Set Theory pt. 3

Exercises 7 and 8 from last time, maybe also some more details about exercise 6 .

Exercise 1 Let M be a model of ZFC. An element a of M is a nonstandard natural number if $M \models a \in \omega$, but for all $n=0,1, \ldots, M \models \neg a=\underline{n}$. Show:

- If ZFC is consistent, it has a model with nonstandard natural numbers.
- There is no least nonstandard natural number in M.

Definition $1(W,<)$ is a well-ordering (Wohlordnung) iff $(W,<)$ is a linear ordering so that every nonempty subset S of W has a<-least element, i.e. there is $s \in S$ such that for all $t \in S, t \neq s$ implies $s<t$.

Exercise 2

If $(A,<)$ is a well-order and $B \subseteq A$, then $(B,<\upharpoonright B)$ is a well-order.

Notation: $\quad<\upharpoonright B$ denotes the restriction of $<$ to B, i.e.

$$
<\upharpoonright B=\{(x, y) \in<: x \in B \wedge y \in B\}
$$

Exercise 3 Let $(W,<)$ be a well-ordering and let $f: W \rightarrow W$ be a strictly monotonous and increasing function (i.e. $x<y \rightarrow f(x)<f(y)$). Show that $f(x) \geq x$ for all $x \in W$, where $a \geq b$ abbreviates $b<a \vee b=a$. Find an example to illustrate that "strictly" is necessary.

Exercise 4 Let $(W,<)$ be a well-ordering, assume that W is infinite and that $f: W \rightarrow W$ is a strictly monotonous function. ${ }^{1}$ Show that f is increasing. Find an example to illustrate that "infinite" is necessary.

Exercise 5 If $(W,<)$ is a well-order and $f: W \rightarrow W$ is an isomorphism respecting $<$ (i.e. f is a bijection and $w_{0}<w_{1} \Longleftrightarrow f\left(w_{0}\right)<f\left(w_{1}\right)$), then f is the identity on W.

Exercise 6 Show that if $(W,<)$ is a well-ordering and W is infinite, then there exists a proper subset T of W such that $(W,<)$ is isomorphic to $(T,<)$.

Exercise 7 Show that for every set x there exists a smallest set y which is transitive and contains x as subset, where smallest means \subseteq-smallest, i.e. for every z which is transitive and contains x as subset, $z \supseteq y$. We call this y the transitive closure of x. Show also that there exists a smallest set y which contains x as element.

[^0]
[^0]: ${ }^{1}$ strictly monontonous of course means either strictly monotonous and increasing or strictly monotonous and decreasing

