
RAMSEY-LIKE OPERATORS

PETER HOLY

Abstract. We introduce and investigate a uniform framework for large car-

dinal operators. This framework accommodates the Ramsey operator, and we

will show that it also accommodates the subtle operator, the ineffability opera-
tor, and the pre-Ramsey operator. We use this framework to introduce several

new large cardinal operators, which are closely connected to established large

cardinal notions, such as weakly Ramsey and strongly Ramsey cardinals. As a
test application for our framework, we show that a strong form of the results

of James Baumgartner connecting ineffability to subtlety, and Ramseyness to

pre-Ramseyness, generalizes to many further large cardinals and their related
operators.

1. Introduction

In the set theoretic literature, some popular large cardinals have been connected
to corresponding large cardinal ideals, and then also to operators on ideals, the
earliest examples of the latter being the ineffability operator I due to James Baum-
gartner in [4], followed by the Ramsey operator R and the pre-Ramsey operator
R0 that were introduced and extensively studied by Qi Feng in [8], while the subtle
operator I0 was first made explicit in a recent paper by Brent Cody [6]. In the
present paper, inspired by the large cardinal framework based on the existence of
certain ultrafilters for small models of set theory that was introduced in [12], we
introduce such a framework for large cardinal operators. We show that the four
operators mentioned above fit into this framework, we provide some general results
about these operators, and we use this framework to introduce a number of new
large cardinal operators, which are closely related to established notions of Ramsey-
like cardinals, via an abstract notion of Ramsey-like operator. As a test application
for our generalized operators, we show that one of the key results of Baumgartner
[3, 4] about the ineffable and the Ramsey operator, connecting them to the subtle
operator and to the pre-Ramsey operator respectively, holds for our generalized
operators (in a strong form, which is due to Cody for the Ramsey operator in [6]).
Finally, we make some comments and ask some questions related to the notion of
weak ineffability.

We will always require all ideals to be ideals on some regular and uncountable
cardinal κ, and to be supersets of the bounded ideal on κ. For any ideal I, I+
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denotes the collection of I-positive sets, that is, those subsets of κ which are not in
I, while I∗ denotes the filter that is dual to I, that is, the collection of complements
of sets in I. We will often introduce ideals by defining the collection of their positive
sets when this is more convenient. An ideal operator O is a map that takes ideals
on regular uncountable cardinals κ as input, and outputs another (not necessarily
strictly) larger ideal on the same cardinal κ, so that O(I) ⊆ O(J) whenever I ⊆ J
are ideals on κ.

Let us start by introducing the two classical examples of ideal operators, the
ineffability operator I and the Ramsey operator R. If ideal operators are closely
connected to notions of large cardinals, as for example is the case for the opera-
tors I and R (see Fact 1.2 below), then we also refer to them as large cardinal
operators. The definition of the Ramsey operator that is provided below is not the
original definition from [8], but a version that was shown to be equivalent in [6,
Proposition 2.8]. Recall that for any set A, an A-list is a sequence 〈ax | x ∈ A〉
such that ax ⊆ x for any x ∈ A.

Definition 1.1. Let I be an ideal on κ.

• Given a κ-list ~a, we first define what we call a local instance, letting

I~a(I)+ = {x ⊆ κ | ∃H ∈ I+ H ⊆ x is homogeneous for ~a},
and we let I(I)+ =

⋂
{I~a(I)+ | ~a is a κ-list}.

• Given a regressive function c : [κ]<ω → κ, we define a local instance, letting

Rc(I)+ = {x ⊆ κ | ∃H ∈ I+ H ⊆ x is homogeneous for c},
and we let R(I)+ =

⋂
{Rc(I)+ | c : [x]<ω → κ regressive}.

Fact 1.2.

(1) If κ is weakly ineffable, then I([κ]<κ) is the weakly ineffable ideal on κ.
(2) If κ is ineffable, then I(NSκ) is the ineffable ideal on κ.
(3) If κ is Ramsey, then R([κ]<κ) is the Ramsey ideal on κ.
(4) If κ is ineffably Ramsey, then R(NSκ) is the ineffably Ramsey ideal on κ.

Proof. (1) holds by the very definition of weak ineffability (with Baumgartner’s
terminology being almost ineffable) in [3]. (2) holds by the very definition of inef-
fability in [3]. (3) and (4) follow from [6, Proposition 2.8]. �

In [12], three schemes were proposed that allow for the characterization of a large
number of large cardinals up to measurability in a uniform way. In the present
paper, we will focus on one of these schemes, that was called Scheme B. We say
that M is a weak κ-model if M ⊇ κ + 1 is of size κ and a model of ZFC−, that is
ZFC without the powerset axiom. A collection U ⊆ M ∩ P(κ) is an M -ultrafilter
on κ if 〈M,U〉 |= “U is an ultrafilter on κ”.

Scheme B: An uncountable cardinal κ has the large cardinal property Φ(κ) if
and only if for any y ⊆ κ, there is a transitive weak κ-model M with y ∈ M , and
a uniform M -ultrafilter U on κ for which Ψ(M,U) holds.

Ineffability and Ramseyness are two instances of this scheme, which can also be
used to characterize not only large cardinals, but certain large subsets A of large
cardinals (as was also extensively done in [12]) by a minor adaption – namely, by
additionally asking whether A ∈ U . Regarding ineffability and Ramseyness, this
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yields characterizations of ineffable and Ramsey sets respectively. Item (1) below
extends a result of Abramson, Harrington, Kleinberg and Zwicker [1, Corollary
1.3.1], and is due to Philipp Lücke and the author [12, Theorem 8.1]. Item (2)
below is essentially due to William Mitchell [16], and was isolated by Ian Sharpe
and Philip Welch in [18, Theorem 3.3] (see also [6, Theorem 2.10]). Recall that
for a weak κ-model M , an M -ultrafilter U on κ is κ-amenable for M if whenever
A ∈M is a κ-sized collection of subsets of κ in M , then A ∩ U ∈M .

Theorem 1.3. (1) (Holy, Lücke) x ⊆ κ is ineffable if and only if for every
y ⊆ κ there is a transitive weak κ-model M with y ∈M and an M -ultrafilter
U on κ with x ∈ U such that ∆U is stationary.

(2) (Mitchell; Sharpe, Welch) x ⊆ κ is Ramsey if and only if for every y ⊆ κ
there is a transitive weak κ-model M with y ∈M and a countably complete
M -ultrafilter U on κ with x ∈ U that is κ-amenable for M . Equivalently,
we can additionally require U to be M -normal.

The goal of the first half of this paper is to extend these characterizations even
further, namely to the corresponding large cardinal operators that are the ineffa-
bility operator I and the Ramsey operator R,1 and to show that these characteri-
zations naturally induce related characterizations of the subtle operator and of the
pre-Ramsey operator.

2. The ineffability operator

In this section, we show that we can characterize the ineffability operator I via
the existence of certain ultrafilters for small collections of sets (this characterization
will be needed in Section 12), and then we show that for input values I containing
the nonstationary ideal, we can characterize I also via the existence of certain
ultrafilters for small models of set theory. As a reference to the notion of flipping
property that was introduced in [1], if ~x = 〈xξ | ξ < κ〉 is a sequence of subsets of
κ, let us say that a set U = {uξ | ξ < κ} flips ~x if uξ ∈ {xξ, κ \ xξ} for every ξ < κ.
Assume that we have fixed U to be such a flip of a sequence ~x. Then, we write ∆U
to abbreviate ∆ξ<κuξ.

Definition 2.1. For any ideal I on κ and C ∈ [P(κ)]κ, we first define a local
instance of a version of the ineffability operator for collections of sets, letting

• x ∈ ICcoll(I)+ if x ∈ P(κ) \ C, or for any κ-enumeration ~c of C, there is a set
U that flips ~c such that x ∈ U and ∆U ∈ I+, and we let

• Icoll(I)+ =
⋂
C∈[P(κ)]κ ICcoll(I)+,

The following result extends [1, Theorem 1.2.1 and Corollary 1.3.1].

Proposition 2.2. Let I be an ideal on κ. Then, I(I) = Icoll(I).

Proof. Assume first that ~a is a κ-list, and that x ∈ Icoll(I)+. Define a sequence ~r
by setting r0 = x, and for every ξ < κ, r1+ξ = {α ∈ x | ξ ∈ aα}. Making use of our
assumption, we may pick a set U = {uξ | ξ < κ} that flips ~r such that x = u0 ∈ U
and ∆ξ<κuξ ∈ I+, and therefore also H := ∆ξ<κuξ \ ω ∈ I+. Fix α<β in H and
ξ < α. Then, since also 1 + ξ < α, both α and β are elements of u1+ξ. Thus, if
r1+ξ = u1+ξ ∈ U , we have ξ ∈ aα ∩ aβ . Otherwise, both α and β are elements

1For R, this was in fact already done by Sharpe and Welch in [18, Theorem 3.3].
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of κ \ r1+ξ, and hence ξ 6∈ aα ∪ aβ . Together, this shows that aα = aβ ∩ α, and

therefore that H ∈ I+ is homogeneous for ~a. Since H ⊆ x, we have x ∈ I~a(I)+, as
desired.

For the other direction, we assume that x ∈ I(I)+, and let x ∈ C ∈ [P(κ)]κ.
Pick an enumeration 〈cξ | ξ < κ〉 of C, and let ~a be defined by setting, for every
α ∈ x, aα = {ξ < α | α ∈ cξ}. By our assumption, there is H ⊆ x in I+ that
is homogeneous for ~a. We may thus pick A ⊆ κ such that aα = A ∩ α for every
α ∈ H. Given ξ < κ, let uξ = cξ if ξ ∈ A, and let uξ = κ \ cξ otherwise. Let
U = {uξ | ξ < κ}. x ∈ Icoll(I)+ is now a consequence of the following claim.

Claim 2.3. x ∈ U , and ∆ξ<κuξ ∈ I+.

Proof. We have H\(ξ+1) ⊆ cξ for all ξ ∈ A, and H∩cξ ⊆ ξ+1 for ξ ∈ κ\A. Hence,
H \ (ξ + 1) ⊆ uξ for all ξ < κ, yielding that x ∈ U and H ⊆ ∆ξ<κuξ ∈ I+. �

�

Definition 2.4. We define the model version of the ineffability operator as follows.
For any y ⊆ κ and any ideal I on κ, we first define a local instance, letting

• x ∈ Iymod(I)+ if there is a transitive weak κ-model M with y ∈M , and an
M -ultrafilter U on κ with x ∈ U , such that every diagonal intersection of
U is in I+ – we abbreviate this latter property of U and I by stating that
∆U ∈ I+.2

• Let Imod(I)+ =
⋂
y⊆κ I

y
mod(I)+.

The following result extends [12, Theorem 8.1].

Proposition 2.5. If ~a is a κ-list, I is an ideal on κ, and y ⊆ κ codes ~a, then
Iymod(I) ⊇ I~a(I), hence Imod(I) ⊇ I(I). If I ⊇ NSκ, then also Imod(I) ⊆ I(I). In
particular thus, if I ⊇ NSκ, then Imod(I) = I(I).

Proof. Let ~a be a κ-list, let y ⊆ κ code ~a, and let x ∈ Iymod(I)+. We may pick a
transitive weak κ-model M witnessing that x ∈ Iymod(I)+, and an M -ultrafilter U
on κ such that x ∈ U and ∆U ∈ I+. Define, for every ξ < κ, rξ = {α ∈ x | ξ ∈ aα}.
Let uξ = rξ if rξ ∈ U , and let uξ = κ \ rξ otherwise, for every ξ < κ. Then, also
H := x ∩ ∆ξ<κuξ ∈ I+. Fix α < β in H and ξ < α. Then, both α and β are
elements of uξ. If rξ = uξ ∈ U , then ξ ∈ aα ∩ aβ . Otherwise, both α and β are
elements of κ \ rξ, and hence ξ 6∈ aα ∪ aβ . Together, this shows that aα = aβ ∩ α,

and therefore that H ∈ I+ is homogeneous for ~a. Since H ⊆ x, we have x ∈ I~a(I)+,
as desired.

