$ so that $q \upharpoonright i^{\oplus}$ forces that q_i^{**} has a P_{γ} -name for some $\gamma < \operatorname{card} i$ whenever $i \in \operatorname{C-supp}(q)$, $i \geq \eta^+$ and a P_{γ} -name for some $\gamma < \nu$ if $\operatorname{card} i = \nu^+$ and $\nu \geq \eta$ is singular. Moreover there is such q for which q_i has a P_{γ} -name for some $\gamma < \operatorname{card} i$ whenever $\operatorname{card} i \geq \eta$ is singular or equal to ω . If q satisfies all of the above, we say that q has early information above η . If $\eta = \omega$, we say that q has early information. If η is regular, we can ensure that $l_{\eta}(q) = l_{\eta}(p)$ in the above.

- [Smallness of the iteration]
 If α is regular, P_α has a dense subset of size α. Otherwise P_α has a dense subset of size α⁺.
- 4. [Chain Condition] Assume η is regular. If J is an antichain of P_{α} such that $u_{\eta}(p) \parallel u_{\eta}(q)$ whenever p and q are in J, then $|J| \leq \eta$.
- 5. [Reducing dense sets]

- Assume η is regular and ⟨D_i: i < η⟩ is a collection of dense subsets of P_α. Then any condition in P_α can be strengthened to a condition q with the same η-sized part so that for every i < η, q reduces D_i below η.
- Assume η ≤ α is singular and ⟨D_i: i < η⟩ is a collection of dense subsets of P_α. Then for any ζ < η, any condition in P_α can be strengthened to a condition q with the same ζ-sized part so that for every i < η there exists η_i < η so that q reduces D_i below η_i.
- P_{α} is Δ -distributive.
- 6. [Early names]
 - Assume η is regular and \dot{f} is a P_{α} -name for an ordinal-valued function with domain η . Then any condition in P_{α} can be strengthened to a condition q with the same η -sized part forcing that for every $i < \eta$, there is a maximal antichain of size at most η below q deciding $\dot{f}(i)$, where for every element a of that antichain, $u_{\eta}(a) = u_{\eta}(q)$. We say that q reduces \dot{f} below η . In particular, such q forces that \dot{f} has a P_{γ} -name for some $\gamma < \eta^+$.
 - Let $\eta \leq \alpha$ be a singular cardinal. Let f be a P_{α} -name for an ordinalvalued function with domain η . Then for any $\zeta < \eta$, any condition in P_{α} can be strengthened to a condition q with the same ζ -sized part, forcing that for every $i < \eta$, there is a maximal antichain of size less than η below q deciding f(i), where for every element a of that antichain, $u_{\eta}(a) = u_{\eta}(q)$. We say that q reduces \dot{f} below η . In particular, such q forces that \dot{f} has a P_{n} -name.
- 7. [Preservation of the GCH] After forcing with P_{α} , GCH holds.
- [Covering, Preservation of Cofinalities] For every cardinal θ, for every p ∈ P_α and every P_α-name x for a set of ordinals of size θ there is a set X in V of size θ and an extension q of p such that q ⊨ x ⊆ X. Therefore forcing with P_α preserves all cofinalities.
- 9. [Club Extendibility]

If $I \subseteq \alpha$ is s.t. $\operatorname{card}(I \cap \theta^+) < \theta$ for every regular θ , $I \subseteq \bigcup_{\theta \text{ regular}} [\theta, \theta^+)$ and $\langle \bar{\delta}^i : i \in I \rangle$ is s.t. $\bar{\delta}_i < \operatorname{card} i$ for every $i \in I$, then for every $p \in P_\alpha$, there is $q \leq p$ s.t. $\forall i \in I \ q \mid i^{\oplus} \Vdash \max q_i^{**} \geq \bar{\delta}_i$. Moreover if $\eta < \operatorname{card} \min I$ is regular, there is such q with $l_\eta(q) = l_\eta(p)$.

Proof: By induction on α .

