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Abstract. We present easy proofs of three classic results by William Mitchell:

Given an inaccessible cardinal κ, we present a simply defined countable support
iteration Pκ of length κ of proper forcing notions, that satisfies the κ-cc, which

forces that κ̌ = ℵ2 = 2ℵ0 , and which has the following properties:

(1) If κ is inaccessible, then Pκ forces that there are no weak ℵ1-Kurepa
trees.

(2) If κ is Mahlo, then Pκ forces that there are no special ℵ2-Aronszajn trees.

(3) If κ is weakly compact, then Pκ forces that ℵ2 has the tree property,
i.e. that there are no ℵ2-Aronszajn trees.

In contrast to Mitchell’s original results, our arguments do not generalize to

larger cardinals.

1. The iteration and its basic properties

Let us recall the following standard definitions.

Definition 1.1. • Given cardinals κ and λ, and a set X, let Add(κ, λ,X)
denote the partial order of all partial functions p from κ × λ to X of size
less than κ, ordered by extension.

• If κ+ is an infinite successor cardinal, then a tree T of height κ+ is special
if there is a function c : T → κ with the property that for all s, t ∈ T with
c(s) = c(t), we have that s and t are incompatible in T .

• A tree of height ω1 is almost special if there is a function c : T → ω with
the property that for all s, t, u ∈ T with c(s) = c(t) = c(u) and s ≤T t, u,
we have that t and u are compatible in T .

• If T is a tree, we say that a set B ⊆ [T ] is non-stationary if there is an
injection i : B → T with i(b) ∈ b for all b ∈ B.

We will use the following result of Baumgartner:

Theorem 1.2 (Baumgartner). If T is a tree of height ω1 such that [T ] is non-
stationary, then there is a ccc partial order ensuring that T is almost special in its
generic extensions. If T has no cofinal branches, then it ensures that T is special.

By specializing the disjoint sum of all trees of height ω1 and with domain ω1,
this easily yields the following:

Corollary 1.3. There is a ccc partial order ensuring that all ground model trees T
of height and size ω1 with [T ] non-stationary become almost special, and all ground
model trees of height and size ω1 with no cofinal branches become special in its
generic extensions. We call this forcing the specializing forcing.

Definition 1.4. Let κ be an inaccessible cardinal. The tree property iteration of
length κ is the countable support iteration 〈Pα, Q̇α | α < κ〉 of length κ with direct

limit Pκ, where the Q̇α’s are defined inductively as follows:

(i) If α is inaccessible, then Q̇α is trivial. If α = 3ᾱ is not inaccessible, then

Q̇α is a canonical Pα-name for the forcing notion Add(ω, ω2, 2) for adding
ω2 Cohen subsets of ω.
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(ii) If α = 3ᾱ + 1, then Q̇α is a canonical Pα-name for the forcing notion
Add(ω1, 1,P(ω1)) for collapsing P(ω1) to become of size ℵ1.

(iii) If α = 3ᾱ+ 2, then Q̇α is a canonical Pα-name for the specializing forcing.

The following lemma collects some basic properties of the above-defined iteration.

Lemma 1.5. (1) If α < κ, then |Pα| < κ, and hence Pκ satisfies the κ-cc.

(2) For every α < κ, Pα forces Q̇α to be proper, and hence each Pα for α ≤ κ
is proper.

(3) Pκ forces that 2ℵ0 = ℵ2 = κ̌.

Proof. (1) and (2) are standard, using that κ is inaccessible for (1). For (3),
(ii) ensures that we are collapsing a cardinal to become of size ℵ1 in κ-many
steps of our iteration up to κ. Since there are only κ-many cardinals below κ
in V , this means that in any Pκ-generic extension, there are no cardinals
between ω1 and κ, i.e. κ = ω2.

(i) ensures that we are adding new subsets of ω in κ-many steps of our
iteration up to κ, thus ensuring that 2ℵ0 ≥ ℵ2 in all Pκ-generic exten-
sions. The reversed inequality follows by a standard counting of nice names
argument, using that Pκ is a κ-cc partial order of size κ, and that κ is
inaccessible.

�

2. No weak Kurepa trees

Definition 2.1. A tree of height and size ω1 is a weak Kurepa tree if it has at least
ℵ2-many cofinal branches.

We will use the following results of Baumgartner:

Lemma 2.2 (Baumgartner). If T is a tree with levels of size less than 2ℵ0 and P
is a σ-closed notion of forcing, then P adds no new branches to T .