Now assume I ⊇ NSκ. Let y ⊆ κ and x ∈ I(I)+. Let M be a transitive weak
κ-model such that x, y ∈ M . Pick an enumeration ~x = 〈xξ | ξ < κ〉 of all subsets
of κ in M . Using Proposition 2.2, we obtain a flip U of ~x such that x ∈ U and
∆U ∈ I+. In the light of the comments made in Footnote 2, it suffices to observe
that U being an M -ultrafilter on κ easily follows from ∆U ∈ I+ ⊆ NS+

κ . �

2The meaning of ∆U ∈ I+ will thus depend on whether we have fixed an enumeration of U in
the background, by having chosen U to flip a certain sequence. This should however not lead to
any confusion. It is well-known that permuting the input of a diagonal intersection only changes

its output by a non-stationary set (see [1, Lemma 1.3.3]). Hence, if I ⊇ NSκ, rather than requiring
that every diagonal intersection of U be in I+, it equivalently suffices to require one (arbitrary)
diagonal intersection of U to be in I+.
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In particular, if κ is ineffable, then Imod(NSκ) = Icoll(NSκ) = I(NSκ) is the
ineffable ideal on κ. It seems to be open whether Imod([κ]<κ) is the weakly ineffable
ideal on κ. We will briefly discuss this together with some related open questions
in Section 15.

3. A brief review of a notion of transfinite indescribability

Joan Bagaria [2] introduced a natural notion of Π1
ξ formula for arbitrary ordinals

ξ, that extends the hierarchy of Π1
n-formulae for n < ω. We will make use of this

notion several times in the remainder of this paper, and we would like to shortly
recall Bagaria’s definitions in this section.

Definition 3.1 (Bagaria). A formula is said to be Σ1
ξ+1 if it is of the form

∃X0, . . . , Xk ϕ(X0, . . . , Xk) for some Π1
ξ-formula ϕ, and it is Π1

ξ+1 if it is of the

form ∀X0, . . . , Xk ϕ(X0, . . . , Xk) for some Σ1
ξ-formula ϕ, where all quantifiers dis-

played above are understood to be second order quantifiers.
If ξ is a limit ordinal, we say that a formula is Π1

ξ if it is a conjunction of the

form
∧
ζ<ξ ϕζ , where each ϕζ is a Π1

ζ-formula, and the infinite conjunction has only

finitely-many free variables. It is Σ1
ξ if it is a disjunction of the form

∨
ζ<ξ ϕζ ,

where each ϕζ is a Σ1
ζ-formula, and the infinite disjunction has only finitely-many

free variables.

A corresponding notion of Π1
ξ-indescribability has been introduced by Bagaria,

and independently, an equivalent notion had been introduced by Sharpe and Welch
in [18, Definition 3.21].

Definition 3.2 (Bagaria). Suppose that κ is a regular cardinal, and that ξ < κ is an
ordinal. A set A ⊆ κ is Π1

ξ-indescribable if for all y ⊆ Vκ and every Π1
ξ-sentence ϕ,

if 〈Vκ,∈, y〉 |= ϕ, then there is α ∈ A such that 〈Vα,∈, y ∩ Vα〉 |= ϕ.

We let Π1
ξ(κ) denote the Π1

ξ-indescribable ideal – the collection of subsets of κ

that are not Π1
ξ-indescribable. We additionally let Π1

−1(κ) = [κ]<κ, and remark

that Π1
0(κ) = NSκ. The following will be of relevance in Section 14.

Lemma 3.3. [2, Proposition 4.4] The statement A ∈ Π1
β(κ)+ is expressible as a

Π1
β+1-property of A over Vκ.

We will want to make use of the following result of Cody, that generalizes a
classical result of Baumgartner from [3].

Lemma 3.4. [6, Lemma 2.20] If A ⊆ κ, β < κ, and every A-list has a homogeneous
set in Q ⊆

⋂
ξ∈{−1}∪β Π1

ξ(κ)+, then A is Π1
β+1-indescribable.

The following minor generalization of folklore results will be of relevance in
combination with Lemma 3.4.

Lemma 3.5. Assume that M is a weak κ-model, U is an M -ultrafilter on κ that
contains all club subsets of κ in M , is κ-amenable for M , and A ∈ U . Then, every
A-list in M has a homogeneous set in U .

Proof. In [10, Lemma 3.6], Gitman shows that under the assumptions of our lemma,
if f : [A]2 → 2 is in M , then there is H ⊆ A in U such that H is homogeneous
for f .3 Now one can use an easy adaption of Kunen’s argument that ineffability can

3In fact, Gitman makes the additional assumption that the ultrapower of M by U is well-
founded, however this assumption is never made use of in her proof.
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be characterized either in terms of the existence of homogeneous sets for colourings
or for lists [15, Theorem 4]: Given an A-list ~a, this argument allows us to obtain
a function f : [A]2 → 2 that is definable from ~a (and hence an element of M) such
that whenever H ⊆ A is homogeneous for f , one can find a club subset C of κ
that is definable from ~a and H (and thus an element of M), such that H ∩ C is
homogeneous for ~a.4 Note that since C ∈ U , we also have H ∩ C ∈ U . �

4. The iterated ineffability operator

Iterated operators are defined in a natural way: For any ideal I and ideal opera-
tor O, let O0(I) = I, let Oα+1(I) = O(Oα(I)) for any ordinal α, and let Oα(I) =⋃
β<αOβ(I) in case α is a limit ordinal.

In [5, Remark 3.24], it is mentioned that there is a refinement of the ineffability
hierarchy via indescribability that is highly analogous to the refinement of the
Ramsey hierarchy via indescribability that is studied in detail in [6]. We will need
a result on the ineffability hierarchy (namely, Lemma 4.2 below) later on in our
paper, and for the benifit of our readers, we would like to provide a proof of this
result.5 Given his comments in [5], Cody was certainly aware of the possibility of
this easy adaption of his material from [6], and hence the results in this section
should be credited to him. They are the adaptions of [6, Lemma 3.1 and Lemma
3.2] to the ineffability operator.

Lemma 4.1 (Cody). Let α < κ and β ∈ {−1} ∪ κ. Suppose S ∈ Iα(Π1
β(κ))+, and

for each ξ ∈ S, let Sξ ∈ Iα(Π1
β(ξ))+. Then,

⋃
ξ∈S Sξ ∈ Iα(Π1

β(κ))+.

Proof. By induction on α. If α = 0 or α is a limit ordinal, the argument is exactly
as in [6, Lemma 3.1]. If α is a successor ordinal, fix a

⋃
ξ∈S Sξ-list ~a. For each

ξ ∈ S, there is some Hξ ⊆ Sξ in Iα−1(Π1
β(ξ))+ that is homogeneous for ~a�Sξ. Since

S ∈ Iα(Π1
β(κ))+, there is a homogeneous set H ⊆ S in Iα−1(Π1

β(κ))+ for the S-list

〈Hξ | ξ ∈ S〉. By our inductive hypothesis,
⋃
ξ∈H Hξ ∈ Iα−1(Π1

β(κ))+, but clearly,⋃
ξ∈H Hξ is homogeneous for ~a, and we are done. �

Lemma 4.2 (Cody). If κ ∈ Iα(Π1
β(κ))+, α < κ and β ∈ {−1} ∪ κ, then

S = {ξ < κ | ξ ∈ Iα(Π1
β(ξ))} ∈ Iα(Π1

β(κ))+.

Proof. Assume that κ is the least counterexample to the statement of the lemma
– that is, for some fixed α and β, κ is least such that κ ∈ Iα(Π1

β(κ))+, while

S = {ξ < κ | ξ ∈ Iα(Π1
β(ξ))} ∈ Iα(Π1

β(κ)). Then, κ \ S ∈ Iα(Π1
β(κ))+. For

each ζ ∈ κ \ S, by the minimality of κ, S ∩ ζ ∈ Iα(Π1
β(ζ))+. Thus, by Lemma 4.1,

S =
⋃
ζ∈κ\S S∩ζ ∈ Iα(Π1

β(κ))+, contradicting our assumption on κ, as desired. �

5. The Ramsey operator

In this section, we want to present an argument showing that one can also
characterize the Ramsey operator via the existence of certain ultrafilters for small
models of set theory. This characterization is due to Sharpe and Welch [18, Theorem

4This argument can also be found within the proof of [12, Lemma 11.3].
5In fact, we only need the below result for the ineffability operator rather than its iterations,

however since treating also its iterations provides almost no additional effort, we would like to

provide this more general result.
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3.3], however we would like to present a somewhat different proof based on the
presentation of the proof of a somewhat less general result from [9], and we will
need to take a closer look at some of these arguments in order to be able to adapt
them later on in Section 9. The operator that we introduce below is implicit in
the statement of [18, Theorem 3.3], and we want to call it the model version of the
Ramsey operator.

Definition 5.1. For any ideal I on κ, and y ⊆ κ, we first define a local instance,
letting

• x ∈ Rymod(I)+ if there is a transitive weak κ-model M with y ∈M , and an
M -normal M -ultrafilter U on κ with x ∈ U that is κ-amenable for M , such
that every countable intersection of elements of U is in I+, and we let
• Rmod(I)+ =

⋂
y⊆κR

y
mod(I)+.

The goal of this section will be to present an argument showing that the operators
R and Rmod are equal to each other. The first direction is an easy generalization
of well-known results (see for example [10, Theorem 3.10]).

Lemma 5.2. If c : [κ]<ω → κ is a regressive function, I is an ideal on κ, and y ⊆ κ
codes c, then Rymod(I) ⊇ Rc(I). In particular, Rmod(I) ⊇ R(I).

Proof. Assume that x ∈ Rymod(I)+, and let c : [κ]<ω → κ be a regressive function
that is coded by y ⊆ κ. Pick a transitive weak κ-model M with y ∈M , and an M -
ultrafilter U on κ witnessing that x ∈ Rymod(I)+. Using that c ∈M , and following
a line of well-known arguments, as for example in the proof of [6, Theorem 2.10],
for every n ∈ ω, we find a set Hn ∈ U that is homogeneous for c�[x]n. But then,
by the properties of U , we have H :=

⋂
n∈ωHn ∈ I+ homogeneous for c, showing

that x ∈ R(I)+. �

The other direction will be substantially more work, and we will need some
preparatory results first. Let us start by recalling a standard definition.

Definition 5.3. Suppose κ is a cardinal and A = 〈Lκ[A], A〉 with A ⊆ κ. Then,
J ⊆ κ is a set of good indiscernibles for A if for all γ ∈ J , the following hold.

• 〈Lγ [A], A〉 ≺ 〈Lκ[A], A〉,
• γ is a cardinal, and
• J \ γ is a set of indiscernibles for 〈Lκ[A], A, ξ〉ξ<γ .6

We will rely on the following. A proof of Item Lemma 5.4(1) below can be found
within the proof of [9, Lemma 2.43],7 and Lemma 5.4(2) is obvious from the details
provided in that proof as well. The same argument is essentially contained in the
proof of [18, Lemma 2.9]. In the present section, we will only need Lemma 5.4(1),
but Lemma 5.4(2) will be of good use in Section 9 later on.

Lemma 5.4. Let κ be an inaccessible cardinal, and let A ⊆ κ.

(1) There is a club C ⊆ κ and a regressive function h : [C]<ω → κ such that any
κ-sized homogeneous set for h is a set of good indiscernibles for 〈Lκ[A], A〉.8

6That is, for all n < ω, all increasing n-sequences from J\γ satisfy the same first order formulas

over Lκ[A] using ordinals ξ < γ as parameters and using A as a second order predicate.
7In her Lemma 2.43, Gitman assumes that κ is a Ramsey cardinal, and thus that certain

homogeneous sets for colourings do exist. But the assumption of Ramseyness is otherwise not

needed, and her proof is easily seen to verify the below lemma.
8In fact, it would suffice to require the homogeneous set to be of limit order type.
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(2) For any inaccessible α ∈ C, C ∩ α and h�α also have the above properties
with respect to A ∩ α.

Proof. Since (2) is not mentioned anywhere in the literature, we would like to
present the definition of C and h given κ and A, following the proof of [9, Lemma
2.43], and then observe that this relationship is preserved under restrictions to
inaccessible elements of C, thus yielding (2). For the complete proof of (1), the
interested reader should consult [9].