Proof of 1 and 2: Starting from p and q as in the statement of 1, we will find $r \leq q$ which is η^+ -strategically below p and has early information above η and thus prove 1 and 2 simultaneously. We distinguish several cases for α assuming that $\eta < \kappa$, as 1 is immediate and 2 is easy otherwise. Note that (iii) and (iv) in Definition 8.7 are always easy to satisfy by choosing r such that $\sup(\supp(r) \cap \theta)$ is sufficiently large whenever C- $supp(p) \cap [\theta, \theta^+) \neq \emptyset$ and $\theta \in (\eta, \alpha)$ is regular. We will thus ignore (iii) and (iv) in the following and concentrate only on making (i) and (ii) in Definition 8.7 hold. **Case 1:** $\alpha = \beta + 1$ **is a successor ordinal** Using 6 inductively, if card β is regular, strengthen q to q^* s.t. $q^* \upharpoonright \beta$ forces that $(q^*)_{\beta} = q_{\beta}$ has a $P_{\sup \text{S-supp}(q^*) \cap \kappa^-}$ name by first reducing q_{β} below η and then sufficiently increasing $\text{S-supp}(q^*)$. If card β is singular, reduce q_{β} below η , which ensures that $(q^*)_{\beta} = q_{\beta}$ has a P_{γ} -name for some $\gamma < \eta$. Also make sure that $q^* \upharpoonright \beta^{\oplus}$ reduces q_{β}^* below η and let $(q^*)_{\beta}^* = q_{\beta}^*$. Now we use 1 and 2 inductively to find $r \leq q^*$ such that $r \upharpoonright \beta$ is η^+ -strategically below p and has early information above η . Choose δ such that

- $\delta > \eta$, sup(S-supp $(p) \cap \kappa)$,
- $q^* \upharpoonright \beta^{\oplus}$ forces that $\delta > \sup(q^*)_{\beta}^{**}$ and
- ot $f_{\beta}[\delta] > \sup(\text{S-supp}(r) \cap \kappa)$.

Let $r_{\beta} = (q^*)_{\beta}$, $r_{\beta}^{**} = (q^*)_{\beta}^{**} \cup \{\delta\}$ and let $r_{\text{ot } f_{\beta}[\delta]}$ be a $P_{\text{ot } f_{\beta}[\delta]}$ -name which is forced by $r \upharpoonright \beta$ to equal r_{β} . Then $r \leq q$ is η^+ -strategically below p and has early information above η , as desired.

Case 2: α is a limit ordinal, $\operatorname{cof} \alpha = \kappa$ If κ is singular, 1 is trivial. To show 2 holds, first ensure that q_{β} has a P_{γ} -name for some $\gamma < \kappa$ for every $\beta \in$ S-supp $(q) \cap [\kappa, \alpha)$ using 6 inductively and 1. 2 then follows using 2 inductively. Assume κ is regular and let $\bar{\alpha} = \sup(\operatorname{C-supp}(q) \cap \alpha) < \alpha$. Use 1 and 2 inductively to find $r \leq q$ such that $r \upharpoonright \bar{\alpha}$ is η^+ -strategically below p, has early information above η and $r[\bar{\alpha}, \alpha) = q[\bar{\alpha}, \alpha)$. Then $r \leq q$ is η^+ -strategically below p and has early information above η , as desired.

Case 3: α is a limit ordinal, $\operatorname{cof} \alpha < \kappa$ Let $\eta^* = \max\{\eta, \operatorname{cof} \alpha\}$. Let $\langle \alpha_i : i < \operatorname{cof} \alpha \rangle$ be an increasing sequence that is cofinal in α with $\alpha_0 > (\eta^*)^+$. We build a decreasing sequence of conditions $\langle q^i : i \leq \operatorname{cof} \alpha \rangle$ as follows.

- Let q^0 be such that $q^0 \upharpoonright \alpha$ is η^+ -strategically below q.
- Given q^i , let q^{i+1} be so that $q^{i+1} \upharpoonright \alpha_i$ is $(\eta^*)^+$ -strategically below q^i , has early information above η^* and $q^{i+1}[\alpha_i, \alpha) = q^i[\alpha_i, \alpha)$.
- If $\delta \leq \operatorname{cof} \alpha$ is a limit ordinal, let q^{δ} be the $(\eta^*)^+$ -strategic lower bound of $\langle q^i : i < \delta \rangle$, which exists by Claim 8.12.

 $q^{\operatorname{cof} \alpha} \leq q$ is $(\eta^*)^+$ -strategically below p by Claim 8.12 and has early information above η^* , hence by our assumption on q^0 above, $q^{\operatorname{cof} \alpha}$ is η^+ -strategically below p. We may choose $r \leq q^{\operatorname{cof} \alpha}$ such that $r \upharpoonright \alpha_0$ has early information above η and $r[\alpha_0, \alpha) = q^{\operatorname{cof} \alpha}[\alpha_0, \alpha)$. Then r is as desired.

Proof of 3: We prove that $D_{\alpha} := \{p \in P_{\alpha} : (\forall \theta \ \theta \text{ is a singular cardinal} \rightarrow \forall \gamma \in \text{S-supp}(p) \cap [\theta, \theta^+) \exists \xi < \theta \ p_{\gamma} \text{ has a } P_{\xi}\text{-name}) \land (\forall \theta \in \textbf{Card} \exists \gamma \ \text{S-supp}(p) \cap [\theta, \theta^+) = [\theta, \gamma))\}$ has an equivalent dense subset E_{α} of size α if α is regular and of size α^+ if α is singular. Note that D_{α} itself is dense in P_{α} by 2.

