A COUNTABLE SUPPORT ITERATION FOR THE TREE PROPERTY AT \aleph_2 AND RELATED PROPERTIES

PETER HOLY AND PHILIPP LÜCKE

ABSTRACT. We present easy proofs of three classic results by William Mitchell: Given an inaccessible cardinal κ , we present a simply defined countable support iteration P_{κ} of length κ of proper forcing notions, that satisfies the κ -cc, which forces that $\check{\kappa} = \aleph_2 = 2^{\aleph_0}$, and which has the following properties:

- (1) If κ is inaccessible, then P_{κ} forces that there are no weak \aleph_1 -Kurepa trees.
- (2) If κ is Mahlo, then P_{κ} forces that there are no special $\aleph_2\text{-}Aronszajn$ trees.
- (3) If κ is weakly compact, then P_{κ} forces that \aleph_2 has the tree property, i.e. that there are no \aleph_2 -Aronszajn trees.

In contrast to Mitchell's original results, our arguments do not generalize to larger cardinals.

1. The iteration and its basic properties

Let us recall the following standard definitions.

- **Definition 1.1.** Given cardinals κ and λ , and a set X, let $Add(\kappa, \lambda, X)$ denote the partial order of all partial functions p from $\kappa \times \lambda$ to X of size less than κ , ordered by extension.
 - If κ^+ is an infinite successor cardinal, then a tree T of height κ^+ is special if there is a function $c: T \to \kappa$ with the property that for all $s, t \in T$ with c(s) = c(t), we have that s and t are incompatible in T.
 - A tree of height ω_1 is almost special if there is a function $c: T \to \omega$ with the property that for all $s, t, u \in T$ with c(s) = c(t) = c(u) and $s \leq_T t, u$, we have that t and u are compatible in T.
 - If T is a tree, we say that a set $B \subseteq [T]$ is non-stationary if there is an injection $i: B \to T$ with $i(b) \in b$ for all $b \in B$.

We will use the following result of Baumgartner:

Theorem 1.2 (Baumgartner). If T is a tree of height ω_1 such that [T] is nonstationary, then there is a ccc partial order ensuring that T is almost special in its generic extensions. If T has no cofinal branches, then it ensures that T is special.

By specializing the disjoint sum of all trees of height ω_1 and with domain ω_1 , this easily yields the following:

Corollary 1.3. There is a ccc partial order ensuring that all ground model trees T of height and size ω_1 with [T] non-stationary become almost special, and all ground model trees of height and size ω_1 with no cofinal branches become special in its generic extensions. We call this forcing the specializing forcing.

Definition 1.4. Let κ be an inaccessible cardinal. The tree property iteration of length κ is the countable support iteration $\langle P_{\alpha}, \dot{Q}_{\alpha} | \alpha < \kappa \rangle$ of length κ with direct limit P_{κ} , where the \dot{Q}_{α} 's are defined inductively as follows:

(i) If α is inaccessible, then \dot{Q}_{α} is trivial. If $\alpha = 3\bar{\alpha}$ is not inaccessible, then \dot{Q}_{α} is a canonical P_{α} -name for the forcing notion $\operatorname{Add}(\omega, \omega_2, 2)$ for adding ω_2 Cohen subsets of ω .

HOLY AND LÜCKE

- (ii) If $\alpha = 3\bar{\alpha} + 1$, then \dot{Q}_{α} is a canonical P_{α} -name for the forcing notion $\operatorname{Add}(\omega_1, 1, \mathcal{P}(\omega_1))$ for collapsing $\mathcal{P}(\omega_1)$ to become of size \aleph_1 .
- (iii) If $\alpha = 3\bar{\alpha} + 2$, then \dot{Q}_{α} is a canonical P_{α} -name for the specializing forcing.

The following lemma collects some basic properties of the above-defined iteration.

Lemma 1.5. (1) If $\alpha < \kappa$, then $|P_{\alpha}| < \kappa$, and hence P_{κ} satisfies the κ -cc.

- (2) For every $\alpha < \kappa$, P_{α} forces \dot{Q}_{α} to be proper, and hence each P_{α} for $\alpha \leq \kappa$ is proper.
- (3) P_{κ} forces that $2^{\aleph_0} = \aleph_2 = \check{\kappa}$.