In her proof of [9, Lemma 2.43], Gitman makes use of an arbitrary bijection
f : κ×κ→ κ\{∅}, and for the sake of simplicity, we may take f to be defined using
Gödel pairing, by setting f(〈α, β〉) = 1+≺α, β�, yielding in particular that every
cardinal is closed under f . The club C may then simply be defined as the set of
all uncountable cardinals α < κ for which 〈Lα[A], A〉 is an elementary substructure
of 〈Lκ[A], A〉. We use f to define a coding function g : [κ]<ω → κ in the following
way. We let g�κ be the identity on κ. Given g�[κ]<n for some n < ω with n > 1,
and given ~α = 〈α0, . . . , αn−1〉 ∈ [κ]n, let g(~α) = f(α0, g(〈α1, . . . , αn−1〉)).

Next, we fix an enumeration 〈ϕm | m ∈ ω〉 of all formulas in the first order ∈-
language using the predicate A, and consider the following condition (*) on ordered
tuples ~α = 〈α1, . . . , α2n〉 of length 2n for some n ∈ ω of elements of κ:

(*) ∃δ1 < . . . < δk < α1 and m ∈ ω such that:

〈Lκ[A], A〉 6|= ϕm(~δ, α1, . . . , αn)↔ ϕm(~δ, αn+1, . . . , α2n).

If ~α satisfies (*), let w(~α) be the least λ = g(m,~δ) so that m and ~δ witness
(*) for ~α, and let w(~α) = ∅ otherwise. Now we define h : [C]<ω → κ by setting
h(~α) = w(~α) if ~α is of even length, and setting h(~α) = ∅ for ~α of odd length.

The remainder of the argument for (1), namely that C and h have the desired
properties stated there, is fairly straightforward, and proceeds by showing that h
has to take value 0 on any κ-sized homogeneous set for h, since any other value
quickly leads to a contradiction. The interested reader may find the remaining
details for this argument in [9].

Let us observe that (2) holds true: First note that any inaccessible cardinal
α ∈ C is a limit point of C, and therefore C ∩ α is a club subset of α. But now,
using that 〈Lα[A], A〉 ≺ 〈Lκ[A], A〉, it clearly follows that w�[α]<ω as obtained
above is the same as the function w̄ that we would have obtained starting with α
and A ∩ α rather than with κ and with A. But then, it is immediate that if we
restrict our function h to [α]<ω, then this is the same as the function h̄ that we
would obtain from w̄, thus yielding the statement of (2). �

We also need the following characterization of the Ramsey operator (this is
actually the original definition of the Ramsey operator in [8]):

Lemma 5.5. [6, Proposition 2.8] For any ideal I, R(I)+ = {x⊆κ | ∀c : [x]<ω→κ
regressive ∀C ⊆ κ club ∃H ∈ I+ H ⊆ x ∩ C is homogeneous for c}.

We are now ready to proceed with the main argument of this section, following
the basic line of argument of [6, Theorem 2.10], which relies mostly on the arguments
from [10, Section 4].

Theorem 5.6. Let κ be an inaccessible cardinal. For any ideal I on κ,

Rmod(I) = R(I).
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Proof. Having shown Lemma 5.2, it only remains to show that R(I) ⊇ Rmod(I).
Assume thus that x ∈ R(I)+, and that y ⊆ κ, and let A ⊆ κ code both x and y.
Making use of Lemma 5.4, let C be a club subset of κ and let h : [C]<ω → κ be
a regressive function such that any κ-sized homogeneous set for h is a set of good
indiscernibles for A := 〈Lκ[A], A〉. Making use of Lemma 5.5, let H ⊆ x ∩ C be
homogeneous for h, with H ∈ I+. Hence, H is a set of good indiscernibles for A.

Now we proceed almost exactly as in [10, Section 4], and construct M and U
witnessing that x ∈ Rmod(I)+. There are only three differences to the argument
required:

(1) Our homogeneous set H is in I+ rather than just unbounded in κ, but this
simply carries through the argument without requiring any modification.

(2) We need to show that x ∈ U , but this will be an easy consequence of having
chosen H ⊆ x.

(3) We asked for U to be M -normal, which was omitted in [10].9 We have to
show that the M -ultrafilter U that is constructed through the arguments
of [10, Section 4] is actually already M -normal.

For the convenience of our readers, we would like to present a mostly self-
contained outline of the proof, only refering to [10] for some short intermediate
results. Another reason for providing this presentation is that in [10], the justifi-
cation for one of the main points of the argument, namely that the final filter U is
κ-amenable for M , is missing – Gitman only declares this to be easy, which to us,
after figuring out the actual argument following a helpful conversation with Gitman,
does perhaps not seem quite justified, for it seems to be one of the more intricate
parts of the proof. Using quite different notation, slightly more detail concerning
this argument is provided in [18], however some points also seem to only be touched
there somewhat briefly, in particular the analogue of Lemma 5.12 below seems to
be missing. Finally, and perhaps most importantly, we will need to refer to the
proof of the present theorem in some detail within the proof of Theorem 9.1 later
on, so it will be very convenient for the reader to at least have its essential structure
available here for reference. Let us thus continue with the argument, which will
closely follow the line of argument in (and also the notation from) [10, Section 4]
for its most parts.

For every γ ∈ H and n ∈ ω, let ~γn denote the increasing sequence 〈γ1, . . . , γn〉
of the first n elements of H (strictly) above γ, and let M̃n

γ = 〈M̃n
γ , A ∩ M̃n

γ 〉 be
the Skolem closure of (γ + 1)∪~γn in A, using the definable Skolem functions of A.
Since κ is inaccessible, Lκ[A] |= ZFC, and hence in Lκ[A], for every λ, H(λ) exists

and is a model of ZFC−. Since M̃n
γ ≺ A and γ ∈ M̃n

γ , we have H(γ+)A ∈ M̃n
γ .

Let Mn
γ = M̃n

γ ∩H(γ+)A, and let Mn
γ = 〈Mn

γ , A ∩Mn
γ 〉.

Lemma 5.7. [10, Lemma 4.2.1] Each Mn
γ is a transitive model of ZFC−.

Lemma 5.8. [10, Lemma 4.2.2] For every γ ∈ H and n ∈ ω, Mn
γ ≺Mn+1

γ .

If a ∈ M̃n
γ , then a = S(ξ0, . . . , ξm, γ, ~γn), where S is a definable Skolem function

of A, and ξi ∈ γ for i ≤ m. Given γ < δ in H and n < ω, define f̃nγδ : M̃n
γ → M̃n

δ

by setting f̃nγδ(a) = S(ξ0, . . . , ξm, δ, ~δn) in case a = S(ξ0, . . . , ξm, γ, ~γn). Using that

9We could have omitted the requirement of M -normality of U as well in our definition of
Rmod(I), and this would yield yet another (known) characterization of the Ramsey operator.
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H \ γ is a set of indiscernibles for 〈Lκ[A], A, ξ〉ξ∈γ , and that M̃n
γ and M̃n

δ are both

elementary substructures of A, it easily follows that f̃nγδ : M̃n
γ → M̃n

δ is a well-

defined elementary embedding. Since f̃nγδ(ξ) = ξ for all ξ < γ and f̃nγδ(γ) = δ, γ is

the critical point of f̃nγδ. Moreover, different such embeddings commute, that is if

γ < δ < ε are in H, then f̃γε = f̃δε ◦ f̃γδ.

Lemma 5.9. [10, Lemma 4.2.3] For γ < δ in H and n < ω, fnγδ := f̃nγδ�M
n
γ : Mn

γ →
Mn

δ is an elementary embedding.

For γ ∈ H, define Unγ = {X ∈ P(γ)M
n
γ | γ ∈ fnγδ(X) for some δ > γ in H}.

Equivalently, we could have used “ for all δ > γ” in this definition. The only
nontrivial observation in the next lemma is that Unγ ∈Mn+2

γ .

Lemma 5.10. [10, Lemma 4.2.5] For any γ ∈ H and n < ω, Unγ ∈ Mn+2
γ is an

Mn
γ -normal Mn

γ -ultrafilter on γ.

It is easy to check that for any γ < δ in H and n < ω, fnγδ = fn+1
γδ �Mn

γ and

Unγ = Un+1
γ ∩Mn

γ . Thus, let Mγ =
⋃
n∈ωM

n
γ , Uγ =

⋃
n∈ω U

n
γ and fγδ =

⋃
n∈ω f

n
γδ.

Let Mγ = 〈Mγ , A ∩Mγ〉. Using elementarity, it follows that Mγ is a transitive

model of ZFC−, and it is easy to check that fγδ is an elementary embedding from
Mγ to Mδ mapping its critical point γ to δ, and that Uγ is an Mγ-normal Mγ-
ultrafilter on γ.

Lemma 5.11. [10, Lemma 4.2.6] Uγ is γ-amenable for Mγ .

We will need the following, which is not mentioned in [10], in order to be able
to verify our final filter U to be κ-amenable for M :

Lemma 5.12. For γ < δ in H and n < ω, fγδ(U
n
γ ) = Unδ .

Proof. Fix n < ω. By the argument for [10, Lemma 4.2.5], there is a first order

formula ϕ, such that for any γ ∈ H, Unγ is definable in M̃n+2
γ using the formula ϕ

and using γ and the first n + 1 elements ~γn+1 of H above γ as parameters. This

implies that f̃n+2
γδ (Unγ ) = Unδ . Since Unγ ∈ Mγ by Lemma 5.10, this implies our

desired statement. �

Now, for every γ ∈ H, consider the structure 〈Mγ ,∈, A∩Mγ , Uγ〉 which extends
Mγ by the predicate for the Mγ-ultrafilter Uγ on γ. If γ < δ are in H, we have
an elementary embedding fγδ : Mγ → Mδ with critical point γ, such that also
X ∈ Uγ ⇐⇒ fγδ(X) ∈ Uδ. This is thus a directed system of embeddings between
these structures, and we let 〈B,E,A′,W 〉 be its direct limit. Elements of B are
functions t with domains {ξ ∈ H | ξ ≥ α} for some α ∈ H satisfying that

(1) for γ ∈ dom t, t(γ) ∈Mγ ,
(2) for γ < δ ∈ dom t, t(δ) = fγδ(t(γ)), and
(3) there is no ξ ∈ H ∩ α for which there is a ∈Mξ such that fξα(a) = t(α).

Note that any t ∈ B is determined once t(ξ) is known for any ξ ∈ dom t.

Lemma 5.13. [10, Lemma 4.2.7] The relation E on B is well-founded.

We may therefore let 〈M,∈, A∗, U〉 be the Mostowski collapse of 〈B,E,A′,W 〉.

Lemma 5.14. [10, Lemma 4.2.8] κ ∈M .
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For any γ ∈ H, let jγ : Mγ →M be defined such that for any a ∈Mγ , jγ(a) is the
collapse of the (unique) function t ∈ B for which t(γ) = a. Then, jγ is easily seen
to be an elementary embedding of Mγ into 〈M,∈, A∗〉, and to also be elementary
for atomic formulas in the language with the predicate for the ultrafilter. Observe
that jγ(ξ) = ξ for all ξ < γ, jγ(γ) = κ, and hence that crit(jγ) = γ. Moreover, if
γ < δ are elements of H, then jδ ◦ fγδ = jγ .

The proof of the following lemma is not contained in [10]: M -normality had
not been considered, and the verification of κ-amenability is somewhat strangely
missing there.

Lemma 5.15. U is an M -normal M -ultrafilter on κ that is κ-amenable for M .

Proof. It is easy to check that U is an M -ultrafilter on κ. For the M -normality of
U , we show that every regressive function f on a set x ∈ U is constant on a set in
U . Let γ ∈ H be such that there are g and y in Mγ with fγ(g) = f and fγ(y) = x.
By elementarity for atomic formulas using the predicate for the ultrafilter, y ∈ Uγ .
By the Mγ-normality of Uγ , g is constant on a set h ∈ Uγ . It thus follows that f is
constant on the set fγ(h) ∈ U .

For the κ-amenability of U , let ~x be a κ-sequence of elements of P(κ) in M .
Let γ ∈ H be such that there is ~a in Mγ for which jγ(~a) = ~x. Using that Mγ =⋃
n<ωM

n
γ , we may fix n < ω for which ~a ∈Mn

γ . Then, by Lemma 5.10,

b = {α < γ | aα ∈ Uγ} = {α < γ | aα ∈ Unγ } ∈Mγ .