If α is regular, conditions in P_{α} have bounded support below α , thus the claim follows by 3 inductively.

If $\alpha = \beta + 1$ is a successor ordinal, assume $p \in D_{\alpha}$ and D_{β} has an equivalent dense subset E_{β} of size α^+ inductively. If κ is regular, p_{β} can be identified with an antichain of E_{β} below $p \upharpoonright \beta$. Since for any two elements a_0 , a_1 of such an antichain, $u_{\kappa}(a_0) \parallel u_{\kappa}(a_1)$, such an antichain will have size at most κ using 4 inductively, thus there are α^+ -many possible choices for p_{β} . p_{β}^{**} can be identified with a collection of less than κ -many antichains of E_{β} below $p \upharpoonright \beta$, each element-wise paired with ordinals below κ , thus using similar arguments as before, there are α^+ -many possible choices for p_{β}^{**} . If card β is singular, p_{β} has a P_{γ} -name for some $\gamma < \operatorname{card} \beta$ and hence there are less than α -many possible choices for p_{β} in this case. This yields that P_{α} has a dense subset of size $alpha^+$.

If α is singular and $p \in D_{\alpha}$, we can modify p to an equivalent p' such that for every $\gamma < \alpha$, $p' \upharpoonright \gamma \in E_{\gamma}$. Hence P_{α} has a dense subset of size $\prod_{\gamma < \alpha} \gamma^+ \leq \alpha^+$.

Proof of 4: Assume J is an antichain of P_{α} such that whenever p and q are in J, $u_{\eta}(p) \parallel u_{\eta}(q)$. We may assume that all conditions in J are from E_{α} and have early information. Assume for a contradiction that J has size at least η^+ . By 3 inductively, $p \mid \eta$ is the same for η^+ -many conditions in J and thus we may assume it is the same for all conditions in J. By GCH and a Δ -system argument, there is $W \subseteq J$ of size η^+ and a size less than η subset A of η^+ such that C-supp $(p) \cap C$ -supp $(q) \cap [\eta, \eta^+) = A$ whenever $p \neq q$ are both in W. But using that GCH holds after forcing with P_{η} by 7 inductively, it follows that for η^+ -many conditions p in W, $\langle p(i)(1) : i \in A \rangle$ is the same (modulo equivalence). But - using the assumption that $u_{\eta}(p) \parallel u_{\eta}(q)$ - any two such conditions are compatible, thus W (and hence also J) is not an antichain.

Proof of 5:

Claim 8.18 Assume $p \in P_{\alpha}$, D is a dense subset of P_{α} and $\nu < \alpha$ is regular. Then there is $q \leq p$ s.t. $l_{\nu}(q) = l_{\nu}(p)$ and q reduces D below ν .

Proof: Build a decreasing sequence of conditions in P_{α} below p as follows: Let $p^0 = p$. Choose q^0 so that $q^0 \leq p^0$ and $q^0 \in D$. By possibly passing to an equivalent condition, we may also ensure that $u_{\nu}(q^0) \leq u_{\nu}(p^0)$. At stage j+1, let $p^{j+1} \leq p^0$ be any condition incompatible to all q^k , $k \leq j$, such that $u_{\nu}(p^{j+1}) = u_{\nu}(q^j)$ if such exists and choose q^{j+1} such that:

- $q^{j+1} \leq p^{j+1}$,
- $q^{j+1} \in D$ and
- $u_{\nu}(q^{j+1})$ is chosen according to the strategy for ν^+ -strategic closure below $\langle u_{\nu}(q^k) \colon k \leq j \rangle$.

At limit stages $j < \nu^+$, let $p^j \leq p^0$ be a condition which is incompatible to all q^k , k < j so that for all k < j, $u_{\nu}(p^j) \leq u_{\nu}(q^k)$ if such exists. Note that a p^j satisfying the latter condition can always be found by the strategic choice of the $u_{\nu}(q^k)$. Choose $q^j \leq p^j$ so that $q^j \in D$ and $u_{\nu}(q^j) \leq u_{\nu}(p^j)$. Proceed until at some stage j no condition p^j as above can be chosen. By 4, this will be the case for some $j < \nu^+$. We can then find $q \in P_{\alpha}$ so that $u_{\nu}(q) \leq u_{\nu}(q^k)$ for every k < j and $l_{\nu}(q) = l_{\nu}(p)$. By our construction, q reduces D below ν . \Box