Proof. (1) and (2) are standard, using that κ is inaccessible for (1). For (3), (ii) ensures that we are collapsing a cardinal to become of size \aleph_1 in κ -many steps of our iteration up to κ . Since there are only κ -many cardinals below κ in V, this means that in any P_{κ} -generic extension, there are no cardinals between ω_1 and κ , i.e. $\kappa = \omega_2$.

(i) ensures that we are adding new subsets of ω in κ -many steps of our iteration up to κ , thus ensuring that $2^{\aleph_0} \geq \aleph_2$ in all P_{κ} -generic extensions. The reversed inequality follows by a standard counting of nice names argument, using that P_{κ} is a κ -cc partial order of size κ , and that κ is inaccessible.

2. No weak Kurepa trees

Definition 2.1. A tree of height and size ω_1 is a *weak Kurepa tree* if it has at least \aleph_2 -many cofinal branches.

We will use the following results of Baumgartner:

Lemma 2.2 (Baumgartner). If T is a tree with levels of size less than 2^{\aleph_0} and P is a σ -closed notion of forcing, then P adds no new branches to T.

Lemma 2.3 (Baumgartner). If T is a tree of height and size ω_1 and $B \subseteq [T]$, then B is non-stationary if and only if $|B| \leq \aleph_1$.

Lemma 2.4 (Baumgartner). If T is an almost special tree of height ω_1 , then [T] is non-stationary.

Theorem 2.5 (Mitchell). If κ is an inaccessible cardinal, then P_{κ} forces that there are no weak Kurepa trees.

Proof. Assume that $p \in P_{\kappa}$, and that \dot{T} is a P_{κ} -name such that p forces \dot{T} to be a tree of height and size ω_1 . By possibly passing to an isomorphic copy, we may assume p to also force that the domain of \dot{T} is ω_1 . Since P_{κ} now forces \dot{T} to be an element of $H(\check{\kappa})$, we may further assume that $\dot{T} \in H(\kappa)$, using that $P_{\kappa} \subseteq H(\kappa)$ satisfies the κ -cc. But since P_{κ} is the direct limit of the P_{α} 's for $\alpha < \kappa$, this implies that we find $\alpha < \kappa$ such that \dot{T} is a P_{α} -name, and we may also assume that α is not inaccessible. By (i), $P_{3\alpha+1}$ forces ¬CH. Hence, by Lemma 2.2, $p \Vdash_{3\alpha+2} |[\dot{T}]| \leq \aleph_1$, and hence by Lemma 2.3, $p \Vdash_{3\alpha+2} [\dot{T}]$ is non-stationary. Then, in $P_{3\alpha+3}$, p forces that \dot{T} is almost special. Since being almost special is upwards absolute between models with the same ω_1 , it follows that also in P_{κ} , p forces \dot{T} is almost special. Thus by Lemma 2.4, p forces in P_{κ} that $[\dot{T}]$ is nonstationary, and hence by Lemma 2.3, that $|[\dot{T}]| \leq \aleph_1$, i.e. p forces that \dot{T} is not a weak Kurepa tree. This argument shows that there are no weak Kurepa trees in P_{κ} -generic extensions, as desired. □

3. No special \aleph_2 -Aronszajn trees

Theorem 3.1 (Mitchell). If κ is a Mahlo cardinal, then P_{κ} forces that there are no special \aleph_2 -Aronszajn trees.

 $\mathbf{2}$

Proof. Assume for a contradiction that there is a condition $p \in P_{\kappa}$ and a P_{κ} -name \dot{T} such that p forces \dot{T} to be a special ω_2 -Aronszajn tree. By passing to an isomorphic copy, we may assume p to also force that for every $\alpha < \omega_2$, $\dot{T}(\alpha) \subseteq \{\alpha\} \times \omega_1$. Since by Lemma 1.5, $p \Vdash \dot{T} \subseteq H(\check{\kappa})$, we may further assume that $\dot{T} \subseteq H(\kappa)$, using that $P_{\kappa} \subseteq H(\kappa)$ satisfies the κ -cc. Let θ be sufficiently large and regular, and let $M \prec H(\theta)$ be of size less than κ , with $\kappa, P_{\kappa}, p, \dot{T} \in M$, and with $\alpha = M \cap \kappa$ inaccessible, using that κ is Mahlo. Let M be the transitive collapse of M, and let $j \colon M \to H(\theta)$ be the anticollapse embedding.

