Models of Set Theory II - Winter 2019/20

Peter Holy - Problem Sheet 2

Problem 1: Verify the following, for given regular infinite cardinals κ, λ and ν :

1. $\operatorname{Add}(\kappa, \lambda, \nu)$ is isomorphic to a suitable product in which all factors are the forcing $\operatorname{Add}(\kappa, 1, \nu)$.
2. $\operatorname{Add}(\kappa, \lambda, \nu)$ is a complete subforcing of $\operatorname{Add}(\kappa, \operatorname{Ord}, \nu)$.
3. $\operatorname{Add}(\kappa, \operatorname{Ord}, \nu)$ satisfies the forcing theorem.
4. ZFC does not hold after forcing with $\operatorname{Add}(\kappa$, Ord,$\nu)$.

Problem 2: Verify the following, assuming Global Choice in case X is a proper class.

1. If P is the I-supported product of $\left\{P_{x} \mid x \in X\right\}$, each P_{x} is $<\lambda$-closed, and I is closed under unions of size less than λ, then P is $<\lambda$-closed.
2. The second part of Lemma 4.4, which is the following statement: If λ is inaccessible, $\kappa<\lambda$ is regular, $\left|P_{x}\right|<\lambda$ for each $x \in X, I$ is an ideal on X, each element of I has size less than κ, and P is the I-supported product of $\left\{P_{x} \mid x \in X\right\}$, then P satisfies the λ-chain condition.

Problem 3: Verify the following:

1. If $X \subseteq Y, I$ is an ideal consisting of subsets of Y, and $\left\{P_{y} \mid y \in Y\right\}$ is a collection of (set) forcing notions, then the I-supported product of $\left\{P_{x} \mid x \in X\right\}$ is a complete subforcing of the I-supported product of $\left\{P_{y} \mid y \in Y\right\}$. In particular, each P_{y} is a complete subforcing of the I-supported product of $\left\{P_{y} \mid y \in Y\right\}$.
2. Let α be a limit ordinal, and let P be the finite support product of nontrivial forcing notions $\left\{P_{\beta} \mid \beta<\alpha\right\}$. Let G be P-generic, and let G_{β} denote the induced P_{β}-generic for $\beta<\alpha$. Then, $V[G] \supsetneq \bigcup_{\beta<\alpha} V\left[G_{\beta}\right]$.
3. Let P be an I-supported product of $\left\{P_{n} \mid n \in \omega\right\}$ for an arbitrary ideal I on ω, and assume that for every $n<\omega, P_{n}$ preserves all cofinalities, and $P_{n} \Vdash 2^{\aleph_{0}}=\aleph_{n+1}$. Let G be P-generic, and let G_{n} denote the induced P_{n}-generic for $n<\omega$. Then, $V[G] \supsetneq \bigcup_{n<\omega} V\left[G_{n}\right]$.

Problem 4: Finish the argument for the proof of Theorem 5.1 by showing that for every infinite regular cardinal λ,

$$
\left(2^{\lambda}\right)^{V[G]}=F(\lambda),
$$

which is done similar to the argument from Philipp's lecture that after forcing with $\operatorname{Add}(\lambda, \theta, 2)$, for θ with cofinality greater than λ over a model of the GCH, $2^{\lambda}=\theta$ holds.

