Set Theory pt. 3

Exercises 7 and 8 from last time, maybe also some more details about exercise 6.

Exercise 1 Let M be a model of ZFC. An element a of M is a nonstandard natural number if $M \models a \in \omega$, but for all $n = 0, 1, ..., M \models \neg a = \underline{n}$. Show:

- If ZFC is consistent, it has a model with nonstandard natural numbers.
- There is no least nonstandard natural number in M.

Definition 1 (W, <) is a well-ordering (Wohlordnung) iff (W, <) is a linear ordering so that every nonempty subset S of W has a <-least element, i.e. there is $s \in S$ such that for all $t \in S$, $t \neq s$ implies s < t.

Exercise 2

If (A, <) is a well-order and $B \subseteq A$, then $(B, < \upharpoonright B)$ is a well-order.

Notation: $\langle B \rangle$ denotes the restriction of $\langle B \rangle$, i.e.

$$<\!\!\upharpoonright B = \{(x, y) \in <: x \in B \land y \in B\}.$$

Exercise 3 Let (W, <) be a well-ordering and let $f: W \to W$ be a strictly monotonous and increasing function (i.e. $x < y \to f(x) < f(y)$). Show that $f(x) \ge x$ for all $x \in W$, where $a \ge b$ abbreviates $b < a \lor b = a$. Find an example to illustrate that "strictly" is necessary.

Exercise 4 Let (W, <) be a well-ordering, assume that W is infinite and that $f: W \to W$ is a strictly monotonous function.¹ Show that f is increasing. Find an example to illustrate that "infinite" is necessary.

Exercise 5 If (W, <) is a well-order and $f: W \to W$ is an isomorphism respecting < (i.e. f is a bijection and $w_0 < w_1 \iff f(w_0) < f(w_1)$), then f is the identity on W.

Exercise 6 Show that if (W, <) is a well-ordering and W is infinite, then there exists a proper subset T of W such that (W, <) is isomorphic to (T, <).

Exercise 7 Show that for every set x there exists a smallest set y which is transitive and contains x as subset, where smallest means \subseteq -smallest, i.e. for every z which is transitive and contains x as subset, $z \supseteq y$. We call this y the transitive closure of x. Show also that there exists a smallest set y which contains x as element.

¹strictly monontonous of course means either strictly monotonous and increasing or strictly monotonous and decreasing