Relativization and Absoluteness, part 2

Note: α , β , γ and δ always denote ordinals, κ and λ always denote cardinals.

Exercise 1 Show by induction on $\operatorname{rank}(x)$: Given a class **M** (which is not necessarily transitive), $\operatorname{rank}^{\mathbf{M}}(x) \leq \operatorname{rank}(x)$ for all $x \in \mathbf{M}$.

Exercise 2 Assume **M** is a transitive model of ZFC. Show that $|\gamma|^{\mathbf{M}} \ge |\gamma|$, $\mathrm{cf}^{\mathbf{M}}(\gamma) \ge \mathrm{cf}(\gamma)$ and $(\gamma^+)^{\mathbf{M}} \le \gamma^+$.

Exercise 3 Assume γ is a limit ordinal. Show that $|\alpha|$ and $cf(\alpha)$ are absolute for $R(\gamma)$ and absolute for $H(\lambda)$.

Exercise 4 Show that $|\alpha|$ and $cf(\alpha)$ are absolute for $H(\kappa)$.

Exercise 5 Show that if $\kappa^+ \in R(\gamma)$, then $(\kappa^+)^{R(\gamma)} = \kappa^+$ and if $\kappa^+ \in H(\lambda)$, then $(\kappa^+)^{H(\lambda)} = \kappa^+$.

Exercise 6

Assume κ is strongly inaccessible and show that ω_{α} is absolute for $R(\kappa)$.

Exercise 7 If $\omega_{\alpha} \in R(\gamma)$, then $(\omega_{\alpha})^{R_{\gamma}} = \omega_{\alpha}$. Similar for $H(\lambda)$.¹

Definition 1 $r: A \to \mathbf{ON}$ is a ranking function for a relation R on A iff xRy implies r(x) < r(y).

Exercise 8 Show that for any set A, the usual rank function restricted to A and the usual rank function relativized to A are both ranking functions for \in on A.

Exercise 9 Show that R is well-founded on A iff there exists a ranking function for R. Note that this gives a Σ_1 definition of well-foundedness (the usual definition is Π_1) and use this to show that well-foundedness is absolute for transitive models of ZFC.

Forgotten last time

Work in ZFC.

Exercise 10 Define $x\mathbf{R}y$ iff $x \in \operatorname{trcl}(y)$. Show that \mathbf{R} is well-founded ² and set-like (on \mathbf{V}). Let \mathbf{G} be the Mostowski collapsing function of (\mathbf{V}, \mathbf{R}) . Show that $\mathbf{G}(x) = \operatorname{rank}(x)$ for each x.³

¹Hint: By induction on α . Strictly speaking, the ω_{α} are defined by transfinite recursion over all ordinals, but to define a particular ω_{α} , it of course suffices to do transfinite recursion over $\alpha + 1$. Maybe start by thinking about $\omega_1, \omega_2, \ldots, \omega_{\omega}, \ldots$ Try to observe that the claim of the exercise will hold once ω_{α} is defined in a "reasonable" way.

²Hint: Show (and use) that $x\mathbf{R}y$ implies $\operatorname{rank}(x) < \operatorname{rank}(y)$.

³Hint: Use induction on rank(x). Show first that $\mathbf{G}(x)$ is an ordinal for each x.