Claim 1. $j(\alpha) = \kappa$, $H(\alpha) \cup \{p, P_{\alpha}\} \subseteq \overline{M}$, $j \upharpoonright H(\alpha) = id$, $j(P_{\alpha}) = P_{\kappa}$, j(p) = p.

Proof. Clearly, $j^{-1}(\kappa) = \alpha$. Since $M \cap \kappa = \alpha$ is an inaccessible cardinal, it follows that $H(\kappa) \cap M = H(\alpha)$, that $p \in H(\alpha)$, and hence that $j \upharpoonright H(\alpha) = id$, and that $H(\alpha) \subseteq \overline{M}$. Since P_{α} is definable from α over $H(\alpha)$, it follows that $P_{\alpha} \in \overline{M}$, and by elementarity of j, using that $j(\alpha) = \kappa$ and that the definition of the tree property iteration is sufficiently absolute, it follows that $j(P_{\alpha}) = P_{\kappa}$.

Let \dot{T} be a P_{α} -name such that $j(\dot{T}) = \dot{T}$.

Claim 2. $p \Vdash_{\kappa} \dot{\bar{T}} = \dot{T} \upharpoonright \check{\alpha}$.

Proof. We show that for every $q \leq_{\kappa} p$ and every pair $\langle \beta, \xi \rangle \in \alpha \times \omega_1$, q forces that $\langle \check{\beta}, \check{\xi} \rangle \in \dot{T}$ if and only if q forces that $\langle \check{\beta}, \check{\xi} \rangle \in \dot{T} \upharpoonright \check{\alpha}$, which is clearly sufficient to show that p forces the domains of \dot{T} and of $\dot{T} \upharpoonright \check{\alpha}$ to agree. We leave the analogous result with respect to the orderings of those trees to the interested reader.

Assume first q forces that $\langle \check{\beta}, \check{\xi} \rangle \in \bar{T}$. Since this statement is absolute and \bar{T} is a P_{α} -name, this is already forced by $q \upharpoonright \alpha \in H(\alpha)$. Then, by the elementarity of j, $j(q \upharpoonright \alpha) = q \upharpoonright \alpha \Vdash \langle \check{\beta}, \check{\xi} \rangle \in \dot{T}$. Since $q \leq q \upharpoonright \alpha$ and by our assumptions on \dot{T} , it thus follows that $q \Vdash_{\kappa} \langle \check{\beta}, \check{\xi} \rangle \in \dot{T} \upharpoonright \check{\alpha}$.

Now assume q forces that $\langle \check{\beta}, \check{\xi} \rangle \in \dot{T} \upharpoonright \check{\alpha} \subseteq \dot{T}$, and let $r \leq_{\kappa} q$. Then, by elementarity of j, and since $r \leq r \upharpoonright \alpha$, there is a condition $\bar{r} \leq r \upharpoonright \alpha$ in P_{α} forcing that $\langle \check{\beta}, \check{\xi} \rangle \in \dot{T}$. But then, the greatest lower bound r^* of \bar{r} and r in P_{κ} is stronger than r, and still forces that statement. We thus showed that there is a dense set of conditions below q forcing that $\langle \check{\beta}, \check{\xi} \rangle \in \dot{T}$, yielding that $q \Vdash \langle \check{\beta}, \check{\xi} \rangle \in \dot{T}$, as desired. \Box

By the elementarity of j, $\overline{M} \models p \Vdash_{\alpha} \overline{T}$ is a special ω_2 -Aronszajn tree. Since this is sufficiently absolute, this forcing statement also holds true in our universe V. Since \dot{Q}_{α} is trivial, p also forces this statement in $P_{\alpha+1}$. Note that by Lemma 1.5, $2^{\aleph_0} = \aleph_2$ after forcing with $P_{\alpha+1}$. Since $\dot{Q}_{\alpha+1}$ is forced to be σ -closed, it thus follows by Lemma 2.2 that $p \Vdash_{\alpha+2} \overline{T}$ has no cofinal branches. Pick a $P_{\alpha+2}$ -name $\langle \dot{\alpha}_i \mid i < \omega_1 \rangle$ for a strictly increasing continuous sequence of ordinals below α that is cofinal in α , and let \dot{S} be a $P_{\alpha+2}$ -name such that $p \Vdash_{\alpha+2} \dot{S} = \bigcup_{i < \omega_1} \overline{T}(\dot{\alpha}_i)$. Then $p \Vdash_{\alpha+2} \dot{S}$ is a tree of height and size ω_1 without cofinal branches. Then, $p \Vdash_{\alpha+3} \dot{S}$ is special. But then, by the upwards absoluteness of being special, p also forces in P_{κ} that \dot{S} , and hence also \dot{T} have no cofinal branches. However by Claim 2, any P_{κ} -name for a node of \dot{T} on level $\check{\alpha}$ yields a P_{κ} -name for a cofinal branch through \dot{T} , namely the name for the set of \dot{T} -predecessors of that node, which is clearly a contradiction.