Using the claim for $\nu = \eta$, the case of regular η follows immediately, applying 1 once more. For the case of $\eta \leq \alpha$ singular, choose a continuous, cofinal in η , increasing sequence $\langle \eta_i : i < \operatorname{cof} \eta \rangle$ of cardinals where each η_{i+1} is regular and

 $\eta_0 > \operatorname{cof} \eta$. Build a sequence of conditions $\langle q^i : i < \operatorname{cof} \eta \rangle$ so that $q^{i+1} = q^i$ for limit ordinals *i* and otherwise q^{i+1} reduces the first η_i -many given dense sets below $\eta_i, l_{\eta_i}(q^{i+1}) = l_{\eta_i}(q^i)$ and $u_{\eta_i}(q^{i+1})$ is chosen according to the strategy for $(\eta_i)^+$ -strategic closure of $u_{\eta_i}(P_\alpha)$ for each $i < \operatorname{cof} \eta$. At limit stages $i \leq \operatorname{cof} \eta$, we may take lower bounds of the conditions obtained so far using stability of the obtained sequence of conditions below η_i together with $(\eta_i)^+$ -strategic closure of $u_{\eta_i}(P_\alpha)$ provided by 1.

Proof of 6: Apply 5 to reduce the dense sets D_i of conditions which decide $\dot{f}(i), i < \eta$.

Proof of 7 and 8: These follow from Δ -distributivity of P_{α} , see [1], Lemma 2.10 and Lemma 2.13.

Proof of 9: Given $p \in P_{\alpha}$, $I \subseteq \alpha$ and $\langle \overline{\delta}^i : i \in I \rangle$ as in the statement of the claim, let $p' \leq p$ be such that for every θ with $I \cap [\theta, \theta^+) \neq \emptyset$, we have that $\sup(\operatorname{supp}(p') \cap \theta) \geq \sup(\{\overline{\delta}^i : i \in I \cap [\theta, \theta^+)\})$. Now let $q \leq p'$ be η^+ -strategically below p' (or ω_1 -strategically below p' if no $\eta < \operatorname{card} \min I$ is specified). It follows that q is as desired. If $\eta < \operatorname{card} \min I$ is regular, we may easily ensure that $l_\eta(q) = l_\eta(p)$ in the above.

Corollary 8.19 P preserves ZFC, cofinalities, cardinals and the GCH.

Proof: By Lemma 2.23 of [1], Δ -distributivity of P implies that P is tame and hence preserves ZFC and cofinalities. GCH preservation is immediate from Theorem 8.17, Clauses 7 and 6. \Box

Note: For every *i* of regular cardinality, $\bigcup_{p \in G} p_i^{**}$ is club in card *i* for any *P*-generic *G*. This is immediate from theorem 8.17, 9 above.

Claim 8.20 P forces Local Club Condensation.

Proof: We will verify the equivalent form of Local Club Condensation introduced in Lemma 4.1. Let G be P-generic. Let A be the generic predicate obtained from G, i.e. $\alpha \in A \leftrightarrow \exists p \in G \ p \upharpoonright \alpha \Vdash p_{\alpha} = 1$. Note that $\mathbf{V}[G] = \mathbf{L}[A]$ as any set of ordinals in \mathbf{V} is coded into A. We claim that $\langle M_{\alpha} : \alpha \in \text{Ord} \rangle$ witnesses Local Club Condensation in $\mathbf{V}[G]$ with $M_{\alpha} = L_{\alpha}[A]$. First assume α has regular uncountable cardinality κ . Note that for $\beta \in \alpha \setminus \kappa$ we have $A(\beta) = A(\text{ot } f_{\beta}[\delta])$ for all δ in the club $\bigcup_{p \in G} p_{\beta}^{**} \subseteq \kappa$. It follows that for a club C of $\delta < \kappa$, $A(\beta) =$ $A(\text{ot } f_{\beta}[\delta])$ and moreover $f_{\beta}[\delta] = f_{\alpha}[\delta] \cap \beta$ for all $\beta \in f_{\alpha}[\delta] \setminus \kappa$; this is seen using Lemma 1.1. Let, as in Lemma 4.1, F denote the function $(f, x) \mapsto f(x)$ whenever $f \in M_{\alpha}$ is a function with $x \in \text{dom}(f)$. Let $M_{\alpha}^{*} = (M_{\alpha}, \in, \langle M_{\beta} : \beta < \alpha \rangle, F, \ldots)$ be a Skolemized structure for a countable language and for any $X \subseteq \alpha$ let $M_{\alpha}^{*}(X)$ be the least substructure of M_{α}^{*} containing X as a subset. Consider the continuous chain $\langle M_{\alpha}^{*}(f_{\alpha}[\delta]) : \delta \in D \rangle$, where D consists of all elements δ of C s.t. $\delta = f_{\alpha}[\delta] \cap \kappa$ and $f_{\alpha}[\delta] = M_{\alpha}^{*}(f_{\alpha}[\delta]) \cap \text{Ord}$. Then $M_{\alpha}^{*}(f_{\alpha}[\delta])$ condenses for each $\delta \in D$.

