Predicate Calculus pt. 4

Exercise 5 (maybe) and exercises 6-8 from the last sheet.
Exercise 1 If the propositional formulas $\phi_{0}\left(p_{1}, \ldots, p_{n}\right)$ and $\phi_{1}\left(p_{1}, \ldots, p_{n}\right)$ are equivalent, ${ }^{1}$ where $p_{1}, \ldots p_{n}$ are propositional variables, then so are $\phi_{0}\left(f_{1}, \ldots, f_{n}\right)$ and $\phi_{1}\left(f_{1}, \ldots, f_{n}\right)$ for arbitrary L-formulas f_{1}, \ldots, f_{n}.

Set Theory

Exercise 2 Show that using the standard definition of an ordered pair, ${ }^{2}$ it is provable (in ZFC) that

$$
\forall x, y, x^{\prime}, y^{\prime}(x, y)=\left(x^{\prime}, y^{\prime}\right) \rightarrow x=x^{\prime} \wedge y=y^{\prime}
$$

Exercise 3 Define the ordered pair of x and y (alternatively) by

$$
(x, y)=\{x,\{y\}\}
$$

Does that work - in the sense of an analogous result to that of the previous exercise holding?

Exercise 4 Define the ordered pair of x and y (alternatively) by

$$
(x, y)=\{\{\{x\}, \emptyset\},\{\{y\}\}\}
$$

Does that work?

Exercise 5 Define the ordered pair of x and y (alternatively) by

$$
(x, y)=\{x,\{x, y\}\} .
$$

Does that work?
Exercise 6 Try to find a suitable definition for the ordered triple (x, y, z) such that (x, y, z) ZFC-provably exists and such that

$$
(x, y, z)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow x=x^{\prime}, y=y^{\prime}, z=z^{\prime}
$$

Exercise 7 Show that if ZFC is consistent, then ZFC has a model M which is not well-founded. ${ }^{3}$

Hint: Use the fact that arbitrarily long finite \in-sequences exist together with the compactness theorem.

[^0]
[^0]: ${ }^{1}$ this means that they take the same truth value under all assignments of free variables
 ${ }^{2}(x, y)=\{\{x\},\{x, y\}\}$
 ${ }^{3}$ but of course M satisfies the axiom of foundation

