Set Theory pt. 5

Exercises 4-10 from last time.

Exercise 1 Show that the power set of ω has the same cardinality as the set of real numbers \mathbb{R} .

Exercise 2¹ Let DLO (dense linear order without endpoints) be the theory in the language $\{<,=\}$ that consists of the following sentences:

- for all x and y, exactly one of the following three holds:
 x < y, y < x or x = y.
- $\forall x, y, z \ x < y \land y < z \rightarrow x < z$ (transitivity).
- $\forall x \exists y \ y < x, \ \forall x \exists y \ y > x$ (no least and no largest element).
- $\forall x < y \exists z \ x < z < y \ (density).$

Show that every countable model (M, <) of DLO is isomorphic to $(\mathbb{Q}, <)$, the rationals with the standard order.

Hint: Use a back-and-forth argument as in the construction of β^* in the proof of exercise 8 from the "Set Theory pt. 2" sheet.

Exercise 3 Show that if A is a class of ordinal numbers such that

$$\forall \alpha \exists \beta \in A \ \beta > \alpha,$$

then A is not a set.

¹actually, this is not set, but model theory