It remains to verify Local Club Condensation for α when α has singular cardinality κ . Suppose that $\beta \geq \alpha$ and $\dot{S} \in \mathbf{V}$ is a P_{β} -name for a structure

 $(M_{\alpha}, \in, \langle M_{\beta}; \beta < \alpha \rangle, F, \ldots)$ for a countable language in $\mathbf{L}[A]$ such that the \dot{S} closure of κ is all of M_{α} , with F as above. We show that any condition $p \in P_{\beta}$ has an extension q^* which forces that there is a continuous chain $\langle Y_{\gamma}: \gamma \in C \rangle$ of condensing substructures of \dot{S} whose domains $\langle y_{\gamma}: \gamma \in C \rangle$ have union M_{α} such that $\langle y_{\gamma} \cap \operatorname{Ord}: \gamma \in C \rangle$ belongs to the ground model, where C is a closed unbounded subset of $\operatorname{Card} \cap \kappa$, each y_{γ} has cardinality γ and contains γ as a subset. Choose C to be any club subset of $\operatorname{Card} \cap \kappa$ of ordertype cof κ whose minimum is either ω or a singular cardinal and is at least cof κ . Choose some large (w.r.t. β), regular ν .

Let $p^0 = p$. We may assume C-supp $(p^0) \cap [\theta^+, \theta^{++}) \neq \emptyset$ for every $\theta \in C$. Given p^i , let $\langle M_{\theta}^i \colon \theta > \min C, \operatorname{C-supp}(p^i) \cap [\theta, \theta^+) \neq \emptyset \rangle$ be a sequence of domains of elementary submodels of H_{ν} such that each M_{θ}^i has size less than θ , is transitive below θ and contains θ, p^i, \dot{S} and $\langle M_{\theta}^j \colon j < i \rangle$ as elements. Moreover make sure that $M_{\theta_0}^i \subseteq M_{\theta_1}^i$ whenever $\theta_0 < \theta_1$ and that $M_{\gamma^+}^i = \bigcup_{\delta \in C \cap \gamma} M_{\delta}$ whenever γ is a limit point of C. Latter is possible as $\min C \geq \operatorname{cof} \kappa$ and we may thus sufficiently enlarge the $M_{\delta^+}^i, \delta \in C \cap \gamma$, after choosing $M_{\gamma^+}^i \supseteq \bigcup_{\delta \in C \cap \gamma} M_{\delta^+}^i$ in the first place. Choose $p^{i+1} \leq p^i$ such that p^{i+1} reduces every dense subset of P_{β} in M_{θ}^i below card M_{θ}^i , is ω_1 -strategically below p^i and such that $\sup(\operatorname{S-supp}(p^{i+1}) \cap \theta) \geq \operatorname{card}(M_{\theta}^i)$ and $\geq M_{\theta}^i \cap \theta$ whenever C-supp $(p^i) \cap [\theta, \theta^+) \neq \emptyset$.

Let r be the componentwise union of $\langle p^i : i < \omega \rangle$, let q be the ω_1 -strategic lower bound. Let $y_{\gamma} := \bigcup_{i < \omega} M^i_{\gamma^+}$ for every $\gamma \in C$. We have obtained the following properties for every $\gamma \in C$:

- (1) y_{γ} is transitive below γ^+ ,
- (2) $y_{\gamma} \cap [\gamma, \gamma^+) = \text{S-supp}(r) \cap [\gamma, \gamma^+),$
- (3) $y_{\gamma} \cap [\gamma^+, \gamma^{++}) = \text{C-supp}(r) \cap [\gamma^+, \gamma^{++}),$
- (4) q forces that the \dot{S} -closure of y_{γ} intersected with Ord equals y_{γ} and
- (5) q forces that $A \cap y_{\gamma}$ has a $P_{y_{\gamma} \cap \gamma^+}$ -name.
- (6) $\langle y_{\gamma} : \gamma \in C \rangle$ is continuous and increasing.

