Predicate Calculus pt. 4

Exercise 5 (maybe) and exercises 6-8 from the last sheet.

Exercise 1 If the propositional formulas $\phi_0(p_1, \ldots, p_n)$ and $\phi_1(p_1, \ldots, p_n)$ are equivalent,¹ where p_1, \ldots, p_n are propositional variables, then so are $\phi_0(f_1, \ldots, f_n)$ and $\phi_1(f_1, \ldots, f_n)$ for arbitrary L-formulas f_1, \ldots, f_n .

Set Theory

Exercise 2 Show that using the standard definition of an ordered pair,² it is provable (in ZFC) that

$$\forall x, y, x', y' \ (x, y) = (x', y') \rightarrow x = x' \land y = y'.$$

Exercise 3 Define the ordered pair of x and y (alternatively) by

$$(x, y) = \{x, \{y\}\}.$$

Does that work - in the sense of an analogous result to that of the previous exercise holding?

Exercise 4 Define the ordered pair of x and y (alternatively) by

(

$$(x, y) = \{\{\{x\}, \emptyset\}, \{\{y\}\}\}.$$

Does that work?

Exercise 5 Define the ordered pair of x and y (alternatively) by

$$(x, y) = \{x, \{x, y\}\}.$$

Does that work?

Exercise 6 Try to find a suitable definition for the ordered triple (x, y, z) such that (x, y, z) ZFC-provably exists and such that

$$(x, y, z) = (x', y', z') \rightarrow x = x', y = y', z = z'.$$

Exercise 7 Show that if ZFC is consistent, then ZFC has a model M which is not well-founded.³

Hint: Use the fact that arbitrarily long finite \in -sequences exist together with the compactness theorem.

¹this means that they take the same truth value under all assignments of free variables $^2(x,y)=\{\{x\},\{x,y\}\}$

³but of course M satisfies the axiom of foundation