A SHORT FORCING ARGUMENT FOR THE PROPER FORCING AXIOM USING MAGIDOR'S CHARACTERIZATION OF SUPERCOMPACTNESS

PETER HOLY

ABSTRACT. We present a short proof of the consistency of the proper forcing axiom PFA starting from a supercompact cardinal, making use of Magidor's characterization of supercompactness in terms of small embeddings.

In a classical result of his, Menachem Magidor ([3, Theorem 1]) has shown supercompactness to be equivalent to the following property, which we take as our definition of supercompactness.

Definition 1. A cardinal κ is supercompact if for every regular cardinal $\theta > \kappa$ and every $x \in H(\theta)$, there is a regular cardinal $\nu < \kappa$ and an elementary embedding $j: H(\nu) \to H(\theta)$ with $j(\operatorname{crit} j) = \kappa$ and $x \in \operatorname{range}(j)$.

Making use of this characterization, together with the idea of iterating minimal counterexamples to the proper forcing axiom (instead of making use of a Laver function), which goes back to Arthur Apter ([1, Theorem 1]), allows for a very short proof of the relative consistency of the proper forcing axiom.

Definition 2. Suppose that $\{P_{\alpha} \mid \alpha \in I\}$ is a set of forcing notions. The lottery sum of that set is the disjoint union of those forcing notions, together with a new weakest condition, that is above all $p \in P_{\alpha}$ for $\alpha \in I$. Note that in particular, the lottery sum of the empty set corresponds to the trivial forcing.

Note that any lottery sum of proper notions of forcing is itself proper.

- **Definition 3.** (1) We say that a partial order P is a counterexample to PFA if P is proper and there exists a family \mathcal{D} of \aleph_1 dense subsets of P, but no \mathcal{D} -generic filter on P.
 - (2) The minimal counterexample iteration for PFA of length κ is the countable support iteration $\langle P_{\alpha}, \dot{Q}_{\alpha} \mid \alpha < \kappa \rangle$ that is defined inductively as follows: Given P_{α} , let \dot{Q}_{α} be a canonical P_{α} -name of hereditarily minimal size for the lottery sum of all counterexamples to PFA of hereditarily minimal size less than κ .

Using the standard fact that for regular and uncountable κ , if $P \in H(\kappa)$ and $\Vdash_P \dot{x} \in H(\check{\kappa})$, then there is a name $\dot{y} \in H(\kappa)$ such that $\Vdash_P \dot{x} = \dot{y}$ (see for example [2, Fact 3.6]), the following is easily verified by induction:

Observation 4. If κ is inaccessible, and $P_{\kappa} = \langle P_{\alpha}, \dot{Q}_{\alpha} \mid \alpha < \kappa \rangle$ is the minimal counterexample iteration for PFA of length κ , then $P_{\alpha} \in H(\kappa)$ for every $\alpha < \kappa$. Hence, $P_{\kappa} \subseteq H(\kappa)$.

²⁰¹⁰ Mathematics Subject Classification. 03E57, 03E55, 03E35.

Key words and phrases. PFA, supercompact cardinal.

PETER HOLY

We will of course use Shelah's result that countable support iterations of proper notions of forcing are proper (see for example [2, Corollary 3.19]), and hence in particular P_{κ} is proper and thus preserves ω_1 . We are now ready to provide an alternative proof for James Baumgartner's result that PFA can be obtained by forcing starting over a model with a supercompact cardinal.

Theorem 5. Let κ be supercompact. Then, the minimal counterexample iteration P_{κ} for PFA of length κ forces that PFA holds.

