1 Kardinalzahlarithmetik und Kofinalitaeten

Uebung 1.1 Zeige: Ist $(A_i: i < \lambda)$ eine Familie paarweise disjunkter, nichtleerer Mengen, so ist $|\bigcup_{i<\lambda} A_i| = \lambda$.

Uebung 1.2 Zeige: Ist $(A_i: i < \lambda)$ eine Familie von Mengen und fuer (zumindest) ein $i < \lambda$ ist $|A_i| = \lambda$ dann ist $|\bigcup_{i < \lambda} A_i| = \lambda$.

Uebung 1.3 Zeige: Ist $(A_i: i < \lambda)$ eine Familie paarweise disjunkter Mengen, wobei fuer alle $i < \lambda$ gilt $|A_i| = \kappa$, dann ist $|\bigcup_{i < \lambda} A_i| = \kappa \otimes \lambda$.

Uebung 1.4 Zeige:

- Ist $A \subseteq \lambda$ und $|A| = \kappa$ mit $cf(\kappa) < \lambda$, dann ist A beschraenkte Teilmenge von λ .
- Folgere daraus: Ist $A \subseteq \kappa^+$ und $|A| = \kappa$ dann ist A beschraenkte Teilmenge von κ^+ .

Uebung 1.5 Zeige: Ist $cf(\alpha) < cf(\beta)$, dann gibt es keine streng monoton steigende, kofinale Funktion von α nach β .

Uebung 1.6 Zeige: Es gibt keine streng monoton steigende, kofinale Funktion von ω_{ω} nach $\omega_{\omega} + \omega$, also gilt die Umkehrung von Uebung 1.5 und 1.7 nicht.

Hinweis: Nimm an f sei eine solche Funktion. Betrachte das kleinste α so dass $f(\alpha) \geq \omega_{\omega}$ (warum existiert es?). Versuche aus der Existenz dieses α einen Widerspruch herzuleiten.

Uebung 1.7 Zeige: Ist $cf(\alpha) > cf(\beta)$, dann gibt es keine streng monoton steigende, kofinale Funktion von α nach β .

Hinweis: Nimm an f sei eine solche Funktion. Dann gibt es auch eine streng monoton steigende, kofinale Funktion g von $cf(\alpha)$ nach β . Sei h eine streng monoton steigende, kofinale Funktion von $cf(\beta)$ nach β . Definiere eine Funktion F von $cf(\beta)$ nach $cf(\alpha)$ folgendermassen:

$$F(i) = \min\{j : h(i) > g(j)\}.$$

Zeige dass F eine kofinale Funktion von $\operatorname{cf}(\beta)$ nach $\operatorname{cf}(\alpha)$ ist und ueberlege, warum das einen Widerspruch ergibt.