The Mostowski collapse - a leftover from last time

Work in ZFC.

Exercise 1 Define $x\mathbf{R}y$ iff $x \in \operatorname{trcl}(y)$. Show that \mathbf{R} is well-founded ¹ and set-like (on \mathbf{V}). Let \mathbf{G} be the Mostowski collapsing function of (\mathbf{V}, \mathbf{R}) . Show that $\mathbf{G}(x) = \operatorname{rank}(x)$ for each x.²

Relativization, Absoluteness, ZFC

Exercise 2 Which axioms of ZFC are true in ON?

Exercise 3 Assume γ is a limit ordinal and show that all axioms of ZFC except maybe the replacement scheme are true in $R(\gamma)$.

Exercise 4 Find an example of a singular limit ordinal γ and an instance of the replacement scheme which is not true in $R(\gamma)$.

Definition 1 A formula in the language of set theory is called Σ_1 iff it is of the form $\exists y_1, \ldots, y_n \psi$ where ψ is Δ_0 , $n \in \omega$. It is called Π_1 iff it is of the form $\forall y_1, \ldots, y_n \psi$ where ψ is Δ_0 , $n \in \omega$.

Exercise 5 Show that, using the axioms of ZFC, the statement " κ is a cardinal" is equivalent to a formula $\varphi(\kappa)$ which is Π_1 .

Exercise 6 If $\mathbf{M} \subseteq \mathbf{N}$ are both transitive models of ZFC, κ is a cardinal in \mathbf{N} and $\kappa \in M$, then κ is a cardinal in \mathbf{M} .

Exercise 7 More generally, assume $\mathbf{M} \subseteq \mathbf{N}$ are both transitive and show that for all $x_1, \ldots, x_n \in \mathbf{M}$,

- If $\varphi(x_1,\ldots,x_n)$ is Σ_1 , then $\varphi^{\mathbf{M}}(x_1,\ldots,x_n) \to \varphi^{\mathbf{N}}(x_1,\ldots,x_n)$.
- If $\varphi(x_1,\ldots,x_n)$ is Π_1 , then $\varphi^{\mathbf{N}}(x_1,\ldots,x_n) \to \varphi^{\mathbf{M}}(x_1,\ldots,x_n)$.

We abbreviate the above by saying that Σ_1 formulas are upwards absolute, Π_1 formulas are downwards absolute.

¹Hint: Show (and use) that $x\mathbf{R}y$ implies $\operatorname{rank}(x) < \operatorname{rank}(y)$.

²Hint: Use induction on rank(x). Show first that $\mathbf{G}(x)$ is an ordinal for each x.

Leftovers

Exercise 8 Assume $\lambda \leq \kappa$ and show that there are κ^{λ} -many injective functions from λ to κ (i.e. $|\{f \in {}^{\lambda}\kappa : f \text{ injective }\}| = \kappa^{\lambda}\}$).

Hint: Given $f \in {}^{\lambda}\kappa$, find a way to construct an injective $g_f \in {}^{\lambda}\kappa$ in an injective way, i.e. it should be the case that whenever $f_0 \neq f_1 \in {}^{\lambda}\kappa$, $g_{f_0} \neq g_{f_1}$.

Additional hint:

Use a fixed partition of κ into λ -many disjoint pieces, each of size κ . Define g_f so that $g_f(i)$ is the $f(i)^{\text{th}}$ element of the i^{th} disjoint piece for each $i < \lambda$. Check that this works!

Exercise 9 Show (without assuming GCH) using the definition

$$\kappa^{<\lambda} := \sup\{\kappa^{\delta} \colon \delta < \lambda, \delta \in \text{Card}\}:$$

- If κ is strongly inaccessible, then $\kappa^{<\kappa} = 2^{<\kappa} = \kappa$.
- If κ is weakly inaccessible, then $\kappa^{<\kappa} = 2^{<\kappa}$.

Hint for the 2nd item: If κ happens to be strongly inaccessible, we are done using the first item. Thus we may assume (and use) that there is $\delta < \kappa$ such that $2^{\delta} \geq \kappa$.