But then, making use of Lemma 5.12, for every δ > γ in H, we have

fγδ(b) = {α < δ | fγδ(~a)α ∈ Unδ } = {α < δ | fγδ(~a)α ∈ Uδ}.
By the properties of the direct limit, it thus follows that jγ(b) = {α < κ | xα ∈ U},
showing that U is κ-amenable for M . �

Lemma 5.16. [10, Lemma 4.2.10] For every X ⊆ κ, X ∈ U if and only if there is
α ∈ H such that {ξ ∈ H | ξ > α} ⊆ X.

As an easy consequence, one then obtains the following, that we would like to
provide the short proof of for the convenience of our readers:

Lemma 5.17. [10, Lemma 4.2.11] U is countably complete.

Proof. Let 〈An | n < ω〉 be a sequence of elements of U . For each n < ω, there is
γn ∈ H for which Xn = {ξ ∈ H | ξ > γn} ⊆ An. Thus,

∅ 6=
⋂
n<ω

Xn ⊆
⋂
n<ω

An.

�

Lemma 5.18. [10, Lemma 4.2.12] A∗�κ = A, and hence A ∈M .

This implies that both x and y are elements of M . Since we have chosen H
to be a subset of x, it follows by Lemma 5.16 that x ∈ U , which concludes our
argument. �

In particular, if κ is a Ramsey cardinal, then Rmod([κ]<κ) = R([κ]<κ) is the
Ramsey ideal on κ. If κ is an ineffably Ramsey cardinal, thenRmod(NSκ) = R(NSκ)
is the ineffably Ramsey ideal on κ.
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6. Pre-Operators

Building on Baumgartner’s notion of a pre-Ramsey cardinal [4], in his [8], Feng
introduced the pre-Ramsey operator, which behaves with respect to the Ramsey
operator as does the subtle operator with respect to the ineffability operator, and
it is this notion that motivates the naming of our notion of pre-operators. We want
to introduce some simple and natural additional terminology, that will allow us to
define pre-operators in a uniform way. Our ideal operators are all defined via local
instances that are parametrized by certain objects. Given a cardinal κ, we would
like to refer to the collection of all such objects on κ as the object type at κ of
such an operator O, and denote this by T (O, κ). The object type T (I, κ) of the
ineffability operator at κ is the collection of all κ-lists, the object type T (R, κ) of
the Ramsey operator at κ is the collection of all regressive functions c : [κ]<ω → κ,
and the object type of our model based operators at κ is simply the powerset of κ.

Definition 6.1. Each object type T at κ comes with an associated restriction
operator, which, given some y ∈ T and some α < κ, outputs its natural restriction
y�α to α.

• If T = P(κ) and y ∈ T , then y�α = y ∩ α.
• If T is the collection of all κ-lists and y ∈ T , then y�α is the restriction of
y to the domain α, i.e. the initial segment of length α of the κ-sequence y.
• If T is the collection of all functions c : [κ]<ω → 2 and y ∈ T , then y�α is

the restriction of y to the domain [α]<ω.

Each ideal operator O with local instances Oy has what we would like to call its
associated pre-operator O0. To define such an operator, we start with a sequence

~I = 〈Iα | α ≤ κ is a regular uncountable cardinal〉
for some inaccessible cardinal κ, such that each Iα is an ideal on α. We will refer
to such a sequence as a sequence of ideals in the following.

Definition 6.2. Given an ideal operator O together with its local instances Oy,

we define its associated pre-operator O0 as follows. Given a sequence ~I of ideals,
let

O0(~I)+ = {x⊆κ | ∀y ∈ T (O, κ)∀C⊆κ club ∃α∈x x ∩ C ∩ α ∈ Oy�α(Iα)+},
where α is understood to range over regular uncountable cardinals. If the Iα’s are

uniformly definable from α, we also write O0(Iκ) rather than O0(~I). We say that

Iκ induces the sequence of ideals ~I in this case.10

7. The subtle operator

The subtle operator is the usual name for what could be called the pre-ineffable
operator, which is implicit in [3], and explicit in [6]: it is the pre-operator I0 defined
via the ineffability operator I (or rather, its local instances Iy), and we let Imod 0 =
(Imod)0 be the model version of this operator, defined via the local instances of the
model version of the ineffability operator. Note that while the operators I and Imod
agree on ideals that contain the nonstationary ideal by Proposition 2.5, their local

10Being precise here, note that it is actually rather the definition of Iκ that induces the

sequence of ideals ~I. In the following, we will only be concerned with natural examples, for
example when Iκ is NSκ or some indescribability ideal on κ.
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instances do not seem to do so, and it is therefore not immediate that I0 and Imod 0

actually agree on these ideals. We will however show this to be the case below. If
κ is a subtle cardinal, then I0(NSκ) is the subtle ideal on κ (see [3, Theorem 5.1]),
which is classically defined as follows:

Definition 7.1. x ⊆ κ is subtle if for every x-list ~a and every club C ⊆ κ, there
are α < β in C such that aα = aβ ∩ α. The subtle ideal on κ is the collection of all
subsets of κ that are not subtle.

Let us start with a simple observation.

Observation 7.2. If Iκ⊇NSκ is an ideal on κ that induces a sequence ~I of ideals,

then Imod 0(~I)⊇I0(~I).

Proof. For every κ-list ~a, there is y ⊆ κ coding ~a, and any reasonable choice of
coding will have the property that for every cardinal α < κ, y ∩ α codes ~a�α.

By Proposition 2.5 thus, for every α < κ, Iy�αmod(Iα) ⊇ I~a�α(Iα), and hence the
observation immediately follows from the definition of the operators Imod 0 and
I0. �

By a careful adaptation of the arguments for Proposition 2.5 (2), it is in fact
possible to verify equality.

Theorem 7.3. If Iκ ⊇ NSκ is an ideal on κ that induces a sequence ~I of ideals,

then Imod 0(~I) = I0(~I).

Proof. Having Observation 7.2 available, it only remains to show that Imod 0(~I) ⊆
I0(~I). We may also assume that κ is a subtle cardinal, for otherwise I0(~I) = P(κ),

and we are thus done. Assume that x ∈ I0(~I)+. We want to show that x ∈
Imod 0(~I)+. Let y ⊆ κ and let C be a club subset of κ. We need to find α ∈ x such
that x ∩ C ∩ α ∈ Iy∩αmod(Iα)+.

Fix a set of Skolem functions for H(κ+), and let M be the Skolem hull of
(κ + 1) ∪ {x, y, C} in H(κ+). Pick an enumeration 〈xξ | ξ < κ〉 of all subsets of κ
in M , and let ~a be the κ-list defined by setting aβ = {ξ < β | β ∈ xξ} for every
β < κ. Let D be the club set of cardinals γ below κ such that if Mγ denotes the
Skolem hull of γ ∪ {κ, x, y, C} in M , then

(1) Mγ ∩ κ = γ, and
(2) 〈xξ | ξ < γ〉 enumerates all subsets of κ in Mγ .

Making use of our assumption that x ∈ I0(~I)+, there is α ∈ x such that

x ∩ C ∩D ∩ α ∈ I~a�α(Iα)+.

Let M̄ be the transitive collapse of Mα. Then, M̄ is a transitive weak α-model
with x∩α, y∩α,C ∩α ∈ M̄ , and by (1) and (2) above, 〈xξ ∩α | ξ < α〉 enumerates
all subsets of α in M̄ . Moreover, ~a�α satisfies that aβ = {ξ < β | β ∈ xξ ∩ α} for
every β < α. We now proceed exactly as in the proof of Proposition 2.5: By our
choice of α, there is H ⊆ x ∩ C ∩ D ∩ α in I+

α that is homogeneous for ~a�α. We
may thus pick A ⊆ α such that aβ = A ∩ β for every β ∈ H. Given ξ < α, let
uξ = xξ ∩ α if ξ ∈ A, and let uξ = α \ xξ otherwise. Let U = {uξ | ξ < α}. By
the corresponding version at α of the claim within the proof of Proposition 2.5, U
is an M̄ -ultrafilter on α with x ∩ C ∩ α ∈ U , such that ∆ξ<αuξ ∈ I+

α . This shows

that x ∩ C ∩ α ∈ Iy∩αmod(Iα)+, as desired. �
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8. A small embedding characterization of subtlety using an
anti-correctness property

In this short section, we want to place a sidenote that doesn’t really use the tech-
niques developed in this paper, but is somewhat closely related to them, and gives
a strong hint towards a possible negative answer for an open question [13, Question
8.5]. In that paper, we provided so-called small embedding characterizations for
many types of large cardinals, including subtle cardinals. These characterizations
state that there exists an embedding j : M → H(θ) with j(crit j) = κ and such that
certain additional properties hold true. All of these characterizations except for the
one for subtle cardinals were based on what we called correctness properties, that
is properties that were either provable in V or in M , and that were ascertained to
also hold in M or V respectively by our characterization. In [13, Question 8.5], it
is asked whether subtle cardinals have a small embedding characterization that is
based on a correctness property. We want to show here that for subtlety, we can
in fact provide a natural small embedding characterization that is rather based on
an anti-correctness property, i.e. a property that at least in some cases is provably
non-absolute between M and V .

Definition 8.1. [13, Definition 1.1] Given cardinals κ < θ, we say that a nontrivial
elementary embedding j : M → H(θ) is a small embedding for κ if M ∈ H(θ) is
transitive, and j(crit j) = κ holds.

We next make the immediate observation that the property κ ∈ I0(NSκ)+ can
be rewritten to yield a small embedding characterization of the subtlety of κ that
is different to the one provided in [13, Lemma 5.2].

Observation 8.2. A cardinal κ is subtle if for every cardinal θ > κ, every κ-list
~a and every club C ⊆ κ, there is a small embedding j : M → H(θ) for κ such that
~a,C ∈ range j and C ∩ crit j ∈ I~a�α(NScrit j)

+.

However, the property used to characterize subtlety in the above is easily seen
to be an anti-correctness property in many circumstances:

Observation 8.3. Assume that κ is subtle, but not ineffable. Then, there are a
κ-list ~a and a club subset C of κ such that for every cardinal θ > κ and every
small embedding j : M → H(θ) for κ with ~a and C both in the range of j, letting
C̄ = C ∩ crit j = j−1(C) and ā = ~a�crit j = j−1(~a), M thinks that C̄ ∈ I ā(NScrit j).

Proof. If this weren’t the case, then κ would be ineffable by the elementarity of the
small embeddings. �

9. The pre-Ramsey operator

The pre-Ramsey operator R0 is the pre-operator defined with respect to the
Ramsey operator R (or rather, its local instances Ry). A cardinal κ is a pre-
Ramsey cardinal if κ ∈ R0([κ]<κ)+. If κ is a pre-Ramsey cardinal, then R0([κ]<κ)
is the pre-Ramsey ideal on κ (see [3]). We let Rmod 0 = (Rmod)0 be the model
version of the pre-Ramsey operator, defined via the local instances of the model
version of the Ramsey operator. Note that as for the ineffability operator and its
model version, while the Ramsey operator and its model version agree, their local
instances do not seem to do so, and it is therefore not immediate that the operators
R0 and Rmod 0 actually agree. We will however show this to be the case below. The
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(second part of the) proof of the following theorem proceeds by a careful adaptation
of the arguments for Theorem 5.6.

Theorem 9.1. For any sequence ~I of ideals, Rmod 0(~I) = R0(~I).

Proof. For every regressive function f : [κ]<ω → κ, there is y ⊆ κ coding f , and any
reasonable choice of coding will have the property that for every cardinal α < κ, y∩α
codes f�α. By Lemma 5.2 thus, for every α < κ, Ry�αmod(Iα) ⊇ R~a�α(Iα). Therefore,

Rmod 0(~I) ⊇ R0(~I) immediately follows from the definition of the operators Rmod 0

and R0.
It thus remains to show that Rmod 0(~I) ⊆ R0(~I). We may also assume that κ is

a pre-Ramsey cardinal, for otherwise R0(~I) = P(κ), and we are thus done. Assume

that x ∈ R0(~I)+. We want to show that x ∈ Rmod 0(~I)+. Let y ⊆ κ and let C be
a club subset of κ. We need to find α ∈ x such that x ∩ C ∩ α ∈ Ry∩αmod(Iα)+.

