7. Ordinalzahladdition

Uebung 1

Zeige: ξ *ist Limesordinalzahl genau dann wenn* $\forall \zeta$ ($\zeta < \xi \rightarrow \zeta + 1 < \xi$).

Uebung 2 Zeige: Es gibt beliebig grosse Limesordinalzahlen, also

$$\forall \beta \, \exists \alpha \, \alpha \geq \beta \, \wedge \, \alpha \, Limesordinalzahl.$$

Uebung 3 Finde eine Folge $\langle A_i : i \in \omega \rangle$ so dass $A_i \subseteq A_j \subseteq \mathbf{Ord}$ for i < j in ω , aber so dass die folgende Aussage nicht gilt:

$$\bigcup_{i \in \omega} \operatorname{type}(\langle A_i, \in \rangle) = \operatorname{type}(\langle \bigcup_{i \in \omega} A_i, \in \rangle).$$

Hinweis: Suche eine aufsteigende Folge endlicher Mengen $\langle A_i : i \in \omega \rangle$ mit $\bigcup_{i \in \omega} A_i = \omega + \omega$. **Ord** bezeichnet die (echte) Klasse der Ordinalzahlen.

Ist (A, \in) eine Wohlordnung, so bezeichnet type (A, \in) den Ordnungstyp der \in -Relation auf A, also die eindeutig bestimmte Ordinalzahl α , so dass (A, \in) isomorph zu (α, \in) ist.

Uebung 4 Zeige: Ist $\alpha < \beta$, so ist $\gamma + \alpha < \gamma + \beta$ und $\alpha + \gamma \leq \beta + \gamma$. Gib ein Beispiel dass \leq nicht durch < ersetzt werden kann.

Uebung 5

Sei $\alpha < \zeta$. Zeige: Es gibt ein eindeutig bestimmtes δ mit $\alpha + \delta = \zeta$.

Uebung 6 Zeige: Ist β Limesordinalzahl, so ist $\alpha + \beta = \sup\{\alpha + \xi : \xi < \beta\}$.

8. Klassen

Definition 1 Eine Folge von Ordinalzahlen $\langle \gamma_{\alpha} : \alpha \in \mathbf{Ord} \rangle$ heisst normal, wenn sie streng monoton wachsend und stetig ist, also wenn $\alpha_0 < \alpha_1 \rightarrow \gamma_{\alpha_0} < \gamma_{\alpha_1}$ und $\bigcup_{\alpha < \beta} \gamma_{\alpha} = \gamma_{\beta}$.

 α heisst Fixpunkt der Folge $\langle \gamma_{\alpha} \colon \alpha \in \mathbf{Ord} \rangle$ wenn $\gamma_{\alpha} = \alpha$.

Uebung 7 Zeige: Eine normale Folge von Ordinalzahlen $\langle \gamma_{\alpha} : \alpha \in \mathbf{Ord} \rangle$ hat beliebig grosse Fixpunkte.

Hinweis: Waehle α_0 beliebig und setze $\alpha_{n+1} = \gamma_{\alpha_n}$ fuer $n \in \omega$. Sei $\alpha = \bigcup_{n < \omega} \alpha_n$. Zeige: α ist Fixpunkt der gegebenen Folge.

9. Das Auswahlaxiom

Bemerkung:

Das Auswahlaxiom ist in Kunen's Buch folgendermassen definiert:

 $\forall A \exists R \ (R \text{ ist eine Wohlordnung auf } A).$

Uebung 8 Zeige (ohne Verwendung des Auswahlaxioms), dass fuer jede Menge X die folgenden Aussagen aequivalent sind:

- 1. X kann wohlgeordnet werden: $\exists R \ (R \ ist \ eine \ Wohlordnung \ auf \ X)$.
- 2. Es gibt eine Funktion $f: (\mathcal{P}(X) \setminus \{\emptyset\}) \to X$ so dass fuer jedes $Y \in \mathcal{P}(X) \setminus \{\emptyset\}, f(Y) \in Y$.

10. Ordinalzahlexponentiation

Uebung 9

Sei α Ordinalzahl. Zeige: Es gibt ein groesstes δ so dass $\omega^{\delta} \leq \alpha$.

Uebung 10 Sei α Ordinalzahl und δ maximal so dass $\omega^{\delta} \leq \alpha$. Dann gibt es ein groesstes $n < \omega$ so dass $\omega^{\delta} \cdot n \leq \alpha$.

Uebung 11 Zeige: Ist $\alpha = \omega^{\delta}$ und $\beta < \alpha$, so gibt es $\beta_1 < \delta$ und $k \in \omega$ so dass $\beta < \omega^{\beta_1} \cdot k$.

Uebung 12 Sei α Limesordinalzahl. Zeige dass die folgenden Aussagen aequivalent sind:

- 1. $\forall \beta, \gamma < \alpha \ (\beta + \gamma < \alpha)$.
- 2. $\forall \beta < \alpha \ (\beta + \alpha = \alpha)$.
- 3. $\exists \delta \ (\alpha = \omega^{\delta}).$

Hinweis: Zeige $1 \iff 2$ und $1 \iff 3$.

Bemerkung: Ordinalzahlen von der Form ω^{δ} heissen unzerlegbar.

Uebung 13 (Der Cantorsche Normalformsatz)

Zeige: Jede Ordinalzahl $\alpha \neq \emptyset$ kann in der Form

$$\alpha = \omega^{\beta_1} \cdot l_1 + \ldots + \omega^{\beta_n} \cdot l_n$$

dargestellt werden, wobei $1 \le n < \omega$, $\alpha \ge \beta_1 > \ldots > \beta_n \ge 0$ und $1 \le l_i < \omega$ fuer $i = 1, \ldots n$.