Models of Set Theory II – Winter 2019/20

Peter Holy – Problem Sheet 4

Problem 1: Let $\langle P_{\alpha}, \dot{Q}_{\alpha} | \alpha < \epsilon \rangle$ be an *I*-supported iteration, where ϵ is a limit ordinal, and let $\gamma < \epsilon$. Verify the following:

- 1. $P_{\gamma+1}$ is isomorphic to $P_{\gamma} * \dot{Q}_{\gamma}$.
- 2. $p \in P_{\epsilon}$ iff $[\operatorname{dom} p \in I \cap \mathcal{P}(\epsilon) \text{ and } \forall \alpha < \epsilon \ p \upharpoonright \alpha \in P_{\alpha}].$
- 3. For $p, q \in P_{\epsilon}, q \leq_{\epsilon} p$ iff $\forall \alpha < \epsilon \ q \upharpoonright \alpha \leq_{\alpha} p \upharpoonright \alpha$.
- 4. For $p, q \in P_{\epsilon}, q \leq_{\epsilon}^{*} p$ iff $\forall \alpha < \epsilon \ q \upharpoonright \alpha \leq_{\alpha}^{*} p \upharpoonright \alpha$.

Problem 2: Let $\langle P_{\alpha}, \dot{Q}_{\alpha} \mid \alpha < \epsilon \rangle$ be an *I*-supported iteration, and fix an ordinal $\alpha < \epsilon$. Let $p \in P_{\epsilon}$ and $q \in P_{\alpha}$ be such that $q \leq_{\alpha} p \upharpoonright \alpha$. Verify the following:

- 1. $p \land q \in P_{\epsilon}$.
- 2. $p \land q \leq p, q$.
- 3. If $p_2 \leq p_1$, and $q \leq_{\alpha} p_2 \upharpoonright \alpha$, then $p_2 \land q \leq p_1 \land q$.
- 4. If $q_2 \leq q_1$, and $q_1 \leq_{\alpha} p \upharpoonright \alpha$, then $q_2 \land p \leq q_1 \land p$.
- 5. $p \perp_{\epsilon} q$ iff $p \upharpoonright \alpha \perp_{\alpha} q$.
- 6. P_{α} is a complete subforcing of P_{ϵ} .

Problem 3: Verify the following: If κ is a regular uncountable cardinal, P is a partial order with the κ -cc, and σ is a P-name for a subset of V of size less than κ (that is, $\sigma^G \subseteq V$ and $|\sigma^G| < \kappa$ whenever G is P-generic), then there is a set x of size less than κ in V such that $\Vdash_P \sigma \subseteq \check{x}$.

Hint: A slightly weaker result was shown in Philipp's lecture in the proof that κ -cc forcings preserve cardinals $\geq \kappa$.

Problem 4:

- 1. State and verify a result analogous to Corollary 6.12 for the κ -cc when κ is a regular cardinal greater than ω_1 .
- 2. Provide a counterexample to the following statement: If P is ω_2 -cc and $\Vdash_P \dot{Q}$ is ω_2 -cc, then $P * \dot{Q}$ is ω_2 -cc.

Hint: Let *P* be the standard forcing that collapses ω_1 to become countable.