Models of Set Theory II – Winter 2019/20

Peter Holy – Problem Sheet 6

Problems 1 and 2 are relevant for the proof of Lemma 8.6, which I now spelled out properly at the end of this exercise sheet (this was the lemma that I think we all got confused about in the lecture).

Problem 1: Assume that $P \in H(\chi)$ is a partial order, and that χ is a regular and uncountable cardinal. Verify that for every condition $p \in P$, and every first order formula φ in the forcing language of $H(\chi)$ – this means that only names in $H(\chi)$ are allowed to appear as parameters within φ – the following statements are equivalent:

- 1. $p \Vdash \left[\varphi^{H(\check{\chi})}\right]$.
- 2. $H(\chi) \models [p \Vdash \varphi].$

Problem 2:

1. Let P be a notion of forcing, and let $\varphi(x)$ be a first order formula with one free variable. Show that there is a P-name \dot{x} such that

$$\Vdash_P \left[\exists x \, \varphi(x) \to \varphi(\dot{x}) \right].$$

2. Let χ be a regular uncountable cardinal, let $P \in H(\chi)$ be a notion of forcing, and let φ be a first order sentence. Assume that \dot{x} is a *P*-name such that

 $\Vdash_P \varphi \to \dot{x} \in H(\check{\chi}).$

Show that we can find a *P*-name $\dot{y} \in H(\chi)$ such that $\Vdash_P \varphi \to \dot{x} = \dot{y}$.

Problem 3: Verify the following, under the assumptions of Problem 1:

1. If $M \prec H(\chi)$ and $P \in M$, then

$$\Vdash_P \langle \check{M}[\dot{G}], \check{M}[\dot{G}] \cap H(\chi)^V, \in \rangle \prec \langle H(\check{\chi}), H(\chi)^V, \in \rangle.$$

2. If under the above assumptions, q is (M, P)-generic, then

$$q \Vdash_P \langle \check{M}[\dot{G}], \check{M}, \in \rangle \prec \langle H(\check{\chi}), H(\chi)^V, \in \rangle.$$

Problem 4: Let $j: M \to N$ be an elementary embedding, where M and N are both transitive (possibly class-sized) models of ZFC⁻. Verify the following:

- 1. $j(\alpha) \ge \alpha$ for every ordinal α .
- 2. If $j \neq id$, then $j \upharpoonright \operatorname{Ord}^M \neq id$.
- 3. If $\operatorname{crit}(j) = \kappa$, then
 - (a) κ is regular in M and
 - (b) $j \upharpoonright H(\operatorname{crit}(j))^M = \operatorname{id}.$

Lemma 8.6: If $M \prec H(\chi)$ for some regular and uncountable χ , and $P \in M$, then $1_P \Vdash \check{M}[\dot{G}] \prec H(\check{\chi})$.

Proof: Note first that since $|P| < \chi$, forcing with P preserves the regularity of χ , so $H(\chi)$ still is a well-defined object. Using the Tarski-Vaught criterion in the generic extensions of P, it is enough to verify that for all P-names $\dot{a} \in M$, and for any fixed first order formula φ , 1_P forces the following statement

$$(*) \quad (\exists x \, \varphi(x, \dot{a}))^{H(\check{\chi})} \to \exists x \in \check{M}[\dot{G}] \, \varphi(x, \dot{a})^{H(\check{\chi})}.$$

Using Problem 2.1, let \dot{x} be a *P*-name such that

$$1_P \Vdash \exists x \ \left[x \in H(\check{\chi}) \land \varphi(x, \dot{a})^{H(\check{\chi})} \right] \to \left[\dot{x} \in H(\check{\chi}) \land \varphi(\dot{x}, \dot{a})^{H(\check{\chi})} \right]$$

By Problem 2.2, we find a *P*-name $\dot{y} \in H(\chi)$ such that

 $1_P \Vdash \left[\exists x \in H(\check{\chi}) \ \varphi(x, \dot{a})^{H(\check{\chi})} \right] \to \varphi(\dot{y}, \dot{a})^{H(\check{\chi})}.$

Using Problem 1, the existence of such a *P*-name \dot{y} can be equivalently rewritten as a first order statement within $H(\chi)$, and thus we find such a *P*-name \dot{y} in *M* by elementarity. But then, $1_P \Vdash \dot{y} \in \check{M}[\dot{G}]$, and if

$$p \Vdash \left[\dot{y} \in \check{M}[\dot{G}] \land \varphi(\dot{y}, \dot{a})^{H(\check{\chi})} \right],$$

then also

$$p \Vdash \exists x \in \check{M}[\dot{G}] \varphi(x, \dot{a})^{H(\check{\chi})},$$

for any condition $p \in P$. Taking a maximal antichain of conditions p which decide whether or not $(\exists x \varphi(x, \dot{a}))^{H(\tilde{\chi})}$ holds, the above implies that each such p forces the statement (*), and therefore that 1_P forces (*), as desired. \Box