Lemma 2.3 (Baumgartner). If T is a tree of height and size ω1 and B ⊆ [T ], then
B is non-stationary if and only if |B| ≤ ℵ1.

Lemma 2.4 (Baumgartner). If T is an almost special tree of height ω1, then [T ]
is non-stationary.

Theorem 2.5 (Mitchell). If κ is an inaccessible cardinal, then Pκ forces that there
are no weak Kurepa trees.

Proof. Assume that p ∈ Pκ, and that Ṫ is a Pκ-name such that p forces Ṫ to be
a tree of height and size ω1. By possibly passing to an isomorphic copy, we may
assume p to also force that the domain of Ṫ is ω1. Since Pκ now forces Ṫ to be
an element of H(κ̌), we may further assume that Ṫ ∈ H(κ), using that Pκ ⊆ H(κ)
satisfies the κ-cc. But since Pκ is the direct limit of the Pα’s for α < κ, this implies
that we find α < κ such that Ṫ is a Pα-name, and we may also assume that α is not
inaccessible. By (i), P3α+1 forces ¬CH. Hence, by Lemma 2.2, p 3α+2 |[Ṫ ]| ≤ ℵ1,

and hence by Lemma 2.3, p 3α+2 [Ṫ ] is non-stationary. Then, in P3α+3, p forces

that Ṫ is almost special. Since being almost special is upwards absolute between
models with the same ω1, it follows that also in Pκ, p forces Ṫ is almost special.
Thus by Lemma 2.4, p forces in Pκ that [Ṫ ] is nonstationary, and hence by Lemma

2.3, that |[Ṫ ]| ≤ ℵ1, i.e. p forces that Ṫ is not a weak Kurepa tree. This argument
shows that there are no weak Kurepa trees in Pκ-generic extensions, as desired. �

3. No special ℵ2-Aronszajn trees

Theorem 3.1 (Mitchell). If κ is a Mahlo cardinal, then Pκ forces that there are
no special ℵ2-Aronszajn trees.



3

Proof. Assume for a contradiction that there is a condition p ∈ Pκ and a Pκ-name Ṫ
such that p forces Ṫ to be a special ω2-Aronszajn tree. By passing to an isomorphic
copy, we may assume p to also force that for every α < ω2, Ṫ (α) ⊆ {α} × ω1.

Since by Lemma 1.5, p  Ṫ ⊆ H(κ̌), we may further assume that Ṫ ⊆ H(κ), using
that Pκ ⊆ H(κ) satisfies the κ-cc. Let θ be sufficiently large and regular, and

let M ≺ H(θ) be of size less than κ, with κ, Pκ, p, Ṫ ∈ M , and with α = M ∩ κ
inaccessible, using that κ is Mahlo. Let M̄ be the transitive collapse of M , and let
j : M̄ → H(θ) be the anticollapse embedding.

Claim 1. j(α) = κ, H(α) ∪ {p, Pα} ⊆ M̄ , j � H(α) = id, j(Pα) = Pκ, j(p) = p.

Proof. Clearly, j−1(κ) = α. Since M ∩ κ = α is an inaccessible cardinal, it follows
that H(κ) ∩M = H(α), that p ∈ H(α), and hence that j � H(α) = id, and that
H(α) ⊆ M̄ . Since Pα is definable from α over H(α), it follows that Pα ∈ M̄ , and by
elementarity of j, using that j(α) = κ and that the definition of the tree property
iteration is sufficiently absolute, it follows that j(Pα) = Pκ. �

Let ˙̄T be a Pα-name such that j( ˙̄T ) = Ṫ .

Claim 2. p κ ˙̄T = Ṫ � α̌.

Proof. We show that for every q ≤κ p and every pair 〈β, ξ〉 ∈ α× ω1, q forces that

〈β̌, ξ̌〉 ∈ ˙̄T if and only if q forces that 〈β̌, ξ̌〉 ∈ Ṫ � α̌, which is clearly sufficient to

show that p forces the domains of ˙̄T and of Ṫ � α̌ to agree. We leave the analogous
result with respect to the orderings of those trees to the interested reader.

Assume first q forces that 〈β̌, ξ̌〉 ∈ ˙̄T . Since this statement is absolute and ˙̄T is
a Pα-name, this is already forced by q � α ∈ H(α). Then, by the elementarity of j,

j(q � α) = q � α  〈β̌, ξ̌〉 ∈ Ṫ . Since q ≤ q � α and by our assumptions on Ṫ , it thus

follows that q κ 〈β̌, ξ̌〉 ∈ Ṫ � α̌.

