Models of Set Theory II – Winter 2019/20 Peter Holy – Problem Sheet 5

Problem 1: Verify the following:

- 1. If φ is a first order formula, P is a notion of (set) forcing, G is P-generic, $x \in V[G], V[G]$ models $\varphi(x)$, and $\Vdash_P \exists y \varphi(y)$, then there is a name \dot{x} for x (i.e. $\dot{x}^G = x$) such that $\Vdash_P \varphi(\dot{x})$.
- 2. If \dot{q}_0 and \dot{q}_1 are *P*-names which are forced to be elements of a partial order \dot{Q} , and $p_0 \perp p_1$ are incompatible elements of *P*, then there is a *P*-name \dot{q} for an element of \dot{Q} such that $p_0 \Vdash \dot{q} = \dot{q}_0$ and $p_1 \Vdash \dot{q} = \dot{q}_1$.
- 3. If P contains at least two incompatible conditions, and $\Vdash_P |\dot{Q}| \ge 2$, then $P * \dot{Q}$ is not antisymmetric.

Problem 2: Show that if κ is a regular uncountable cardinal, P is a notion of (set) forcing which preserves the regularity of κ , $\dot{x} \in H(\kappa)$ is a *P*-name, and *G* is *P*-generic, then $\dot{x}^G \in H(\kappa)^{V[G]}$.

Problem 3:

- 1. Show that if κ is a regular uncountable cardinal, and P is a notion of forcing that destroys the regularity of κ in each of its generic extensions (that is κ is no longer regular after forcing with P), then FA_{κ}(P) fails.
- 2. Show that if κ is a regular uncountable cardinal, S is a stationary subset of κ , and P is a notion of forcing that destroys the stationarity of S in each of its generic extensions while preserving κ as a cardinal, then $FA_{\kappa}(P)$ fails.

Hint: For the second item, make use of Theorem 7.8.

Problem 4: Verify the following:

- 1. If P is a σ -closed (that means $<\omega_1$ -closed) partial order, then P is proper.
- 2. Assume that P is a notion of forcing such that for any condition $p \in P$, there exists an uncountable antichain of conditions $q \leq p$. Then, if $M \prec H(\theta)$ for some regular $\theta > |P|$ with M countable, and q is (M, P)-generic, then $q \notin M$.