Condensation does not imply Square

Peter Holy

University of Bonn
presenting joint work with Philip Welch and Liuzhen Wu
August 1, 2015

Condensation

Lemma (Gödel)

If $M \prec\left(L_{\alpha}, \in\right)$, then for some $\bar{\alpha} \leq \alpha, M \cong\left(L_{\bar{\alpha}}, \in\right)$.
We want to consider generalizations of this principle that apply to models other than L :

Condensation in models of the form $L[A]$

Assume $A \subseteq$ Ord. If M is a substructure of $\left(L_{\alpha}[A], \in, A\right)$, we say that M condenses if for some $\bar{\alpha} \leq \alpha, M \cong\left(L_{\bar{\alpha}}[A], \in, A\right)$.

Local Club Condensation at κ

If $\kappa=\lambda^{+}, \mathrm{LCC}$ at κ is the statement that there is $A \subseteq \kappa$ s.t. $H_{\kappa}=L_{\kappa}[A]$ and if $\alpha \in[\lambda, \kappa)$ and $\mathcal{A}=\left(L_{\alpha}[A], \in, A, \ldots\right)$ is a structure for a countable language, then there exists a continuous chain $\left\langle\mathcal{B}_{\gamma} \mid \gamma<\lambda\right\rangle$ of condensing substructures of \mathcal{A} whose domains have union $L_{\alpha}[A]$, where each $B_{\gamma}=\operatorname{dom}\left(\mathcal{B}_{\gamma}\right)$ is s.t. $\left|B_{\gamma}\right|<\lambda$ and $\gamma \subseteq B_{\gamma}$.

Strong Condensation

Lemma (Friedman, Holy, Wu)

If $\kappa=\lambda^{+}, \lambda$ is regular and LCC at κ holds, then there is a structure \mathcal{M} for a countable language with domain H_{κ} such that X condenses whenever X is a substructure of \mathcal{M} and is transitive below λ.

If $\kappa=\omega_{2}$, every substructure of such \mathcal{M} will be transitive below ω_{1}, hence we obtain the following.

Corollary

If LCC at ω_{2} holds, then there is a structure \mathcal{M} for a countable language with domain $H_{\omega_{2}}$ such that every substructure X of \mathcal{M} condenses.

This is what Hugh Woodin introduced as Strong Condensation for ω_{2}.

Theorem (Wu)

Assuming the consistency of a stationary limit of measurable cardinals, Strong Condensation for ω_{2} is consistent with the failure of $\square_{\omega_{1}}$.

Square

Definition

If $\lambda \geq \omega_{1}, \square_{\lambda}$ is the statement that there exists a sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ such that
(1) Whenever α is a limit ordinal, C_{α} is a closed unbounded subset of α.
(2) Whenever β is a limit point of C_{α} then $C_{\beta}=C_{\alpha} \cap \beta$.
(3) For every α, ot $\left(C_{\alpha}\right) \leq \lambda$.
\square_{λ} holds in L for every uncountable cardinal λ. (Jensen) All known proofs of this fact use some sort of fine structural machinery. It is generally believed that this is in fact necessary; we support this belief (as did Liuzhen Wu for $\square_{\omega_{1}}$) by showing that Local Club Condensation does not imply \square_{λ}, under sufficient large cardinal consistency hypothesis.

Generalizing and Improving Wu's result

The consistency strength of the failure of \square_{λ} for a regular uncountable cardinal λ is only that of a Mahlo cardinal. (Solovay) Thus in the light of Wu's result, the following seemed to be obvious questions (and were the motivating questions for our work on this subject):

Questions

- Can this result be generalized to larger regular cardinals?
- Can the large cardinal consistency assumption be reduced, ideally to that of a Mahlo cardinal?

As to the second question, we got pretty close, reducing it to a 2-Mahlo cardinal. As to the first, it is not known whether there is a small forcing to obtain Strong Condensation for ω_{3} in the generic extension. That's why we have to use Local Club Condensation rather than the (essentially stronger) principle of Strong Condensation. Moreover, Strong Condensation is inconsistent for ω_{1}-Erdős cardinals, while Local Club Condensation is consistent with arbitrary large large cardinals (Friedman-Holy).

Square and Forcing

Theorem (Solovay)

If λ is regular and uncountable and $\kappa>\lambda$ is a Mahlo cardinal, then after performing a Lévy collapse so that κ becomes $\lambda^{+}, \square_{\lambda}$ fails.

We want to collapse some large cardinal κ to become λ^{+}while forcing LCC at λ^{+}and then show that we can still verify the failure of \square_{λ} in the resulting model.

Theorem

Assume GCH holds and $\lambda<\kappa$ are regular. There is a $<\lambda$-directed closed, κ-cc notion of forcing which ensures that $\kappa=\lambda^{+}$and Local Club Condensation at κ hold in any generic extension.

Rough idea of proof: We want to generically add $A \subseteq \kappa$ that witnesses Local Club Condensation at κ. Our desired forcing P will be an iteration of length κ with support of size $<\lambda$, where $P_{<\lambda}$ simply adds a Cohen subset of λ, and we take that to be $A \upharpoonright \lambda$.