Let A ⊆ κ code x on the even ordinals, and y on the odd ordinals. Let h : [κ]<ω →
κ be a regressive function and let D ⊆ κ be the club set of cardinals obtained from
an application of Lemma 5.4 (1) for A ⊆ κ. Making use of our assumption that

x ∈ R0(~I)+, there is α ∈ x such that x ∩ C ∩D ∩ α ∈ Rh�α(Iα)+.
Let A = 〈Lα[A], A∩α〉, which is an elementary substructure of 〈Lκ[A], A〉, since

α ∈ D. By Lemma 5.4 (2), D ∩ α and h�α witness that Lemma 5.4 (1) holds for
A∩α. By our choice of α and by Lemma 5.5, there is H ⊆ x∩C ∩D∩α in I+

α that
is homogeneous for h�α, and by Lemma 5.4 (1), H is a set of good indiscernibles
for A. We now proceed exactly as in the proof of Theorem 5.6, constructing a
weak α-model M with y ∈ M and an M -normal M -ultrafilter U on α that is κ-
amenable for M and countably complete with x ∩ C ∩ D ∩ α ∈ U , thus showing
that x ∩C ∩D ∩ α ∈ Ry∩αmod(Iα)+. Since x ∩C ∩D ∩ α ⊆ x ∩C ∩ α, and the latter
set is easily (somewhat cumbersome, but straightforward, by proceeding along the
model construction in the proof of Theorem 5.6) checked to be an element of M ,
and thus also of U , this implies that x ∩ C ∩ α ∈ Ry∩αmod(Iα)+, as desired. �

10. An abstract notion of ideal operator

In this section, we present an abstract notion of ideal operator, which has both
(the model versions of) the ineffability operator and the Ramsey operator as special
instances, and which – unlike (the original versions of) the ineffability operator and
the Ramsey operator – can easily be used to produce further interesting instances
of ideal operators. We also provide a first few basic results for such operators.

Definition 10.1. Let Ψ(M,U) and Ω(U, I) be parameter-free first order formulae
such that ZFC proves that for any ideal I on a regular uncountable cardinal κ, any
transitive weak κ-model M and any M -ultrafilter U on κ,

• Ω(U, I) implies that U ⊆ I+, and
• for any ideal J on κ, [I ⊇ J ∧ Ω(U, I)]→ Ω(U, J).

Let us say that a pair of formulas 〈Ψ,Ω〉 satisfying the above is regular.
We define an ideal operator OΨΩ as follows. For any ideal I on κ and y ⊆ κ,

we first define a local instance by letting

• x ∈ OΨΩy(I)+ if there exists a transitive weak κ-model M with y ∈ M
and an M -ultrafilter U on κ with x ∈ U such that Ψ(M,U) and Ω(U, I)
hold, and we let

• OΨΩ(I)+ =
⋂
y⊆κOΨΩy(I)+.
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We will observe in Proposition 10.2 below that regularity of 〈Ψ,Ω〉 implies that
OΨΩ is indeed an ideal operator. Let us check how the operators Imod and Rmod
fit into the above scheme:

• If Ψ(M,U) is trivial, and Ω(U, I) denotes the property that ∆U∈I+, then
OΨΩ is the model version Imod of the ineffability operator.
• If Ψ(M,U) denotes the property that U is M -normal and κ-amenable for
M , and Ω(U, I) denotes the property that every countable intersection of
elements of U is in I+, then OΨΩ is (the model version Rmod of) the
Ramsey operator.

Proposition 10.2. Assume that 〈Ψ,Ω〉 is regular, and that I ⊇ J are ideals on κ.
Then, the following hold.

• OΨΩ(I) ⊇ I is an ideal on κ.
• OΨΩ(I) ⊇ OΨΩ(J).
• If for any transitive weak κ-model M and any M -ultrafilter U on κ, the

conjunction Ψ(M,U) ∧ Ω(U, I) implies that U is M -normal, then OΨΩ(I)
is normal.
• In particular, if I ⊇ NSκ, then ∆U ∈ I+ implies that U is M -normal.
• If 〈Ψ′,Ω′〉 is regular as well, and Ψ′(M,U) ∧ Ω′(U, I) implies Ψ(M,U) ∧

Ω(U, I) for any transitive weak κ-model M and any M -ultrafilter U on κ,
then OΨ′Ω′(I) ⊇ OΨΩ(I).

Proof. Assume that I is an ideal on a cardinal κ, that A ∈ OΨΩ(I), and that
B ⊆ A. We want to show that also B ∈ OΨΩ(I). Let y ⊆ κ be such that y
codes A and A ∈ OΨΩy(I). Now if M is a transitive weak κ-model with y ∈ M
and U is an M -ultrafilter on κ such that both Ψ(M,U) and Ω(U, I) hold, then
A ∈ M , however A 6∈ U , and hence also B ⊆ A is not an element of U , showing
that B ∈ OΨΩy(I) ⊆ OΨΩ(I), as desired.

Now assume that both A and B are in OΨΩ(I). We want to show that also
A∪B ∈ OΨΩ(I). Let yA and yB be such that A ∈ OΨΩyA(I) and B ∈ OΨΩyB (I).
Let y ⊆ κ code all of A, B, yA and yB . Now if M is a transitive weak κ-model with
y ∈ M and U is an M -ultrafilter on κ such that both Ψ(M,U) and Ω(U, I) hold,
it follows that both A and B are in (P(κ) ∩M) \ U , and hence also that A ∪ B is
not in U , showing that A ∪B ∈ OΨΩy(I) ⊆ OΨΩ(I), as desired.

Clearly, using that Ω(U, I) implies that U ⊆ I+ by the requirements from Defi-
nition 10.1, if x ∈ OΨΩ(I)+, then x ∈ I+, thus finishing the argument for the first
item of the proposition.

The monotonicity statement in the second item is immediate from our mono-
tonicity requirement on Ω from Definition 10.1.

For the third item, assume that Ψ(M,U) ∧ Ω(U, I) implies that U is M -normal.
Let A ∈ OΨΩ(I)+, and let f : A → κ be a regressive function. Assume for a
contradiction that f−1({α}) ∈ OΨΩ(I) for every α < κ. We may thus pick a
sequence ~y = 〈yα | α < κ〉 such that f−1({α}) ∈ OΨΩyα(I) for every α < κ. Let
y ⊆ κ code both f and ~y. Let M be a transitive weak κ-model with y ∈M , and let
U be an M -ultrafilter on κ with A ∈ U such that both Ψ(M,U) and Ω(U, I) hold.
Since yα ∈M for every α < κ, it follows that for no α < κ we have f−1({α}) ∈ U .
On the other hand, since U is M -normal, there is some B ∈ U that is homogeneous
for f , which is clearly contradicting the above, as desired.
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For the fourth item, assume that I ⊇ NSκ and ∆U ∈ I+, however that U
is not M -normal. Then, there is a κ-sequence of elements of M with a diagonal
intersection that is not in U , and hence the complement of this diagonal intersection
is in U . But now, using this, ∆U is nonstationary, which contradicts that ∆U ∈ I+.

The statement of the fifth item is immediate from the definitions involved. �

Definition 10.3. Let 〈Ψ,Ω〉 be a pair of formulas, and let O be an ideal operator.

• The pair 〈Ψ,Ω〉 is ineffable in case ZFC proves that for any ideal I on a
regular uncountable cardinal κ, any transitive weak κ-model M and any
M -ultrafilter U on κ, Ψ(M,U) ∧ Ω(U, I) implies that for every A ∈ U ,
every A-list ~a ∈M has a homogeneous set in I+.
• The operator O is ineffable in case ZFC proves that for any ideal I on a

regular uncountable cardinal κ, whenever A ∈ O(I)+ and ~a is an A-list,
then ~a has a homogeneous set in I+.

Note that by the above, the ineffability operator I is ineffable. But also, if O can
be characterized in the form O = OΨΩ for some regular ineffable pair of formulas
〈Ψ,Ω〉, then O is ineffable.

Observation 10.4. Let 〈Ψ,Ω〉 be regular, and let O be the operator OΨΩ. Then,

• If Ψ(M,U) ZFC-provably implies that U is κ-amenable for M and contains
all club subsets of κ in M as elements, then O is ineffable.
• If Ω(U, I) ZFC-provably implies that ∆U ∈ I+, then O is ineffable.
• If O is ineffable, then for any ideal I on a regular uncountable cardinal κ,
O(I) ⊇ I(I) ⊇ NSκ.
• If ZFC proves that for any ideal I on a regular and uncountable cardinal κ,
O(I) ⊇ I(I), then O is ineffable.

Proof. The first item follows from Lemma 3.5, and the second item follows from
Proposition 2.5. The third and fourth item are both immediate from the definition
of the ineffability operator I, and the fact that I(I) ⊇ I([κ]<κ) ⊇ NSκ, where
the easy argument for the latter inclusion can be found within the proof of [3,
Theorem 2.3]. �

In particular, the first item above implies that the operator R = Rmod is ineffa-
ble. The following important observation is now immediate from Lemma 3.4.

Corollary 10.5. If O is ineffable, I ⊇
⋃
ξ∈{−1}∪β Π1

ξ(κ) is an ideal on κ, and

β < κ is an ordinal, then

O(I) ⊇ Π1
β+1(κ).

11. A review of some material from [12]

In Section 12 below, we would like to introduce a number of new large cardinal
operators. In order to be able to do so, we will first need to review some material
from [12].11 We also present a proof for a slight strengthening of [12, Lemma
9.13(2)], which we will make use of in Section 12, and the original proof of which
in [12] has a slight flaw.

11In [12], we consider the general case of Σ0-correct models of ZFC− containing some κ as an
element, while
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We first need to present some material regarding correspondences between the
existence of certain ultrafilters and certain elementary embeddings. These are
minor generalizations of standard results, transferred to the context of (possibly
non-transitive) weak κ-models, including the case of possibly non-wellfounded ul-
trapowers. We will restrict our attention to Σ0-correct weak κ-models M , that
is we additionally require that M is Σ0-elementary in V .12 Since all the weak κ-
models that we consider later on in our paper are either transitive or elementary
substructures of some H(θ), they will always meet this requirement.

In the following, we let j : M −→ 〈N, εN 〉 always denote an elementary embed-
ding between 〈M,∈〉 and 〈N, εN 〉, whose domain M is a (possibly non-transitive)
Σ0-correct weak κ-model.

Definition 11.1 (Jump). Given j : M −→ 〈N, εN 〉 and an ordinal α ∈M , we say
that j jumps at α if there exists an N -ordinal γ with γ εN j(α) and j(β) εN γ for
all β ∈M ∩ α.

Note that, in the above situation, for every N -ordinal γ, there is at most one
ordinal α in M such that γ witnesses that j jumps at α. Moreover, elementarity
directly implies that elementary embeddings only jump at limit ordinals.

Definition 11.2 (Critical Point). Given j : M −→ 〈N, εN 〉, if there exists an
ordinal α ∈ M such that j jumps at α, then we denote the minimal such ordinal
by crit j, the critical point of j.

The following property implies the existence of a canonical representative for κ
in the target model of our elementary embedding.

Definition 11.3 (κ-embedding). Given j : M −→ 〈N, εN 〉 that jumps at κ, the
embedding j is a κ-embedding if there exists an εN -minimal N -ordinal γ witnessing
that j jumps at κ. We denote this ordinal by κN .13

Proposition 11.4. [12, Proposition 2.9] Given j : M −→ 〈N, εN 〉 with crit j = κ,
the following statements are equivalent:

(1) j is a κ-embedding.
(2) The ordinal otp(M ∩ κ) is an element of the transitive collapse of the well-

founded part of 〈N, εN 〉.

The following definition generalizes the notion of a κ-powerset preserving el-
ementary embedding, that is usually defined for embeddings between transitive
weak κ-models, to the context of κ-embeddings. Since we may identify κ and κN

when j : M → 〈N, εN 〉 is a κ-embedding by Proposition 11.4, it is essentially just
stating that the domain and the target model of the embedding have the same
powerset of κ.

Definition 11.5 (κ-powerset preservation). Given a κ-embedding j : M −→
〈N, εN 〉 with crit j = κ, the embedding j is κ-powerset preserving if

∀y ∈ N ∃x ∈M
[
〈N, εN 〉 |= “y ⊆ κN” −→ x = {α < κ | j(α) εN y}

]
.

12The results regarding these correspondences in [12] are somewhat more general than the
versions that we wil present here, for we do not make the assumption that κ+ 1 ⊆M in [12].

