Predicate Calculus pt. 2

Exercises 7-10 from last time.

Exercise 1 A set of propositional formulas \mathcal{T} is called satisfiable iff there is an assignment of the occuring variables which makes all formulas in \mathcal{T} true. The compactness theorem of propositional logic says:

 \mathcal{T} is satisfiable iff every finite subset of \mathcal{T} is satisfiable.

Proof the compactness theorem of propositional logic by assuming that every finite subset of \mathcal{T} is satisfiable and enlarging \mathcal{T} to a maximal set of propositional formulas \mathcal{T}^* (in the same variables) so that every finite subset of \mathcal{T}^* is satisfiable and let

 $\mu(p) = \mathcal{W} \iff p \in \mathcal{T}^*.$

Show that μ makes all formulas in T true.

Exercise 2 A (symmetric, irreflexive) graph G = (V, E) consists of a set of vertices V and a binary, symmetric, irreflexive relation E on V, the edge relation of the graph. If xEy, we say that the vertices x and y are connected (by an edge). An N-coloring of G assigns to each vertex one of the colors $1, \ldots, N$ so that connected vertices are assigned different colors. Use the compactness theorem of propositional logic to show that G is N-colorable iff every finite subgraph of G is N-colorable.

Hint: Induce a propositional variable $p_{e,n}$ for every vertex e and color n.

Exercise 3 Let \mathcal{A} be an L-structure. A substructure \mathcal{C} is called elementary substructure *iff*

$$\mathcal{A} \models \phi[c_1, \dots, c_n] \iff \mathcal{C} \models \phi[c_1, \dots, c_n]$$

for all L-formulas $\phi(x_1, \ldots, x_n)$ and $c_1, \ldots, c_n \in C$. Show that the so-called Tarski-criterion holds: C is the universe of an elementary substructure of \mathcal{A} iff for all $\phi(x, y_1, \ldots, y_n)$ and all $d_1, \ldots, d_n \in C$, the following holds: If there is $a \in A$ so that $\mathcal{A} \models \phi[a, d_1, \ldots, d_n]$, then there is $c \in C$ so that $\mathcal{A} \models \phi[c, d_1, \ldots, d_n]$.

Hint: One direction is easy; the other proceeds by induction on formula complexity.

Exercise 4

1. If L is a countable language, then there are only countably many Lterms and L-formulas. 2. If L is a countable language, every L-structure A has a countable elementary substructure.

Hint for 2: use 1 and Exercise 3.

Exercise 5 We call a class of L-structures elementary iff it is the class of all models of a theory T. Show:

- 1. The class of all infinite L-structures is elementary.
- 2. The class of all finite L-structures is not elementary.