Well-founded sets

Exercise 1 Assume f is a function from A to B with $rank(A) = \alpha$ and $rank(B) = \beta$. What can you say about rank(f)? Argue that we can calculate rank(f) in the case when f is onto B (surjective).

Exercise 2 For which α is $|R(\alpha)| = \beth_{\alpha}$?

Exercise 3 If κ is strongly inaccessible, then $|R_{\kappa}| = \kappa$. Are there cardinals κ with this property which are not inaccessible?

Exercise 4 Find a set x so that $|x| < |\operatorname{trcl}(x)|$.

Exercise 5 Work in ZFC without the Axiom of Foundation. Show that every proper class \mathbf{A} for which $x \subseteq \mathbf{A} \to x \in \mathbf{A}$ holds is a superclass of \mathbf{WF} (in the obvious sense that $x \in \mathbf{WF}$ implies $x \in \mathbf{A}$).

Hint: $\emptyset \subseteq \mathbf{A}$.

Definition 1 A set x is called heriditarily finite (in german "hereditär endlich") iff $|\operatorname{trcl}(x)| < \omega$. H_{ω} denotes the set of all hereditarily finite sets.

Exercise 6 Show that $H_{\omega} = R(\omega)$.

A simplified approach to exercise 3 from last time

Exercise 7 Let λ be any infinite cardinal and show that¹

$$|\{X \subseteq \lambda \colon |X| = \lambda\}| = 2^{\lambda}.$$

Hint: Assume not and use that whenever $X \subseteq \lambda$ has size less than λ , its complement (within λ) has size λ .

Exercise 8 Assume $\lambda \leq \kappa$ and show that there are κ^{λ} -many injective functions from λ to κ (i.e. $|\{f \in {}^{\lambda}\kappa : f \text{ injective }\}| = \kappa^{\lambda}$).

Hint: Given $f \in {}^{\lambda}\kappa$, find a way to construct an injective $g_f \in {}^{\lambda}\kappa$ in an injective way, i.e. it should be the case that whenever $f_0 \neq f_1 \in {}^{\lambda}\kappa, g_{f_0} \neq g_{f_1}$.

Note: Almost the same proof shows that whenever λ is an infinite cardinal, there are 2^{λ} many bijections from λ to λ . We will need (and use) this in the following but I suggest to omit the exact proof.

¹this is the special case where $\kappa = \lambda$ of exercise 3 from last time

Exercise 9 Show that whenever $\lambda \leq \kappa$ are infinite ordinals,²

$$|\{X \subseteq \kappa \colon |X| = \lambda\}| = \kappa^{\lambda}.$$

Hint: Let $A := \{X \subseteq \kappa : |X| = \lambda\}$. Argue that $|A| \le \kappa^{\lambda}$ is pretty obvious. We have to show that $\kappa^{\lambda} \le |A|$. We want to find an injection from ${}^{\lambda}\kappa$ to A. By exercise 8, it suffices to find an injection from the injective functions from λ to κ to A. Note that every injective $f : \lambda \to \kappa$ is naturally connected to an element of A, namely to range(f). As there are 2^{λ} many bijections from λ to λ (see note above), 2^{λ} -many functions functions f are connected to the same element of A for each element of A. This gives rise to the equation $|A| \otimes 2^{\lambda} = \kappa^{\lambda}$. Use this to obtain the desired result distinguishing the cases $2^{\lambda} < \kappa^{\lambda}$ and $2^{\lambda} = \kappa^{\lambda}$.

²this is exactly exercise 3 from last time

³I apologize for posing this problem in the last exercise without any hints or initial steps, it seems too hard - but maybe there's an easier solution?