13If crit j = κ, then Proposition 11.4 shows that κN is the unique N -ordinal on which the
εN -relation has order-type M ∩ κ. Otherwise, κN might also depend on the embedding j, which
we nevertheless suppress in our notation.
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We will now present further material from [12, Section 3], showing that we can
interchangeably talk about ultrafilters or about elementary embeddings, also in our
generalized context. If M is a Σ0-correct weak κ-model, κ is a cardinal of M , and
U is an M -ultrafilter on κ, then we can use the Σ0-correctness of M14 to define
the induced ultrapower embedding jU : M −→ 〈Ult(M,U), εU 〉 as usual: define an
equivalence relation ≡U on the class of all functions f : κ −→M contained in M by
setting f ≡U g if and only if {α < κ | f(α) = g(α)} ∈ U , let Ult(M,U) consist of
all sets [f ]U of rank-minimal elements of ≡U -equivalence classes, define [f ]U εU [g]U
to hold if and only if {α < κ | f(α) ∈ g(α)} ∈ U and set jU (x) = [cx]U , where
cx ∈ M denotes the constant function with domain κ and value x. It is easy to
check that the assumption that M |= ZFC− implies that  Los’ Theorem still holds
true in our setting, i.e. we have

Ult(M,U) |= ϕ([f0]U , . . . , [fn−1]U )

⇐⇒

〈M,U〉 |= “∃x ∈ U ∀α ∈ x ϕ(f0(α), . . . , fn−1(α))”

for every first order ε-formula ϕ(v0, . . . , vn−1) and all functions f0, . . . , fn−1 : κ −→
M in M .

Given an elementary embedding j : M −→ 〈N, εN 〉 that jumps at κ, let γ be a
witness for this, and let

Uγj = {A ∈M ∩ P(κ) | γ εN j(A)}

denote the M -ultrafilter induced by γ and by j. Since γ is not in the range of j, the
filter Uγj is non-principal. If j is a κ-embedding and γ = κN , then we call Uj = Uγj
the canonical M -ultrafilter induced by j, or simply the M -ultrafilter induced by j.

Given a cardinal κ, a property Ψ(M,U) of Σ0-correct weak κ-models M and
M -ultrafilters U on κ κ-corresponds to a property Θ(M, j) of such models M and
elementary embeddings j : M −→ 〈N, εN 〉 if the following statements hold:

• If Ψ(M,U) holds for an M -ultrafilter U on κ, then Θ(M, jU ) holds.
• If Θ(M, j) holds for an elementary embedding j : M −→ 〈N, εN 〉, then j is

a κ-embedding and Ψ(M,Uj) holds.

Proposition 11.6. [12, Corollary 3.3 and Corollary 3.7] Given A ⊆ κ, “U is
an M -ultrafilter on κ that contains A as an element, and U is M -normal and κ-
amenable for M” κ-corresponds to “crit j = κ and j is a κ-powerset preserving
κ-embedding with κN εN j(A)”. �

Lemma 11.7. [12, Lemma 3.5] Let κ be an inaccessible cardinal, let b : κ −→ Vκ

be a bijection, let M be a Σ0-correct weak κ-model with b ∈ M and let j : M −→
〈N, εN 〉 be a κ-powerset preserving κ-embedding with crit j = κ.

(1) The map

j∗ : M ∩Vκ+1 −→ 〈{y ∈ N | y εN VN
κN+1}, εN 〉; x 7→ (j(x) ∩ VκN )N

is an ε-isomorphism extending j � (M ∩Vκ).

14Note that, given a Σ0-correct ZFC−-model M and functions f, g : κ −→ M in M , then the
set {α < κ | f(α) = g(α)} and {α < κ | f(α) ∈ g(α)} are both contained in M and satisfy the

same defining properties in it.
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(2) There is an ε-isomorphism

j∗ : H(κ+)M −→ 〈{y ∈ N | y εN H((κN )+)N}, εN 〉
extending j∗.

In the context of Lemma 11.7, we may (and will) thus identify elements of
H((κN )+)N with the corresponding elements of H(κ+)M via j∗.

We next review the formal notions of Ramsey-like cardinals and Ramsey-like sets
from [12, Section 9].

Definition 11.8. [12, Definition 9.4] Let κ < θ be uncountable regular cardinals,
let α ≤ κ be an infinite regular cardinal, let A be an unbounded subset of κ and
let Φ(v0, v1) be a first order ∈-formula.

• A is Φκα-Ramsey if for every x ⊆ κ, there is a transitive weak κ-model
M closed under <α-sequences and a uniform, κ-amenable M -normal M -
ultrafilter U on κ such that x ∈M , A ∈ U and Φ(M,U) holds.
• A is Φθα-Ramsey if for every x ∈ H(θ), there is a weak κ-model M ≺
H(θ) closed under <α-sequences and a uniform, κ-amenable M -normal M -
ultrafilter U on κ such that x ∈M , A ∈ U and Φ(M,U) holds.
• A is Φ∀α-Ramsey if it is Φθα-Ramsey for every regular cardinal θ > κ.
• If ϑ ∈ {κ, θ, ∀}, then κ is a Φϑα-Ramsey cardinal if κ is Φϑα-Ramsey as a

subset of itself.

Let us remark that by Theorem 1.3(2), a cardinal κ is Ramsey if and only if it is
ccκω-Ramsey, where cc(M,U) denotes the property that U is countably complete,
that is, any countable intersection of elements of U is nonempty. Other properties
that we will be interested in are the following:

• T(M,U) denotes the (trivial) property that U = U .
• wf(M,U) denotes the property that the ultrapower of M by U is well-

founded.

The following lemma is a strengthening of [12, Lemma 9.13(2)]. In that lemma, it

is assumed that κ is a Φκ
+

α -Ramsey cardinal rather than just a Φκα-Ramsey cardinal,
as we assume here. We will actually need this stronger version of this lemma in
Section 12 below. Moreover, the proof of [12, Lemma 9.13(2)] that is provided in
[12] does not quite seem to work, and a minor modification, that we provide below,
is needed.

Lemma 11.9. Assume that α ≤ κ are regular infinite cardinals, and let Φ(M,U)
be a first order formula using only parameters from Vκ, such that Φ(X,U∩X) holds
whenever X ⊆M and Φ(M,U) holds. For arbitrary regular γ ≤ κ, let α(γ) = α in
case α < κ, and let α(γ) = γ in case α = κ. Assume that κ is a Φκα-Ramsey cardinal
such that Φ is absolute between V and arbitrary transitive weak κ-models containing

Vκ. For any regular cardinal γ, let XΦ
γ = {ν < γ | ν is not Φν

+

α(ν)-Ramsey}. Then,

XΦ
κ is a Φκα-Ramsey subset of κ.

Proof. Assume that κ is the least Φγα(γ)-Ramsey cardinal γ with the property that

XΦ
γ is not a Φγα(γ)-Ramsey subset of γ. Let this property of XΦ

κ be witnessed by

x ⊆ κ. Using that κ is Φκα-Ramsey, there is a weak κ-model M with x ∈ M ⊇ Vκ
that is closed under <α-sequences, and an M -normal uniform M -ultrafilter U on
κ that is κ-amenable for M with XΦ

κ 6∈ U and such that Φ(M,U) holds.
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Claim 11.10. XΦ
κ is not a Φκα-Ramsey subset of κ in M .

Proof. We claim that this is witnessed by x ∈ M . Working in M , we thus have
to show that XΦ

κ 6∈ u for every transitive weak κ-model m that is closed under
<α-sequences and any uniform κ-amenable M -normal M -ultrafilter u on κ such
that Φ(m,u) holds. But note that since M is closed under <α-sequences, and by
our assumptions on Φ, the above properties of m and of u are absolute between M
and V . But this means that the claim immediately follows from our assumption
that XΦ

κ is not a Φκα-Ramsey subset of κ (in V ). �

Using Proposition 11.6, let j = jU : 〈M,∈〉 → 〈N, εN 〉 be the κ-powerset pre-
serving κ-embedding with critical point κ induced by U , which thus satisfies κN 6∈
j(XΦ

κ ). Using Lemma 11.7, we identify H((κN )+)N with H(κ+)M , and in partic-

ular, we identify κN with κ. Therefore, κ is a Φκ
+

α -Ramsey cardinal below j(κ)
in 〈N, εN 〉. Since M and N have the same subsets of κ, it follows that κ is a
Φκα-Ramsey cardinal in M .15 Then clearly, in M ⊇ Vκ, κ is also the least Φγα(γ)-

Ramsey cardinal γ with the property that XΦ
γ is not a Φγα(γ)-Ramsey subset of γ.

But then, by elementarity, in 〈N, εN 〉, j(κ) is the least Φγj(α(γ))-Ramsey cardinal

with the property that XΦ
γ is not a Φγj(α(γ))-Ramsey subset of γ. It follows that

XΦ
κ is Φκα-Ramsey in 〈N, εN 〉. Since M and N have the same subsets of κ however,

this contradicts Claim 11.10. �

12. New large cardinal operators

Definition 11.8 easily lends itself to provide a notion of what we would like to
call Ramsey-like subset operators. We will need some variants of Definition 10.1.

Definition 12.1. Let 〈Ψ,Ω〉 be regular. We define an ideal operator O⊕ΨΩ as
follows. For any ideal I on κ and y ⊆ κ, we first define a local instance by letting

• x ∈ O⊕ΨΩy(I)+ if there exists a transitive weak κ-model M ≺ H(κ+) with
y ∈ M and an M -ultrafilter U on κ with x ∈ U such that Ψ(M,U) and
Ω(U, I) hold, and we let

• OΨΩ(I)⊕ =
⋂
y⊆κO

⊕ΨΩy(I)+.

We also define an ideal operator O∀ΨΩ as follows. For any ideal I on κ and y ⊆ κ,
we first define a local instance by letting

• x ∈ O∀ΨΩy(I)+ if for every regular cardinal θ > κ, there exists a transitive
weak κ-model M ≺ H(θ) with y ∈ M and an M -ultrafilter U on κ with
x ∈ U such that Ψ(M,U) and Ω(U, I) hold, and we let

• O∀ΨΩ(I)+ =
⋂
y⊆κO

∀ΨΩy(I)+.

Definition 12.2. Let Φ(v0, v1) be a first order ∈-formula. Let Ψ(M,U) be the
statement that U is M -normal and κ-amenable for M (where κ =

⋃
U) and that

Φ(M,U) holds, and let Ω(U, I) be the statement that U ⊆ I+.

• We let Φ = OΨΩ denote the Φ-Ramsey subset operator.
• We let Φ⊕ = O⊕ΨΩ denote the Φ⊕-Ramsey subset operator.

15Here is where our proof essentially differs from that of [12, Lemma 9.13(2)] provided in [12].

That proof assumes that we can somehow conclude κ to be Φκ
+

α -Ramsey in M , which however
seems very problematic, for we don’t even have κ+ ∈M , not in the situation of our current proof
here, and neiter in the context of the proof of [12, Lemma 9.13(2)] that is provided in [12].
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• We let Φ∀ = O∀ΨΩ denote the Φ∀-Ramsey subset operator.

Let Ψcl(M,U) be the conjunction of Ψ(M,U) with the assertion that M is closed
under <κ-sequences.

• We let Φcl = OΨclΩ denote the Φcl-Ramsey subset operator.

Note that by the very definitions of the properties involved, A ⊆ κ is Φκω-Ramsey

/ Φκ
+

ω -Ramsey / Φ∀ω-Ramsey / Φκκ-Ramsey if and only if A ∈ Φ([κ]<κ)+ / A ∈
Φ⊕([κ]<κ)+ / A ∈ Φ∀([κ]<κ)+ / A ∈ Φcl([κ]<κ) respectively, and that taking A = κ,

this relates Φκω-Ramsey / Φκ
+

ω -Ramsey / Φ∀ω-Ramsey / Φκκ-Ramsey cardinals with
their corresponding large cardinal operators. In the present section, we want to
focus on three instances of Definition 12.2:16 The Tκ

ω-Ramsey subset operator T,
the wfκω-Ramsey subset operator wf , and the Tκ

κ-Ramsey subset operator Tcl.
17

• The notion of Tκ
ω-Ramsey cardinal was first considered in [12, Section 10].