(1) is immediate as each $M_{\gamma^+}^i$ is transitive below γ^+ , (2) and (3) follow by easy density and elementarity arguments. For (4), it suffices to show that the \dot{S} -closure of $M_{\gamma^+}^i$ intersected with the ordinals is forced by q to be contained in $M_{\gamma^+}^{i+2}$ for every $i < \omega$: We required that $M_{\gamma^+}^i \in M_{\gamma^+}^{i+1}$. Thus $D = \{t \in P_{\beta}: t \Vdash (\dot{S}\text{-closure of } M_{\gamma^+}^i) \cap \text{Ord is covered by a ground model set of size } \gamma\}$ is dense in P_{β} using clause 8 of Theorem 8.17, contained (as an element) in $M_{\gamma^+}^{i+1}$ and will thus be hit by p^{i+2} ; (4) now follows as $p^{i+2} \in M_{\gamma^+}^{i+2}$: using elementarity, p^{i+2} forces that we can cover the \dot{S} -closure of $M_{\gamma^+}^i$ by a set in $M_{\gamma^+}^{i+2}$ of size γ ; as $\gamma \subseteq M_{\gamma^+}^{i+2}$, this covering set will be contained (as a subset) in $M_{\gamma^+}^{i+2}$. (5) follows similar to (4), using easy density arguments. (6) is immediate by our requirements on the M_{θ}^i .

Let π_{γ} be the collapsing map of y_{γ} . If $\xi \in y_{\gamma} \cap [\gamma^+, \gamma^{++})$, f_{ξ} is a bijection from γ^+ to ξ , hence $f_{\xi} \upharpoonright (y_{\gamma} \cap \gamma^+)$ is a bijection from $y_{\gamma} \cap \gamma^+$ to $y_{\gamma} \cap \xi$ by elementarity, i.e. $\pi_{\gamma}(\xi) = \operatorname{ot}(f_{\xi}[y_{\gamma} \cap \gamma^{+}])$, therefore $q(\pi_{\gamma}(\xi)) = r(\xi)$. Now extend q to q^{*} such that for every $\xi \in y_{\gamma}, \xi \geq \gamma^{++}$, we have $q^{*}(\pi_{\gamma}(\xi)) = r(\xi)$; this is possible since if γ is inaccessible, $\sup(S\operatorname{-supp}(r) \cap \gamma) = \operatorname{card} y_{\gamma}$ and whenever $C\operatorname{-supp}(r) \cap [\theta, \theta^{+}) \neq \emptyset$ and θ is inaccessible, $\sup(r_{\zeta}^{**}) = \sup(S\operatorname{-supp}(r) \cap \theta) > \sup(C \cap \theta)^{+}$ for every $\zeta \in C\operatorname{-supp}(r) \cap [\theta, \theta^{+})$ by easy density arguments, hence when we form q out of r and have to set $q(\operatorname{ot} f_{\zeta}[\sup(r_{\zeta}^{**})])$ to be equal to $q(\zeta)$ for $\zeta \in C\operatorname{-supp}(r) \cap [\theta, \theta^{+})$, we do not make any new requirements in the interval $[\gamma, \gamma^{+})$ - note that ot $f_{\zeta}[\sup(r_{\zeta}^{**})] \geq \sup(r_{\zeta}^{**})$. We thus made sure q^{*} forces Condensation for y_{γ} for every $\gamma \in C$. \Box

Theorem 8.21 Local Club Condensation is consistent with the existence of an ω -superstrong cardinal.

Proof: Assume κ is ω -superstrong, witnessed by the embedding $j: \mathbf{V} \to \mathbf{M}$. Let P be the Local Club Condensation forcing as defined at the beginning of this section. We want to show that forcing with P may preserve the ω -superstrength of κ . Let P^* denote the \mathbf{M} -version of P (using the definition of P in \mathbf{M}). Note that for every $n < \omega$, $P_{j^n(\kappa)} = P_{j^n(\kappa)}^*$. We want to find a \mathbf{V} -generic $G \subseteq P$ and an \mathbf{M} -generic $G^* \subseteq P^*$ such that $j''G \subseteq G^*$ and $V[G]_{j^{\omega}(\kappa)} \subseteq M[G^*]$. After finding a suitable $P_{j^{\omega}(\kappa)}$ -generic $G_{j^{\omega}(\kappa)}$, we will let $G^*_{j^{\omega}(\kappa)}$ be the filter generated by $G^*_{j^{\omega}(\kappa)}$ together with the image of G under j. $\mathbf{V}[G]_{j^{\omega}(\kappa)} \subseteq \mathbf{M}[G^*]$ follows as every element of $\mathbf{V}[G]_{j^{\omega}(\kappa)}$ has a P-name in $\mathbf{V}_{j^n(\kappa)}$ for some $n < \omega$ by Clause 6 of Theorem 8.17. We have to show the following:

- 1. $G^*_{j^{\omega}(\kappa)}$ is $P^*_{j^{\omega}(\kappa)}$ -generic over **M**.
- 2. G^* is P^* -generic over **M**.
- 3. We can choose $G_{j^{\omega}(\kappa)}$ in such a way that $j''G_{j^{\omega}(\kappa)} \subseteq G_{j^{\omega}(\kappa)}^*$.