4. NO ARONSZAJN TREES

Theorem 4.1 (Mitchell). If κ is a weakly compact cardinal, then P_{κ} forces that there are no \aleph_2 -Aronszajn trees.

Proof. Assume for a contradiction that there is a condition $p \in P_{\kappa}$ and a P_{κ} -name T such that p forces \dot{T} to be an ω_2 -Aronszajn tree. As in the proof of Theorem 3.1, we may assume that p forces that for every $\alpha < \omega_2$, $\dot{T}(\alpha) \subseteq \{\alpha\} \times \omega_1$, and we may take \dot{T} to be a nice name of the form

$$\dot{T} = \{\{\langle \check{\beta}, \check{\xi} \rangle\} \times A_{\beta,\xi} \mid \beta < \kappa, \xi < \omega_1\} \subseteq H(\kappa),$$

for certain (possibly empty) antichains $A_{\beta,\xi}$ of P_{κ} . An analogous argument applies to the ordering relation of \dot{T} . Viewing the name \dot{T} as a binary relation between pairs $\langle \beta, \xi \rangle$ of ordinals less than κ and conditions in P_{κ} , using that P_{κ} is κ -cc, let Cbe the club subset of κ consisting of all cardinals α which are *closure points* of \dot{T} , in the sense that all pairs $\langle \beta, \xi \rangle$ of ordinals less than α are related only to conditions in P_{α} . Let $\alpha \in C$ be inaccessible and greater than the supremum of the support of p, such that in $P_{\alpha} = P_{\kappa} \cap H(\alpha)$, p forces the name $\dot{T} \cap H(\alpha)$ to denominate an ω_2 -Aronszajn tree, using that the corresponding statement about p, \dot{T} and P_{κ} is a Π_1^1 -statement over $H(\kappa)$, and that κ is weakly compact.

Claim 3. Let $\dot{T} = \dot{T} \cap H(\alpha)$. Then, p forces that $\dot{\bar{T}} = \dot{T} \upharpoonright \check{\alpha}$.

Proof. We show that p forces the domains of the trees \overline{T} and of $\dot{T} \upharpoonright \check{\alpha}$ to agree, and again leave the analogous argument for the orderings of those trees to the interested reader. Since $\dot{T} \subseteq \dot{T}$, it is immediate that p forces that $\dot{T} \subseteq \dot{T}$. But also, every element of \dot{T} is forced by p to be on some level below $\check{\alpha}$, i.e. $p \Vdash \dot{T} \subseteq \dot{T} \upharpoonright \check{\alpha}$.

Now if $q \leq_{\kappa} p$ forces that $\langle \check{\beta}, \check{\xi} \rangle \in \dot{T} \upharpoonright \check{\alpha}$, then $\beta < \alpha$, and using that $\alpha \in C$, it follows that there is a condition $a \in A_{\beta,\xi} \subseteq P_{\alpha}$ with $q \leq a$. But then,

$$\langle \langle \check{\beta}, \check{\xi} \rangle, a \rangle \in \dot{T} \cap H(\alpha) = \bar{T}$$

yielding that $q \leq a \Vdash \langle \check{\beta}, \check{\xi} \rangle \in \dot{T}$, showing that $p \Vdash \dot{T} \upharpoonright \check{\alpha} \subseteq \dot{T}$, as desired. \Box

Now, the remaining proof proceeds exactly as in the proof of Theorem 3.1. \Box

Peter Holy, Math. Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

E-mail address: pholy@math.uni-bonn.de

Philipp Lücke, Math. Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

E-mail address: pluecke@math.uni-bonn.de