Well-founded sets

Exercise 1 Assume f is a function from A to B with $\operatorname{rank}(A)=\alpha$ and $\operatorname{rank}(B)=\beta$. What can you say about $\operatorname{rank}(f)$? Argue that we can calculate $\operatorname{rank}(f)$ in the case when f is onto B (surjective).

Exercise 2 For which α is $|R(\alpha)|=\beth_{\alpha}$?
Exercise 3 If κ is strongly inaccessible, then $\left|R_{\kappa}\right|=\kappa$. Are there cardinals κ with this property which are not inaccessible?

Exercise 4 Find a set x so that $|x|<|\operatorname{trcl}(x)|$.
Exercise 5 Work in ZFC without the Axiom of Foundation. Show that every proper class \mathbf{A} for which $x \subseteq \mathbf{A} \rightarrow x \in \mathbf{A}$ holds is a superclass of $\mathbf{W F}$ (in the obvious sense that $x \in \mathbf{W F}$ implies $x \in \mathbf{A}$).

Hint: $\emptyset \subseteq \mathbf{A}$.

Definition $1 A$ set x is called heriditarily finite (in german "hereditär endlich") iff $|\operatorname{trcl}(x)|<\omega$. H_{ω} denotes the set of all hereditarily finite sets.

Exercise 6 Show that $H_{\omega}=R(\omega)$.

A simplified approach to exercise 3 from last time

Exercise 7 Let λ be any infinite cardinal and show that ${ }^{1}$

$$
|\{X \subseteq \lambda:|X|=\lambda\}|=2^{\lambda}
$$

Hint: Assume not and use that whenever $X \subseteq \lambda$ has size less than λ, its complement (within λ) has size λ.

Exercise 8 Assume $\lambda \leq \kappa$ and show that there are κ^{λ}-many injective functions from λ to κ (i.e. $\mid\left\{f \in{ }^{\lambda} \kappa: f\right.$ injective $\} \mid=\kappa^{\lambda}$).

Hint: Given $f \in{ }^{\lambda} \kappa$, find a way to construct an injective $g_{f} \in{ }^{\lambda} \kappa$ in an injective way, i.e. it should be the case that whenever $f_{0} \neq f_{1} \in{ }^{\lambda} \kappa, g_{f_{0}} \neq g_{f_{1}}$.

Note: Almost the same proof shows that whenever λ is an infinite cardinal, there are 2^{λ} many bijections from λ to λ. We will need (and use) this in the following but I suggest to omit the exact proof.

[^0]Exercise 9 Show that whenever $\lambda \leq \kappa$ are infinite ordinals, ${ }^{2}$

$$
|\{X \subseteq \kappa:|X|=\lambda\}|=\kappa^{\lambda} .
$$

Hint: Let $A:=\{X \subseteq \kappa:|X|=\lambda\}$. Argue that $|A| \leq \kappa^{\lambda}$ is pretty obvious. We have to show that $\kappa^{\lambda} \leq|A|$. We want to find an injection from ${ }^{\lambda} \kappa$ to A. By exercise 8 , it suffices to find an injection from the injective functions from λ to κ to A. Note that every injective $f: \lambda \rightarrow \kappa$ is naturally connected to an element of A, namely to range (f). As there are 2^{λ} many bijections from λ to λ (see note above), 2^{λ}-many functions functions f are connected to the same element of A for each element of A. This gives rise to the equation $|A| \otimes 2^{\lambda}=\kappa^{\lambda}$. Use this to obtain the desired result distinguishing the cases $2^{\lambda}<\kappa^{\lambda}$ and $2^{\lambda}=\kappa^{\lambda} .3$

[^1]
[^0]: ${ }^{1}$ this is the special case where $\kappa=\lambda$ of exercise 3 from last time

[^1]: ${ }^{2}$ this is exactly exercise 3 from last time
 ${ }^{3}$ I apologize for posing this problem in the last exercise without any hints or initial steps, it seems too hard - but maybe there's an easier solution?