We will assume 3 for the moment and proof 1 and 2 using 3. We will then proof 3 without using either 1 or 2. Assume that j is given by an ultrapower embedding, which means that every element of **M** is of the form j(f)(a) where f has domain $H_{j^{\omega}(\kappa)}$ and a belongs to $H_{j^{\omega}(\kappa)}$.

Proof of 1: Suppose $D \in \mathbf{M}$ is dense on $P_{j^{\omega}(\kappa)}^*$ and write D as j(f)(a) where $\operatorname{dom}(f) = V_{j^{\omega}(\kappa)}$ and $a \in V_{j^{n+1}(\kappa)}$ for some $n \in \omega$. Choose $p \in G_{j^{\omega}(\kappa)}$ such that p reduces $f(\bar{a})$ below $j^n(\kappa)$ whenever \bar{a} belongs to $V_{j^n(\kappa)}$ and $f(\bar{a})$ is dense on $P_{j^{\omega}(\kappa)}$. The existence of p follows from Clause 5 of Theorem 8.17, using that $V_{j^n(\kappa)}$ has size $j^n(\kappa)$. Then j(p) belongs to $j''G_{j^{\omega}(\kappa)} \subseteq G_{j^{\omega}(\kappa)}^*$ by 3 and reduces D below $j^{n+1}(\kappa)$. Hence $E := \{q \in P_{j^{n+2}(\kappa)} : q^{-j}(p) | j^{n+2}(\kappa), j^{\omega}(\kappa)) \in D \}$ is dense below $j(p) \upharpoonright j^{n+2}(\kappa)$ in $P_{j^{n+2}(\kappa)}$. Since $G_{j^{n+2}(\kappa)}$ contains $j(p) \upharpoonright j^{n+2}(\kappa)$ and is $P_{j^{n+2}(\kappa)}$ -generic over $\mathbf{M}, G_{j^{n+2}(\kappa)} \cap E \neq \emptyset$. Choose q in that intersection. Then $q^{-j}(p) [j^{n+2}(\kappa), j^{\omega}(\kappa)) \in D \cap G_{j^{\omega}(\kappa)}^*$.

Proof of 2: Like 1, using that $j''G \subseteq G^*$ as an immediate consequence of 3.

Proof of 3: We will specify a master condition $q \in P_{j^{\omega}(\kappa)}$ so that $q \in G_{j^{\omega}(\kappa)}$ ensures $j''G_{j^{\omega}(\kappa)} \subseteq G^*_{j^{\omega}(\kappa)}$. Let \dot{G} be the canonical name in **V** for the $P_{j^{\omega}(\kappa)}$ generic. We define r by letting, for all $\gamma \geq j(\kappa)$:

$$r(\gamma)(0) = \bigcup_{p \in \dot{G}} j(p)(\gamma)(0) \text{ and } r_{\gamma}^{**} = \bigcup_{p \in \dot{G}} j(p)_{\gamma}^{**}.$$

As we did earlier, we write S-supp(r) for $\{\gamma: r(\gamma)(0) \neq \mathbf{\check{I}}\}$ and C-supp(r) for $\{\gamma: r_{\gamma}^{**} \neq \mathbf{\check{I}}\}$. It is easily observed that S-supp(r) is bounded below every regular cardinal and that card(C-supp(r) $\cap \theta^+$) $< \theta$ for every regular cardinal θ . We want to form q out of r by setting, for every $\gamma \in \text{C-supp}(r)$:

- $q \upharpoonright \gamma^{\oplus} \Vdash q_{\gamma}^{**} = r_{\gamma}^{**} \cup \{\sup r_{\gamma}^{**}\},\$
- If $\gamma \geq j(\kappa)^+$, choose $q_{\text{ot } f_{\gamma}[\sup r_{*}^{**}]}$ such that $q \upharpoonright \gamma \Vdash q_{\text{ot } f_{\gamma}[\sup r_{*}^{**}]} = r_{\gamma}$,

We also set $q(\gamma)(0) = r(\gamma)(0)$ for γ in S-supp(r) and let components other than the above have value $\check{\mathbf{1}}$. The following Claim will finish the proof of Theorem 8.21:

Claim 8.22 1. $q \in P_{j^{\omega}(\kappa)}$.