Now assume q forces that 〈β̌, ξ̌〉 ∈ Ṫ � α̌ ⊆ Ṫ , and let r ≤κ q. Then, by
elementarity of j, and since r ≤ r � α, there is a condition r̄ ≤ r � α in Pα forcing

that 〈β̌, ξ̌〉 ∈ ˙̄T . But then, the greatest lower bound r∗ of r̄ and r in Pκ is stronger
than r, and still forces that statement. We thus showed that there is a dense set

of conditions below q forcing that 〈β̌, ξ̌〉 ∈ ˙̄T , yielding that q  〈β̌, ξ̌〉 ∈ ˙̄T , as
desired. �

By the elementarity of j, M̄ |= p α ˙̄T is a special ω2-Aronszajn tree. Since
this is sufficiently absolute, this forcing statement also holds true in our universe
V . Since Q̇α is trivial, p also forces this statement in Pα+1. Note that by Lemma

1.5, 2ℵ0 = ℵ2 after forcing with Pα+1. Since Q̇α+1 is forced to be σ-closed, it thus

follows by Lemma 2.2 that p α+2
˙̄T has no cofinal branches. Pick a Pα+2-name

〈α̇i | i < ω1〉 for a strictly increasing continuous sequence of ordinals below α that

is cofinal in α, and let Ṡ be a Pα+2-name such that p α+2 Ṡ =
⋃
i<ω1

˙̄T (α̇i).

Then p α+2 Ṡ is a tree of height and size ω1 without cofinal branches. Then,

p α+3 Ṡ is special. But then, by the upwards absoluteness of being special, p also

forces in Pκ that Ṡ, and hence also ˙̄T have no cofinal branches. However by Claim
2, any Pκ-name for a node of Ṫ on level α̌ yields a Pκ-name for a cofinal branch

through ˙̄T , namely the name for the set of Ṫ -predecessors of that node, which is
clearly a contradiction. �

4. No Aronszajn trees

Theorem 4.1 (Mitchell). If κ is a weakly compact cardinal, then Pκ forces that
there are no ℵ2-Aronszajn trees.
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Proof. Assume for a contradiction that there is a condition p ∈ Pκ and a Pκ-name Ṫ
such that p forces Ṫ to be an ω2-Aronszajn tree. As in the proof of Theorem 3.1,
we may assume that p forces that for every α < ω2, Ṫ (α) ⊆ {α} × ω1, and we may

take Ṫ to be a nice name of the form

Ṫ = {{〈β̌, ξ̌〉} ×Aβ,ξ | β < κ, ξ < ω1} ⊆ H(κ),

for certain (possibly empty) antichains Aβ,ξ of Pκ. An analogous argument applies

to the ordering relation of Ṫ . Viewing the name Ṫ as a binary relation between
pairs 〈β, ξ〉 of ordinals less than κ and conditions in Pκ, using that Pκ is κ-cc, let C

be the club subset of κ consisting of all cardinals α which are closure points of Ṫ , in
the sense that all pairs 〈β, ξ〉 of ordinals less than α are related only to conditions
in Pα. Let α ∈ C be inaccessible and greater than the supremum of the support
of p, such that in Pα = Pκ ∩H(α), p forces the name Ṫ ∩H(α) to denominate an

ω2-Aronszajn tree, using that the corresponding statement about p, Ṫ and Pκ is a
Π1

1-statement over H(κ), and that κ is weakly compact.

Claim 3. Let ˙̄T = Ṫ ∩H(α). Then, p forces that ˙̄T = Ṫ � α̌.

Proof. We show that p forces the domains of the trees ˙̄T and of Ṫ � α̌ to agree, and
again leave the analogous argument for the orderings of those trees to the interested

reader. Since ˙̄T ⊆ Ṫ , it is immediate that p forces that ˙̄T ⊆ Ṫ . But also, every

element of ˙̄T is forced by p to be on some level below α̌, i.e. p  ˙̄T ⊆ Ṫ � α̌.
Now if q ≤κ p forces that 〈β̌, ξ̌〉 ∈ Ṫ � α̌, then β < α, and using that α ∈ C, it

follows that there is a condition a ∈ Aβ,ξ ⊆ Pα with q ≤ a. But then,

〈〈β̌, ξ̌〉, a〉 ∈ Ṫ ∩H(α) = ˙̄T,

yielding that q ≤ a  〈β̌, ξ̌〉 ∈ ˙̄T , showing that p  Ṫ � α̌ ⊆ ˙̄T , as desired. �

Now, the remaining proof proceeds exactly as in the proof of Theorem 3.1. �
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