Models of Set Theory II – Winter 2019/20

Peter Holy – Problem Sheet 2

Problem 1: Verify the following, for given regular infinite cardinals κ , λ and ν :

- 1. $\operatorname{Add}(\kappa, \lambda, \nu)$ is isomorphic to a suitable product in which all factors are the forcing $\operatorname{Add}(\kappa, 1, \nu)$.
- 2. $Add(\kappa, \lambda, \nu)$ is a complete subforcing of $Add(\kappa, Ord, \nu)$.
- 3. $Add(\kappa, Ord, \nu)$ satisfies the forcing theorem.
- 4. ZFC does not hold after forcing with $Add(\kappa, Ord, \nu)$.

Problem 2: Verify the following, assuming Global Choice in case X is a proper class.

- 1. If P is the I-supported product of $\{P_x \mid x \in X\}$, each P_x is $<\lambda$ -closed, and I is closed under unions of size less than λ , then P is $<\lambda$ -closed.
- 2. The second part of Lemma 4.4, which is the following statement: If λ is inaccessible, $\kappa < \lambda$ is regular, $|P_x| < \lambda$ for each $x \in X$, I is an ideal on X, each element of I has size less than κ , and P is the I-supported product of $\{P_x \mid x \in X\}$, then P satisfies the λ -chain condition.

Problem 3: Verify the following:

- 1. If $X \subseteq Y$, I is an ideal consisting of subsets of Y, and $\{P_y \mid y \in Y\}$ is a collection of (set) forcing notions, then the *I*-supported product of $\{P_x \mid x \in X\}$ is a complete subforcing of the *I*-supported product of $\{P_y \mid y \in Y\}$. In particular, each P_y is a complete subforcing of the *I*-supported product of the *I*-supported product of $\{P_y \mid y \in Y\}$.
- 2. Let α be a limit ordinal, and let P be the finite support product of nontrivial forcing notions $\{P_{\beta} \mid \beta < \alpha\}$. Let G be P-generic, and let G_{β} denote the induced P_{β} -generic for $\beta < \alpha$. Then, $V[G] \supseteq \bigcup_{\beta < \alpha} V[G_{\beta}]$.
- 3. Let P be an I-supported product of $\{P_n \mid n \in \omega\}$ for an arbitrary ideal I on ω , and assume that for every $n < \omega$, P_n preserves all cofinalities, and $P_n \Vdash 2^{\aleph_0} = \aleph_{n+1}$. Let G be P-generic, and let G_n denote the induced P_n -generic for $n < \omega$. Then, $V[G] \supseteq \bigcup_{n < \omega} V[G_n]$.

Problem 4: Finish the argument for the proof of Theorem 5.1 by showing that for every infinite regular cardinal λ ,

$$(2^{\lambda})^{V[G]} = F(\lambda),$$

which is done similar to the argument from Philipp's lecture that after forcing with $Add(\lambda, \theta, 2)$, for θ with cofinality greater than λ over a model of the GCH, $2^{\lambda} = \theta$ holds.