• The notion of wfκω-Ramsey cardinal corresponds exactly to the notion of
weakly Ramsey cardinal that was introduced in [10, Definition 1.2].
• The notion of Tκ

κ-Ramsey cardinal corresponds exactly to the notion of
strongly Ramsey cardinal that was introduced in [10, Definition 1.4].

For the convenience of our readers, let us remark at this point already that
regarding the cardinals involved in this discussion, we have the following known
chain of strict implications regarding their consistency strength, which will also be
a consequence of our below results.18

Strongly Ramsey→ Ramsey→Weakly Ramsey→ Tκ
ω-Ramsey→ Ineffable.

Clearly, I(I) ⊆ T(I) ⊆ wf(I) ⊆ R(I) ⊆ Tcl(I) for any ideal I: The first
inclusion follows from the fact that the operator T is ineffable by Observation 10.4,
and the remaining inclusions follow from the final statement of Proposition 10.2.
We will see below that the above chain of inclusions is a chain of strict inclusions
in case I = [κ]<κ, and that this also holds with respect to certain other ideals for
some of these inclusions. In particular, this shows that the large cardinal operators
I, T, wf , R and Tcl are actually different from each other.

Remark 12.3. Let us remark that we cannot expect any of the above subset rela-
tions to be proper for arbitrary ideals I, since for example if κ is a completely Ram-
sey cardinal (that is, there is an ordinal α so that κ 6∈ Rα([κ]<κ) = Rα+1([κ]<κ)),
and I is the completely Ramsey ideal on κ (that is I = Rα([κ]<κ) for such an α),
then I ⊆ I(I) ⊆ T(I) ⊆ wf(I) ⊆ R(I) = I, and hence all of these ideals have to
be equal.19

16Recall that T(M,U) denotes the (trivial) property that U = U , and that wf(M,U) denotes

the property that the ultrapower of M by U is well-founded.
17Note that if a weak κ-model M is closed under <κ-sequences and an M -ultrafilter U is

M -normal, then U is countably closed, yielding Tκκ-Ramsey cardinals, wfκκ-Ramsey cardinals and
ccκκ-Ramsey cardinals and their corresponding large cardinal operators to be equivalent notions.

18All but the final implication are easily seen to also be valid direct implications, however even

strongly Ramsey cardinals need not be ineffable, for being strongly Ramsey is a Π1
2-property (this

is immediate from the results of Section 13 below), and ineffable cardinals are Π1
2-indescribable

by Lemma 3.4.
19Completely Ramsey cardinals were introduced by Feng in [8, Section 3]. By [8, Theorem 3.1],

any measurable cardinal is completely Ramsey.
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It was shown in [12, Lemma 10.1], using different notation, that I([κ]<κ) (
T([κ]<κ), as witnessed by {ξ < κ | ξ ∈ I([ξ]<ξ)} ∈ T([κ]<κ) \ I([κ]<κ).20 We want
to argue that this result can be extended to the nonstationary ideal, essentially by
the same argument, which we would like to provide here for the convenience of our
readers.

Proposition 12.4. If I ∈ {[κ]<κ,NSκ} and κ ∈ I(I)+, then

I(I) ( T(I).

Proof. The inclusion itself has already been discussed above, and we are only left
to verify its properness. Since the bounded ideal was already treated in [12], let us
assume for simplicity of notation that I = NSκ (the proof for I = [κ]<κ is essentially
the same). By Lemma 4.2, X = {ξ < κ | ξ ∈ I(NSξ)} 6∈ I(NSκ). We will thus be
done if we can show that X ∈ T(NSκ). Assume for a contradiction that this is not
the case. Then, there is a transitive weak κ-model M with b ∈M for some bijection
b : κ→ Vκ, and there is a κ-amenable, M -normal M -ultrafilter U ⊆ NS+

κ on κ such
that X ∈ U . Note that since Vκ ⊆ M , the set X satisfies the same definition in
M that it satisfies in V . Using Proposition 11.6, let j = jU : 〈M,∈〉 → 〈N,∈N 〉 be
the κ-powerset preserving κ-embedding with critical point κ induced by U . Using
the identification provided by Lemma 11.7, and since X ∈ U , this means that
N |= κ ∈N j(X), and hence that N |= κ ∈N I(NSκ).

On the other hand, since being stationary in κ is downwards absolute from V
to M ⊇ Vκ,21 it follows that every element of U is a stationary subset of κ in M .
But then, given a collection A ∈ ([P(κ)]κ)M , U ∩ A ∈ M by the κ-amenability of
U , and ∆(U ∩ A) ∈ U by the M -normality of U . Since U ⊆ NS+

κ , this shows that
M |= κ ∈ Icoll(NSκ)+ = I(NSκ)+, where the equality follows by Proposition 2.2.22

Using that M and N have the same subsets of κ, it follows that also N |= κ ∈N
I(NSκ)+, which is clearly a contradiction. �

We next want to separate T from wf in a strong sense. In order to do so, we
will also need to make use of the operators T⊕, T∀, wf⊕ and wf∀.

• Let us recall [4, Page 101] that A ⊆ κ is completely ineffable if there is an
ordinal α so that A 6∈ Iα([κ]<κ) = Iα+1([κ]<κ).23 In [12, Theorem 11.4], it
is shown that κ is completely ineffable if and only if κ is T∀ω-Ramsey.

• The notion of ω-Ramsey cardinal was introduced by Philipp Schlicht and
the author in [14, Definition 5.1], and in our terminology, ω-Ramsey cardi-

nals are exactly the wf∀ω-Ramsey cardinals.24

• The notion of Tκ+

ω -Ramsey cardinal was first considered in [12, Section 10].

20Note that this latter statement implies in particular that below any Tκω-Ramsey cardinal,

there are unboundedly many ineffable cardinals, and thus that Tκω-Ramseyness is of strictly higher
consistency strength than ineffability. Analogous remarks, which we will omit to make, apply to

the other large cardinals and their related ideal operators that we will discuss in the remainder of

this section.
21This use of downwards absoluteness is the reason why we don’t know how to generalize this

argument to ideals other than the bounded and the nonstationary ideals.
22In fact, we need to observe that Proposition 2.2 is a theorem of ZFC−. Another subtletly is

that NSMκ is not an element of M , it is only definable over M , which however clearly suffices.
23In fact, Baumgartner’s original definition of complete ineffability uses NSκ instead of [κ]<κ,

but since I([κ]<κ) ⊇ NSκ, as is shown within the proof of [3, Theorem 2.3], this clearly yields an
equivalent notion.

24The equivalence with the original definition from [14] is immediate from Proposition 11.6.



24 PETER HOLY

• The notion of super weakly Ramsey cardinal was introduced by Philipp
Schlicht and the author in [14, Definition 4.5], and in our terminology, they

are exactly the wfκ
+

ω -Ramsey cardinals κ.

Let us once again provide some comments on the strength of the large cardinal

notions involved in the current discussion. Tκ+

ω -Ramsey cardinals have a strictly
higher conistency strength than Tκ

ω-Ramsey cardinals (this is a particular instance
of [12, Lemma 9.13(1)]), and a strictly lower consistency strength than completely
ineffable cardinals (this is a particular instance of [12, Lemma 9.14], since com-
pletely ineffable cardinals are exactly the T∀ω-Ramsey cardinals). Summarizing, we
get the following chain of strict implications with respect to consistency strength:25

Completely ineffable→ Tκ+

ω -Ramsey→ Tκ
ω-Ramsey.

Particular instances of the same two lemmas from [12], using the property wf rather
than T, imply the following chain of strict implications with respect to consistency
strength:26

ω-Ramsey→ super weakly Ramsey→ weakly Ramsey.

In order to connect this chain of implications with the previous one, let us remark
that [10, Theorem 3.7] weakly Ramsey cardinals are of strictly higher consistency
strength than completely ineffable cardinals.

We will need the following, which in particular yields an easy argument that
completely ineffable cardinals κ are Π1

β-indescribable for every β < κ.

Lemma 12.5. If κ is inaccessible, θ > κ is a regular cardinal, M ≺ H(θ) is a weak
κ-model with Vκ ⊆M , and U is an M -normal M -ultrafilter on κ that is κ-amenable
for M , then, for every β < κ, U ⊆ Π1

β(κ)+. In particular, for every β < κ,

• T⊕(Π1
β(κ)) = T⊕([κ]<κ),

• T∀(Π1
β(κ)) = T∀([κ]<κ),

• wf⊕(Π1
β(κ)) = wf⊕([κ]<κ), and

• wf∀(Π1
β(κ)) = wf∀([κ]<κ).

Proof. For the first statement of the lemma, assume for a contradiction that for
some β < κ, an M -ultrafilter U as in the statement of the lemma contains a set
X that is Π1

β-describable. Thus, there is a Π1
β-formula ϕ and Q ⊆ Vκ such that

〈Vκ, Q〉 |= ϕ, however, for every α ∈ X, 〈Vα, Q∩Vα〉 |= ¬ϕ. Since Vκ ⊆M , the code
for such a formula ϕ is an element of M . Thus, by elementarity, and since Vκ ∈M
by the inaccessibility of κ, the above statement with respect to this particular ϕ
holds true also in M . But then, in the ultrapower of M by U , by Proposition 11.6,
using the identification from Lemma 11.7, and using that X ∈ U , 〈Vκ, Q〉 |= ¬ϕ.
This however contradicts that U is κ-amenable for M , and hence that M and the
ultrapower of M by U contain the same subsets of κ by Proposition 11.6.

The statements about T⊕, T∀, wf⊕ and wf∀ are immediate from the above. �

25These are also valid (strict) direct implications, as is immediate from the definitions, using

again that completely ineffable cardinals are exactly the T∀ω-Ramsey cardinals.
26They are also valid (strict) direct implications, as is immediate from the definitions.
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Note that by the very definitions of the operators involved, for any ideal I on
κ, we trivially have T(I) ⊆ T⊕(I) ⊆ T∀(I), and wf(I) ⊆ wf⊕(I) ⊆ wf∀(I). As
particular instances of Lemma 11.9, we obtain the following.

Lemma 12.6. For any β < κ, we have the following.

(a) If κ ∈ T(Π1
β(κ))+, then {γ < κ | γ ∈ T⊕(Π1

β(γ))} 6∈ T(Π1
β(κ)).

(b) If κ ∈ wf(Π1
β(κ))+, then {γ < κ | γ ∈ wf⊕(Π1

β(γ))} 6∈ wf(Π1
β(κ)).

Proof. For (a), let Φ(M,U) be the statement that U ⊆ Π1
β(κ)+, and for (b),

let Φ(M,U) be the conjunction of that statment with wf(M,U). Both formu-
las clearly satisfy the requirements of the lemma. Chasing the relevant definitions,
it is straightforward to see that for any X ⊆ κ, X is a Φκω-Ramsey subset of κ just
in case (a) X 6∈ T(Π1

β(κ)) or (b) X 6∈ wf(Π1
β(κ)) respectively, and that for any

γ, γ is Φγ
+

ω -Ramsey just in case (a) γ ∈ T⊕(Π1
β(γ))+ or (b) γ ∈ wf⊕(Π1

β(γ))+

respectively. �

We are finally ready to conclude our desired strong separation result. The case
when β = −1 in the below is due to Philipp Lücke and the author [12, Lemma 10.1
and Lemma 12.1].

Theorem 12.7. If κ ∈ T(Π1
β(κ))+ and β ∈ {−1} ∪ κ, then

T(Π1
β(κ)) ( wf(Π1

β(κ)).

Proof. Clearly, by the very definitions involved, T(I) ⊆ wf(I) for any ideal I on κ,
and it only remains to verify inequality in the above. Since this is trivial otherwise,
we may as well assume that κ ∈ wf(Π1

β(κ))+. By Lemma 12.6(a),

X = {α < κ | α ∈ T⊕(Π1
β(α))} 6∈ T(Π1

β(κ)).

On the other hand, the proof of Gitman’s [10, Theorem 3.7] shows (see also [12,
Theorem 1.5]) that if κ is a weakly Ramsey cardinal, then

Y = {α < κ | α is not completely ineffable} ∈ wf([κ]<κ).

Since wf([κ]<κ) ⊆ wf(Π1
β(κ)), we will be done if we show that X ⊆ Y , which

amounts to showing that completely ineffable cardinals α satisfy α ∈ T⊕(Π1
β(α))+.