- 2. q extends j(p) whenever $p \upharpoonright \kappa = 1$.
- 3. Whenever $p \leq q$, $p \in G$, then $p \leq j(p)$; hence if $p \in G_{j^{\omega}(\kappa)}$, then $j(p) \in G_{j^{\omega}(\kappa)}$, i.e. $j''G_{j^{\omega}(\kappa)} \subseteq G_{j^{\omega}(\kappa)}^*$.

Proof of 1: We want to define, for every cardinal $\theta \geq j(\kappa)^+$ with C-supp $(r) \cap [\theta, \theta^+) \neq \emptyset$ a model M_{θ} : Choose some large (w.r.t. $j^{\omega}(\kappa)$), regular (in **M**) $\nu \in \operatorname{range}(j)$, fix a well-ordering R of $H_{j^{-1}(\nu)}$ and let M_{θ} be the Skolem Hull of $\operatorname{sup}(S\operatorname{-supp}(r) \cap \theta) \cup (C\operatorname{-supp}(r) \cap [\theta, \theta^+))$ in $H_{\nu}^{\mathbf{M}}$ according to j(R).

Claim 8.23 For all θ with C-supp $(r) \cap [\theta, \theta^+) \neq \emptyset$,

- $M_{\theta} \cap \theta = \sup(\text{S-supp}(r) \cap \theta) = \sup r_{\theta}^{**}$.
- $M_{\theta} \cap [\theta, \theta^+) = \text{C-supp}(r) \cap [\theta, \theta^+).$

Proof: For the first statement, assume $\xi \in M_{\theta}$, $\xi < \theta$. Then ξ can be defined using finite sets of parameters $S_0 \subseteq \sup(\text{S-supp}(r) \cap \theta)$ and $S_1 \subseteq \text{C-supp}(r) \cap$ $[\theta, \theta^+)$. Choose $p \in G$ so that $S_0 \subseteq \text{S-supp}(j(p) \cap \theta)$ and $S_1 \subseteq \text{C-supp}(j(p)) \cap$ $[\theta, \theta^+)$. Let $t \leq p$ in G be such that whenever $\text{C-supp}(p) \cap [\rho, \rho^+) \neq \emptyset$, $\sup(\text{S-supp}(t) \cap \rho) \geq \sup(H^{H_{j-1}(\nu)}(\sup(\text{S-supp}(p) \cap \rho) \cup (\text{C-supp}(p) \cap [\rho, \rho^+))) \cap \rho)$. It follows that $\xi < \sup(\text{S-supp}(j(t)) \cap \theta < \sup(\text{S-supp}(r) \cap \theta)$, which is equal to $\sup r_{\theta}^{**}$ by the usual arguments. The proof of the second statement is similar. □

Let π_{θ} denote the collapsing map of M_{θ} and note that for $\gamma \in \text{C-supp}(r) \cap [\theta, \theta^+)$, $\pi_{\theta}(\gamma) = \text{ot } f_{\gamma}(\sup r_{\gamma}^{**})$. By the usual arguments, it follows that our above definition of q has no conflicting requirements and q has appropriate supports in order to be a condition in $P_{j^{\omega}(\kappa)}$.

Proof of 2: Observe that C-supp $(r) \cap [j(\kappa), j(\kappa^+)) = j''[\kappa, \kappa^+)$ and sup $r_{j(\kappa)^{**}} = \kappa$. Hence $\pi_{j(\kappa)}(\gamma) = j^{-1}(\gamma)$ for $\gamma \in \text{C-supp}(r) \cap [j(\kappa), j(\kappa^+))$. This, together with the usual argument at cardinals $> j(\kappa)$ implies 2.

Proof of 3: Assume $p \leq q$. Then $p \leq j(p)$ as $p \upharpoonright \kappa = j(p) \upharpoonright \kappa$ and $p[\kappa, j^{\omega}(\kappa)) \leq q \leq j(p)[\kappa, j^{\omega}(\kappa))$. $\Box_{\text{Claim 8.22}} \Box_{\text{Theorem 8.21}}$

Note: Many other (smaller) large cardinal properties can be preserved while forcing with P, for example measurable cardinals.

9 A possible future application

See [3], where this is turned into an actual application.

References

- [1] Sy D. Friedman. *Fine Structure and Class Forcing*. De Gruyter Series in Logic and its applications 3, 2000.
- [2] Sy D. Friedman, Peter Holy. Condensation and large cardinals. Fundamenta Mathematicae 215, no. 2, pp. 133–166, 2011.
- [3] Sy D. Friedman, Peter Holy. A quasi lower Bound on the Consistency Strength of PFA. Accepted for Transactions of the AMS, 2012.
- [4] Peter Holy. Condensation and large cardinals. Dissertation, University of Vienna, 2010.