Set Theory pt. 4

More details on exercise 8 from one before last time.

Exercise 1 Show that the Axiom of Choice follows from Zorn's Lemma.

Hint: Let x be a collection of non-empty sets and consider a maximal partial choice function.

Definition 1 If A is a set of ordinals, we let $\sup A$ denote the supremum of A, i.e. the least ordinal α so that for all γ in A, $\gamma \leq \alpha$. We define addition, multiplication and exponentiation of ordinals as follows (γ always denotes a limit ordinal):

$\alpha + 0 = \alpha$	$\alpha + (\beta + 1) = (\alpha + \beta) + 1$	$\alpha + \gamma = \sup\{\alpha + \beta \colon \beta < \gamma\}$
$\alpha \cdot 0 = 0$	$\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha$	$\alpha \cdot \gamma = \sup\{\alpha \cdot \beta \colon \beta < \gamma\}$
$\alpha^0 = 1$	$\alpha^{\beta+1} = \alpha^\beta \cdot \alpha$	$\alpha^{\gamma} = \sup_{\beta < \gamma} \alpha^{\beta}$

Exercise 2 Show that¹

- If A is a set of ordinals, $\sup A = \bigcup A$; therefore $\sup A$ always exists,
- $1 + \omega = \omega$,
- $\omega + \omega \cdot \omega = \omega \cdot \omega$,
- $\omega \cdot \omega^{\omega} = \omega^{\omega}$.

Note: In the following, α , β , γ , δ always denote ordinals without further mention.

Exercise 3 (transfinite induction) Show that the principle of transfinite induction, which will be necessary for some of the subsequent exercises, is a theorem of ZFC:

For any formula φ (which may also use parameters),

$$(\forall \gamma \ ((\forall \beta < \gamma \ \varphi(\beta)) \to \varphi(\gamma))) \to \forall \gamma \ \varphi(\gamma).$$

¹like usually in mathematics, exponentiation binds stronger than multiplication, which in turn binds stronger than addition, i.e. if we write $8 + 2^5 \cdot 7$, this is supposed to mean $8 + ((2^5) \cdot 7)$

Hint: Assume for a contradiction that the left-hand side of the implication holds but γ is least such that $\neg \varphi(\gamma)$.

Exercise 4 If $\alpha < \beta$, then $\gamma + \alpha < \gamma + \beta$ and $\alpha + \gamma \leq \beta + \gamma$. Give an example why \leq cannot be replaced by <.

Exercise 5 Assume $\alpha < \beta$ and show that there is a unique $\delta \leq \beta$ such that $\alpha + \delta = \beta$.

Exercise 6 If β is a limit ordinal, then $\alpha + \beta$, $\alpha \cdot \beta$ and $\beta \cdot \alpha$ are limit ordinals, for any α . If β is a successor ordinal, then $\alpha + \beta$ is a successor ordinal for any α . If α and β are both successor ordinals, then $\alpha \cdot \beta$ is a successor ordinal. What about ordinal exponentiation?

Exercise 7 Does $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$ hold?

Exercise 8

- Let α be any ordinal and show that there exists a largest δ such that $\omega^{\delta} \leq \alpha$.
- Let α be any ordinal and let δ be maximal such that $\omega^{\delta} \leq \alpha$. Then there exists a largest $n < \omega$ such that $\omega^{\delta} \cdot n \leq \alpha$.

Exercise 9 (Cantor's Normal Form Theorem) Each ordinal $\alpha \neq 0$ can be written in the following form

$$\alpha = \omega^{\beta_1} \cdot k_1 + \ldots + \omega^{\beta_n} \cdot k_n,$$

where $1 \leq n < \omega$, $\alpha \geq \beta_1 > \ldots > \beta_n \geq 0$ and $1 \leq k_i < \omega$ for each $i = 1, \ldots, n$.

Exercise 10 Show that there is a least ordinal number ε_0 so that $\omega^{\varepsilon_0} = \varepsilon_0$. Show (using induction and Cantor's Normal Form Theorem) that every ordinal number below ε_0 can be written in a form which only uses the constant 0 and the functions x + y, $x \cdot y$ and ω^x .