Models of Set Theory II – Winter 2019/20

Peter Holy – Problem Sheet 7

Problem 1: Show that every lottery sum of proper forcing notions is proper.

Problem 2: Show that if κ is supercompact, then

- 1. κ is inaccessible, and
- 2. $\{\alpha < \kappa \mid \alpha \text{ is inaccessible}\}\$ is a stationary subset of κ .

Note: In Problem 2, you should of course only use the definition of supercompactness that was introduced in the lecture.

Problem 3: Finish the proof of Lemma 9.3 by showing that, in the context of the proof of that lemma given in the lecture, $j^* \colon M[G] \to N[H]$, defined by letting, for $\tau \in M$,

$$j^*(\tau^G) = j(\tau)^H$$

is an elementary embedding such that $j^*(G) = H$ and $j^* \supseteq j$.

Problem 4: Verify the following:

- 0. If κ is a regular and uncountable cardinal, and T is a normal κ -tree with no antichains of size κ , then T has no κ -branch.
- 1. Every normal tree T is isomorphic to a tree \overline{T} of sequences ordered by extension, closed under initial segments, and such that

$$\bar{T}_{\beta} = \{ t \in \bar{T} \mid \operatorname{dom}(t) = \beta \}.$$

- 2. Show that if there is a κ -Suslin tree, and $\kappa = \lambda^+$ is a successor cardinal, then there is a normal κ -Suslin tree such that the following property (i)* holds:
 - (i)^{*}: Every node in T has λ -many immediate successors.