Proof. Assume for a contradiction that there is a P_{κ} -name \dot{P} such that some $p \in P_{\kappa}$ forces that \dot{P} is a hereditarily minimal counterexample to PFA. Using that P_{κ} preserves ω_1 , let $\dot{\mathcal{D}} = \langle \dot{\mathcal{D}}_{\alpha} \mid \alpha < \omega_1 \rangle$ be such that p forces that there is no $\dot{\mathcal{D}}$ -generic filter over \dot{P} . Let θ be regular and sufficiently large. Using that κ is supercompact, let $\nu < \kappa$ be regular and let $j: H(\nu) \to H(\theta)$ be an elementary embedding with $j(\operatorname{crit} j) = \kappa$, and with $\dot{P}, \dot{\mathcal{D}}, P_{\kappa}, p$ all in the range of j. Since $\operatorname{crit} j$ is inaccessible by elementarity, letting $R_{\operatorname{crit} j}$ be the minimal counterexample iteration for PFA of length $\operatorname{crit} j$, it follows inductively that for $\alpha \leq \operatorname{crit} j, P_{\alpha} = R_{\alpha}$: If at some stage $\alpha < \operatorname{crit} j$, we can find a counterexample to PFA in $H(\kappa)$, then by the elementarity of j, using that j fixes P_{α} , we can also find such a counterexample in $H(\operatorname{crit} j)$. But this means that $j(P_{\operatorname{crit} j}) = j(R_{\operatorname{crit} j}) = P_{\kappa}$. Since $p \in \operatorname{range} j \cap H(\kappa)$, we get $p \in H(\operatorname{crit} j)$ and therefore that j(p) = p. Thus, applying elementarity of j to our initial assumption,

 $p \Vdash_{\operatorname{crit} i} j^{-1}(\dot{P})$ is a hereditarily minimal counterexample to PFA,

and since $j^{-1}(\dot{P}) \in \text{dom } j = H(\nu)$, $j^{-1}(\dot{P})$ is also forced to be in $H(\kappa)$. But then, p forces $\dot{Q}_{\text{crit } j}$ to be a lottery sum of forcing notions which include $j^{-1}(\dot{P})$. Since $\text{dom } p \subseteq \text{crit } j$, we can extend p to q by letting q(crit j) be the canonical $P_{\text{crit } j}$ -name for the weakest condition of $j^{-1}(\dot{P})$ in that lottery sum, i.e. by letting q decide to force with $j^{-1}(\dot{P})$ at stage crit j.

Let G be P_{κ} -generic with $q \in G$. Since $j[G_{\operatorname{crit} j}] = G_{\operatorname{crit} j} \subseteq G$, we may apply Silver's lemma and lift j to $j^* \colon H(\nu)[G_{\operatorname{crit} j}] \to H(\theta)[G]$. In V[G], we have a $(j^{-1}(\dot{P}))^{G_{\operatorname{crit} j}}$ -generic filter $G(\operatorname{crit} j)$ over $V[G_{\operatorname{crit} j}]$. In particular, $G(\operatorname{crit} j)$ is $(j^{-1}(\dot{D}))^{G_{\operatorname{crit} j}}$ -generic, for the latter set is an element of $V[G_{\operatorname{crit} j}]$. Since $j^{-1}(\dot{D}) = \langle j^{-1}(\dot{D}_{\alpha}) \mid \alpha < \omega_1 \rangle$, this implies that $j^*[G(\operatorname{crit} j)]$ meets \dot{D}_{α}^G for every $\alpha < \omega_1$, and we can find a $\dot{\mathcal{D}}^G$ -generic filter on \dot{P}^G in V[G] by taking the upwards closure of $j^*[G(\operatorname{crit} j)]$ in \dot{P}^G . But this means that we have just shown $q \leq p$ to force that \dot{P} actually was no counterexample to PFA at all, yielding our desired contradiction.

References

- Arthur W. Apter. Removing Laver functions from supercompactness arguments. MLQ Math. Log. Q., 51(2):154–156, 2005.
- [2] Martin Goldstern. Tools for your forcing construction. In Set theory of the reals (Ramat Gan, 1991), volume 6 of Israel Math. Conf. Proc., pages 305–360. Bar-Ilan Univ., Ramat Gan, 1993.
- [3] Menachem Magidor. On the role of supercompact and extendible cardinals in logic. Israel J. Math., 10:147–157, 1971.

UNIVERSITY OF BONN

E-mail address: pholy@math.uni-bonn.de

 $\mathbf{2}$