Proof Sketch continued:

At stage $\alpha \in[\lambda, \kappa$), we will be given (by a careful choice of bookkeeping function) a $P_{<\alpha}$-name for either 0 or 1 , and we take that to be $A(\alpha)$. For $p \in P, p(\alpha)$ is of the form $p(\alpha)=\left(\gamma_{\alpha}, c_{\alpha}, f_{\alpha}\right)$ where

- $\gamma_{\alpha}<\lambda$,
- $c_{\alpha} \subseteq \gamma_{\alpha}$ is closed (with a maximal element) and
- $f_{\alpha}: \max \left(c_{\alpha}\right) \rightarrow \alpha$ is injective.

The extension relation is end-extension, and generically, our forcing will produce

- $A \subseteq \kappa$ such that $L_{\kappa}[A]=H_{\kappa}$.
- $C_{\alpha} \subseteq \lambda$ club for every $\alpha \in[\lambda, \kappa)$.
- $F_{\alpha}: \lambda \xrightarrow{\text { onto }} \alpha$ for every $\alpha \in[\lambda, \kappa)$.

By the last item, κ is seen to become λ^{+}in the generic extension.

Proof Sketch continued:

Additional Coding Requirement:

$$
\forall \delta \in c_{\alpha} A\left(\text { ot } f_{\alpha}[\delta]\right)=A(\alpha)
$$

Idea for Local Club Condensation: For sufficiently many structures, ot $f_{\alpha}[\delta]$ is the image of α under the collapsing map of the structure, so for sufficiently many structures, the predicate A is preserved under their collapse.

Observe: The Coding Requirement gives an intricate connection between the Cohen subset of λ and the remaining part of a condition. In particular, tails of our iteration P will not be σ-closed.

Condensation and not Square

Theorem

Assume GCH. If λ is regular and uncountable and $\kappa>\lambda$ is a 2 -Mahlo cardinal, then there is a $<\lambda$-directed closed, κ-cc forcing that makes κ become λ^{+}and ensures Local Club Condensation at κ to hold while \square_{λ} fails.

A key ingredient in the proof (due to Liuzhen Wu and already used in his proof for ω_{1}) is the use of elementary substructures $M_{0}, M_{1} \prec H_{\theta}$, with the key property that for some regular cardinal η,

$$
\sup \left(M_{0} \cap M_{1} \cap \eta\right)<\sup \left(M_{0} \cap \eta\right)=\sup \left(M_{1} \cap \eta\right)
$$

Wu constructed these models using a measurable cardinal, and it is not too hard to see that one can obtain such structures already if η is ω-Erdős. After giving this talk for the first time however, Boban Veličković hinted us at a construction of his that allows one to construct such models using no large cardinals at all.

The Model Construction

Adapting his construction, we were able to construct our desired models using only a Mahlo cardinal.

Lemma

If η is Mahlo, $\theta \geq \eta$ is regular, $\lambda<\eta$ is regular and \mathcal{A} is a structure for a countable language with domain H_{θ}, then there is a pair of models M_{0}^{*} and M_{1}^{*} such that
(1) M_{0}^{*} and M_{1}^{*} are both substructures of \mathcal{A}.
(2) M_{0}^{*} and M_{1}^{*} both have size λ.
(3) $\lambda \subseteq M_{0}^{*}, M_{1}^{*}$.
(9) Let $\bar{\delta}=\sup \left(\eta \cap M_{0}^{*} \cap M_{1}^{*}\right)$. Then $\left[M_{0}^{*} \cap V_{\bar{\delta}}\right]^{<\omega_{1}} \subseteq M_{1}^{*}$.
(3) $\min \left(M_{0}^{*} \backslash \bar{\delta}\right)$ has cofinality $\geq \lambda$
(6) $\bar{\delta}<\delta:=\sup \left(M_{0}^{*} \cap \eta\right)=\sup \left(M_{1}^{*} \cap \eta\right)$ and the latter have cofinality ω.

Being able to show the above for η inaccessible would reduce our overall consistency assumption from 2-Mahlo to (the optimal) Mahlo.

Condensation and not Square

Theorem

Assume GCH. If λ is regular and uncountable and $\kappa>\lambda$ is a $2-M a h l o$ cardinal, then there is a < λ-directed closed, κ-cc forcing that makes κ become λ^{+}and ensures Local Club Condensation at κ to hold while \square_{λ} fails.

