Relationen und Funktionen

Uebung 1 Fuer eine beliebige Relation R gilt $dom(R^{-1}) = range(R)$ und $range(R^{-1}) = dom(R)$.

Uebung 2 Ist eine Funktion f injektiv, so ist f^{-1} eine injektive Funktion.

Uebung 3 Ist $f: A \to B$ injektiv, so gibt es $g: B \to A$ surjektiv (ohne Verwendung des Auswahlaxioms).

Uebung 4 Ist $f: A \to B$ surjektiv, so gibt es $g: B \to A$ injektiv (dieser Beweis benoetigt das Auswahlaxiom - ueberlege, wo genau du es verwendest; ueberlege auch, warum man das Auswahlaxiom nicht benoetigt, wenn etwa A eine Teilmenge der natuerlichen Zahlen ist).

Uebung 5 Seien f und g Funktionen. Wann ist $f \cup g$ eine Funktion? Gib eine notwendige und hinreichende Bedingung an.

Bemerkung: $f \cup g$ bezeichnet die Vereinigungsmenge von f und g.

Uebung 6 Folgt aus $A \times B = C \times D$ dass A = C und B = D?

Wohlordnungen

Uebung 7 Zeige: Ist $\langle W, < \rangle$ eine Wohlordnung so gibt es keine unendlich absteigende Folge in W, also keine Folge $\langle a_i : i \in \mathbb{N} \rangle$ mit $a_0 > a_1 > a_2 > \ldots$, wobei x > y genau dann wenn y < x (> bezeichnet die umgekehrte Ordnung).

Uebung 8 Sei $\langle W, < \rangle$ eine Wohlordnung und sei $f : W \to W$ eine streng monoton steigende Funktion (also $x < y \to f(x) < f(y)$). Zeige: dann gilt $f(x) \ge x$ fuer alle $x \in W$, wobei $x \ge y$ genau dann wenn x > y oder x = y.

Ordinalzahlen

Uebung 9 Das Unendlichkeitsaxiom (axiom of infinity) ist aequivalent (modulo der restlichen ZFC-Axiome) zur Existenz einer Limesordinalzahl.

Uebung 10 Zeige: Zu jeder Ordinalzahl α gibt es eine groessere Limesordinalzahl β .