The Mostowski collapse

Work in ZFC.

Exercise 1 Show that given any set X and any relation R on X, R is set-like on X.

Exercise 2 Show that the \in relation is well-founded and set-like on V.

Exercise 3 Show that given any class \mathbf{A} , the \in relation is well-founded and set-like on \mathbf{A} .

Assume in the following three exercises that a class \mathbf{A} is given and that \mathbf{M} and \mathbf{G} are (uniquely) such that \mathbf{M} is transitive and \mathbf{G} is an isomorphism from $(\mathbf{A}, \in \uparrow \mathbf{A})$ to (\mathbf{M}, \in) .¹

Exercise 4

- If $\emptyset \in \mathbf{A}$, then $\mathbf{G}(\emptyset) = \emptyset$.
- If $\alpha + 1 \subseteq \mathbf{A}$, then $\mathbf{G}(\alpha) = \alpha$.
- If $\alpha \subseteq \mathbf{A}$, $x \subseteq \alpha$ and $x \in \mathbf{A}$, then $\mathbf{G}(x) = x$.
- If $Y \subseteq \mathbf{A}$ is transitive, $x \subseteq Y$ and $x \in \mathbf{A}$, then $\mathbf{G}(x) = x$.

Exercise 5 Under what (sufficient and neccessary) conditions (on \mathbf{A}) is \mathbf{G} the identity function on \mathbf{A} ?

Exercise 6

- Assume $\beta \in \mathbf{A}$ and $\alpha = \mathbf{A} \cap \beta$. Then $\mathbf{G}(\beta) = \alpha$.
- Assume $Y \in \mathbf{A}$ and $X = \mathbf{A} \cap Y$ is transitive. Then $\mathbf{G}(Y) = X$.

Exercise 7 Define $x\mathbf{R}y$ iff $x \in \operatorname{trcl}(y)$. Show that \mathbf{R} is well-founded ² and set-like (on \mathbf{V}). Let \mathbf{G} be the Mostowski collapsing function of (\mathbf{V}, \mathbf{R}) . Show that $\mathbf{G}(x) = \operatorname{rank}(x)$ for each x.³

¹this is, by exercise 3, a special case of the situation of III, definition 5.9 of Kunen's book, where **R** is the \in relation. $\in \upharpoonright \mathbf{A}$ is the \in relation on **A**.

²Hint: Show (and use) that $x\mathbf{R}y$ implies $\operatorname{rank}(x) < \operatorname{rank}(y)$.

³Hint: Use induction on rank(x). Show first that $\mathbf{G}(x)$ is an ordinal for each x.

Leftovers

Exercise 8 Assume $\lambda \leq \kappa$ and show that there are κ^{λ} -many injective functions from λ to κ (i.e. $|\{f \in {}^{\lambda}\kappa : f \text{ injective }\}| = \kappa^{\lambda}\}$).

Hint: Given $f \in {}^{\lambda}\kappa$, find a way to construct an injective $g_f \in {}^{\lambda}\kappa$ in an injective way, i.e. it should be the case that whenever $f_0 \neq f_1 \in {}^{\lambda}\kappa$, $g_{f_0} \neq g_{f_1}$.

Additional hint:

Use a fixed partition of κ into λ -many disjoint pieces, each of size κ . Define g_f so that $g_f(i)$ is the $f(i)^{\text{th}}$ element of the i^{th} disjoint piece for each $i < \lambda$. Check that this works!

Exercise 9 Show (without assuming GCH) using the definition

$$\kappa^{<\lambda} := \sup\{\kappa^{\delta} \colon \delta < \lambda, \delta \in \text{Card}\}:$$

- If κ is strongly inaccessible, then $\kappa^{<\kappa} = 2^{<\kappa} = \kappa$.
- If κ is weakly inaccessible, then $\kappa^{<\kappa} = 2^{<\kappa}$.

Hint for the 2nd item: If κ happens to be strongly inaccessible, we are done using the first item. Thus we may assume (and use) that there is $\delta < \kappa$ such that $2^{\delta} \geq \kappa$.