Proof: Let $P=P(\lambda, \kappa)$ denote the forcing to obtain $\kappa=\lambda^{+}$and LCC at κ. Assume $\dot{C}=\left\langle\dot{C}_{\eta} \mid \eta<\kappa\right\rangle$ is a P-name for a \square_{λ}-sequence in a P-generic extension. Using that P is κ-cc and conditions have bounded support, there is a club of $\eta<\kappa$ such that $\dot{C} \upharpoonright \eta$ is a $P(\lambda, \eta)$-name. By the large cardinal properties of κ, we may choose such η which is Mahlo. As η is regular after forcing with $P(\lambda, \eta)$, it follows that \dot{C}_{η} cannot have a $P(\lambda, \eta)$-name, as otherwise its evaluation would have to have order-type $\eta>\lambda$, contradicting that \dot{C} is a P-name for a \square_{λ}-sequence. Pick $t_{0} \perp t_{1}$ in P and $\xi<\eta$ with $t_{0} \upharpoonright \eta=t_{1} \upharpoonright \eta$ such that t_{0} and t_{1} disagree about whether $\xi \in \dot{C}_{\eta}$. Let M_{0}^{*} and M_{1}^{*} be elementary substructures of ($\left.H_{\theta}, \in, \eta, \lambda, \xi, t_{0}, t_{1}, \dot{C}_{\eta}, \ldots\right)$ as provided by the lemma.

Condensation and not Square continued

Let $M_{0} \prec\left(M_{0}^{*}, \in, \ldots\right)$ be countable with $\sup \left(M_{0} \cap \eta\right)=\delta$
$\left(=\sup \left(M_{0}^{*} \cap \eta\right)\right)$ and let $s_{0} \leq t_{0}$ be $\left(M_{0}, P\right)$-complete. Using that $\left[M_{0}^{*} \cap V_{\bar{\delta}}\right]^{<\omega_{1}} \subseteq M_{1}^{*}$, we obtain $s_{0} \upharpoonright \bar{\delta} \in M_{1}^{*}$. Let $M_{1} \prec\left(M_{1}^{*}, \in, s_{0} \upharpoonright \bar{\delta}, \ldots\right)$ be countable with $\sup \left(M_{1} \cap \eta\right)=\delta$. It is easy to see that $s_{0} \upharpoonright \bar{\delta}$ and t_{1} are compatible, using that $s_{0} \leq t_{0}$ and $t_{0} \upharpoonright \eta=t_{1} \upharpoonright \eta$. Let s_{1} be stronger than both and $\left(M_{1}, P\right)$-complete. $s_{1} \upharpoonright \bar{\delta} \leq s_{0} \upharpoonright \bar{\delta}$, supp $\left(s_{0}\right) \cap[\bar{\delta}, \eta) \subseteq M_{0}^{*}$, $\operatorname{supp}\left(s_{1}\right) \cap[\bar{\delta}, \eta) \subseteq M_{1}^{*}$ and M_{0}^{*} and M_{1}^{*} are disjoint in the interval $[\bar{\delta}, \eta)$. Therefore $s_{0} \upharpoonright \eta$ and $s_{1} \upharpoonright \eta$ are compatible.
Both s_{i} force that $\delta=\sup \left(M_{i} \cap \eta\right) \in \operatorname{Lim}\left(\dot{C}_{\eta}\right)$. Hence using that \dot{C} is a P-name for a \square_{λ}-sequence, both s_{i} force that

$$
\xi \in \dot{C}_{\eta} \Longleftrightarrow \xi \in \dot{C}_{\delta}
$$

This is a contradiction as \dot{C}_{δ} has a $P(\lambda, \eta)$-name and $\left(s_{0} \upharpoonright \eta\right) \|\left(s_{1} \upharpoonright \eta\right)$, hence s_{0} and s_{1} cannot disagree about whether $\xi \in \dot{C}_{\delta}$. \square

Definition (Chang's Conjecture)

$(\alpha, \beta) \rightarrow(\gamma, \delta)$: For every countable language \mathcal{L} with a unary predicate $A \in \mathcal{L}$ and every \mathcal{L}-structure $\mathcal{M}=\left(M, A^{\mathcal{M}}, \ldots\right)$ with $|M|=\alpha$ and $\left|A^{\mathcal{M}}\right|=\beta$, there exists a substructure \mathcal{N} of \mathcal{M} s.t. $|N|=\gamma$ and $\left|A^{\mathcal{N}}\right|=\delta$. Let $\mathrm{CC}(\kappa)$ say that for every infinite $\lambda<\kappa,(\kappa, \lambda) \rightarrow\left(\omega_{1}, \omega\right)$.

Theorem

- LCC at ω_{2} refutes CC $\left(\omega_{2}\right)$.
- Strong Condensation for κ refutes $\mathrm{CC}(\kappa)$ for any $\kappa \geq \omega_{2}$.
- Assume GCH. If κ is ω_{1}-Erdős and $\omega_{2} \leq \lambda<\kappa$ is regular, we may force to make $\kappa=\lambda^{+}$, preserve all cardinals $\leq \lambda$ and obtain $\mathrm{CC}(\kappa)$ and Local Club Condensation at κ.
- The proof of this last result is a straightforward adaptation of a result by James Baumgartner, showing that the usual Lévy collapse of an ω_{1}-Erdős cardinal to λ^{+}forces CC(λ^{+}), again replacing the Lévy collapse by the Local Club Condensation Collapse forcing.