But clearly, T⊕(Π1
β(α)) ⊆ T∀(Π1

β(α)) = T∀([α]<α) by Lemma 12.5, and thus we
are done. �

Finally, a combination of known results provides a weak separation result for the
operators wf and R.

Proposition 12.8. If κ ∈ wf([κ]<κ)+, then wf([κ]<κ) ( R([κ]<κ).

Proof. The inclusion is trivial, and we only need to verify its properness. By [12,
Corollary 9.16], the set {α < κ | α ∈ wf([α]<α)} is not an element of wf([κ]<κ), and
the argument for the proof of [11, Theorem 4.1] shows that this set is an element of
R([κ]<κ), noting that weakly Ramsey cardinals are exactly the 1-iterable cardinals
from that paper, and that Ramsey cardinals are α-iterable for any α. �

If the answer to the following question were positive, using ω-Ramseyness rather
than complete ineffability and using Lemma 12.6(b) rather than Lemma 12.6(a) in
the proof of Theorem 12.7, we could analogously separate the operators wf and R
in a strong sense. This question is a particular instance of [12, Question 17.4].
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Question 12.9. Assume that κ is a Ramsey cardinal. Does it follow that the set of
ω-Ramsey cardinals below κ is a Ramsey subset of κ, i.e., an element of R([κ]<κ)+?

Another possibility to separate the operators wf and R at least on NSκ would
be to show that if κ ∈ wf(NSκ)+, then the set {α < κ | α ∈ wf(NSα)} is not an
element of the ideal wf(NSκ), for it is not too hard to see that the argument for
[11, Theorem 4.1] can be adapted to show this set to be an element of the ideal
R(NSκ). We thus ask the following:

Question 12.10. Assume that κ ∈ wf(NSκ)+. Does it follow that

{α < κ | α ∈ wf(NSα)} 6∈ wf(NSκ)?

By results from [8] and [12], it finally follows that R and Tcl act differently, at
least on the bounded and the nonstationary ideal.

Proposition 12.11. If I ∈ {[κ]<κ,NSκ} and κ ∈ R(I)+, then

R(I) ( Tcl(I).

Proof. The inclusion itself has already been discussed above, and we are only left

to verify its properness. Let ~I be the sequence of ideals induced by I. By [8,
Theorem 4.5], S = {ξ < κ | ξ ∈ R(Iξ)} 6∈ R(I). However, S ∈ Tcl(I) by [12,
Lemma 14.2]. �

13. Some coding apparatus

In order to be able to present a sample result for our generalized operators in
Section 14, we will need to code weak κ-models M and M -ultrafilters U on κ as
subsets of Vκ in some simple way, and since we are only really interested in the case
when κ is an inaccessible cardinal, we may assume this to be the case whenever
necessary. Our definition will be tailored so that any transitive weak κ-model that
can be coded will have to be a superset of Vκ, with elements x of Vκ being coded
as ordered pairs of the form 〈0, x〉, and we code κ by 0.

Definition 13.1. We say that M ⊆ Vκ is a code for a transitive weak κ-model if
M⊆ Vκ with the following properties:

• M is a binary relation on Vκ, such that dom(M) = Vκ,
• for all x, y ∈ Vκ, 〈0, x〉M〈0, y〉 if and only if x ∈ y,
• for all x, xM 0 if and only if x ∈ κ,
• M is well-founded and extensional, and
• 〈Vκ,M〉 |= ZFC−.

Note that the weak κ-model that is coded here is the model M such that 〈M,∈〉 is
the transitive collapse of 〈Vκ,M〉. On the other hand, any transitive weak κ-model
M ⊇ Vκ has a code as described above, using a suitable bijection between M and
Vκ. Let πM denote the transitive collapsing map of 〈Vκ,M〉. If X = πM(x), we
say that x is the code of X (within M).

Lemma 13.2. The property that M is a code for a transitive weak κ-model is a
∆1

1-property over 〈Vκ,M〉.

Proof. All but the final item in the above list can easily be phrased as first order
properties within 〈Vκ,M〉. The final item can be seen to be a ∆1

1 property, for we
need to say that either there is a satisfaction relation (coded as a subset of Vκ in
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some obvious way) for 〈Vκ,M〉 that contains all axioms of ZFC−, or that this is the
case for all satisfaction relations, and being a satisfaction relation for 〈Vκ,M〉 is a
first order property, which is seen as usual: We require a satisfaction relation S to
code finite tuples of the form 〈ϕ,~a〉, where of course we identify first order formulas
ϕ with their Gödel codes. We require that if ϕ is an atomic formula, then its truth
is correctly encoded by S. Recursively, we then require S to correctly encode the
truth of all first order formulas, proceeding along the recursive construction of first
order formulas. That is for example, we require S to consider (ϕ∧ψ)(~a) to be true
just in case it considers both ϕ(~a) and ψ(~a) to be true, etc. 27 �

Note that we can easily shift between subsets X of Vκ in M and their codes
withinM – For X ⊆ Vκ in M and x ∈ Vκ, the property π−1

M (X) = x is a first order

property over 〈Vκ,∈,M, X〉: π−1
M (X) = x in case ∀y [〈0, y〉Mx ⇐⇒ y ∈ X].

Next, we want to define what it means to code an M -ultrafilter on κ, which will
easily be seen to be a first order property.

Definition 13.3. Given a code M for a transitive weak κ-model, we say that
U ⊆ Vκ is a code for an M -ultrafilter on κ if 〈Vκ,M,U〉 thinks that U is an ultrafilter
on 0 (note that our setup is so that 0 codes κ).

For our desired applications, we will need our operators to satisfy some properties
of simple definability.

Definition 13.4. Let 〈Ψ,Ω〉 be a pair of formulas, and let O be an ideal operator.

• 〈Ψ,Ω〉 is simple in case ZFC proves the following:
(a) whenever M is a transitive weak κ-model, and U is an M -ultrafilter

on κ, then Ψ(M,U) translates to a ∆1
1-property of any pair of codes

〈M,U〉 for 〈M,U〉 over Vκ, and
(b) whenever the property X ∈ I+ is definable over Vκ by a Π1

β-formula

ϕ(X) for some 0 < β < κ, then Ω(U, I) translates to a Π1
β-property of

any code U of U over Vκ.
• 〈Ψ,Ω〉 is always simple in case ZFC additionally proves that if in (b), the

property X ∈ I+ is first order definable over Vκ, then Ω(U, I) translates to
a ∆1

1-property of any code U of U over Vκ.
• O is simple or always simple in case ZFC proves thatO can be characterized

in the form O = OΨΩ for some pair of formulas 〈Ψ,Ω〉 that is simple or
always simple respectively.

Definition 13.4(a) is immediate if Ψ can be expressed as a first order property
of the structure 〈M,∈, U〉, for example if Ψ(M,U) denotes the statement that U is
κ-amenable for M .

If Ψ(M,U) denotes the property that U is countably complete, this translates to
the first order statement that for any countable sequence 〈ui | i < ω〉 of elements
of U ,28 there is x such that xMui for every i < ω.

27In order to avoid any possible confusion here, let us emphasize that we are not claiming to

be able to define a satisfaction predicate by a first order formula, but that given any particular
predicate, we have a first order formula which uses this predicate as a second order parameter and

which decides whether it actually is a satisfaction predicate.
28If κ is inaccessible (regular and uncountable suffices), then these countable sequences are

elements of Vκ.
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Consider the statement that M is closed under <κ-sequences. This translates
to the following first order statement about any code M of M over Vκ:

∀p ∃t∀x (xM t ⇐⇒ x ∈ p) .29

Finally, let Ψ(M,U) denote the statement that the ultrapower of M by U is well-
founded. Let us say that 〈N,R〉 represents an ultrapower of M by U if N ⊆ Vκ
consists of codes for functions f with domain κ such that

• for every g for which π−1
M (g) is a function with domain κ, there is f ∈ N

such that {α < κ | π−1
M (f)(α) = π−1

M (g)(α)}) is coded by a set in U ,

• for all f, g ∈ N , {α < κ | π−1
M (f)(α) = π−1

M (g)(α)} is not coded by a set in
U , and
• if f, g ∈ N , f R g iff {α < κ | π−1

M (f)(α) ∈ π−1
M (g)(α)} is coded by a set in

U .

That is, essentially, a class [f ]U in a usual ultrapower of M by U is taken to be
represented by one of its elements. But now, asking that 〈N,R〉 is well-founded
is clearly equivalent to asking the ultrapower of M by U to be well-founded, and
moreover, as for the case of countable completeness above, this translates to a first
order statement over Vκ, using that κ is regular and uncountable: it requires asking
that no countable sequence of elements of N is decreasing with respect to R.

Let us look at some examples regarding Definition 13.4(b).

• If Ω(U, I) denotes the statement that U ⊆ I+, then this translates to the
statement that ∀xMU ∀X [π−1

M (X) = x→ ϕ(X)], where ϕ is a Π1
β-formula

defining I+ over Vκ.
• If Ω(U, I) denotes the property that countable intersections from U are in
I+, then this translates to the statement that for any countable sequence
〈uβ | β < ω〉 of elements of U ,

ϕ({α < κ | ∀β < ω 〈0, α〉Muβ}).

• If Ω(U, I) denotes the property that ∆U ∈ I+, then this translates to the
statement that for any κ-enumeration 〈uβ | β < κ〉 of the elements of U ,

ϕ({α < κ | ∀β < α 〈0, α〉Muβ}).

If the property X ∈ I+ is first order definable, observe that we obtain a ∆1
1-

statement in the first two cases above, for we can equivalently rephrase the above
to use existential rather than universal second order quantifiers. However this does
not work in the third case (see the remarks made in Footnote 2). In particular,
this means that the operators T, wf , R and Tcl are always simple, while Imod is
simple.

The following lemma extracts what we will actually need in the next section.

Lemma 13.5. If O is simple, then the following hold.

• If y ⊆ κ and β < κ, then the statement that X ∈ Oy(Π1
β(κ)) can be

expressed as a Π1
β+2-property of X and y over Vκ.

29Given any regular α < κ, it is also easy to express closure of M under <α-sequences by a
first order statement about M over Vκ. We will however not make use of such properties in our

paper.
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• If β < κ, then the statement that X ∈ O(Π1
β(κ))+ can be expressed as a

Π1
β+3-property of X over Vκ.

If 〈Ω,Ψ〉 is always simple, then the above also hold in case β = −1.

Proof. Immediate from Lemma 3.3 by a simple counting of quantifiers in Defini-
tion 10.1, making use of the fact that O is simple. �

14. A test application: Generalized Pre-Operators

In this section, we want to provide a sample result, showing that simple ineffable
operators are structurally well-behaved, by providing a basic theorem about their
relationship to their corresponding pre-operators. This result generalizes the case
when α = 1 of [6, Theorem 6.1], and shows that our pre-operators have the same
key role with respect to their corresponding operators as does the subtle operator
with respect to the ineffability operator, and the pre-Ramsey operator with respect
to the Ramsey operator by classical results of Baumgartner from his [3] and [4]30

– these results are instances of our general result below, which in particular also
provides valid new instances for the operators T, wf and Tcl. The proof follows
the proof in [6] for the most part, but there are some subtleties involved in how to
make use of the machinery that we developed in Section 13 above, and therefore
we would like to provide the complete argument. If A is a collection of subsets of
a cardinal κ, we write A to denote the ideal on κ that is generated by A: This is
the collection of all subsets of κ that are contained in some finite union of elements
of A.

Theorem 14.1. If O is ineffable and simple, and β < κ, then

O(Π1
β(κ)) = O0(Π1

β(κ)) ∪Π1
β+2(κ).

If O is ineffable and always simple, then the above also holds in case β = −1.

Proof. Fix some β, and let J = O0(Π1
β(κ)) ∪Π1

β+2(κ). We show that X ∈ J+ if

and only if X ∈ O(Π1
β(κ))+.

Suppose for a contradiction that X ∈ J+, however X ∈ O(Π1
β(κ)). Let y ⊆ κ

be such that X ∈ Oy(Π1
β(κ)), that is whenever M is a transitive weak κ-model

with y ∈ M and U is an M -ultrafilter on κ with X ∈ U and with Ψ(M,U), then
Ω(U,Π1

β(κ)) fails. By Lemma 13.5, this can be expressed by a Π1
β+2-sentence ϕ

over Vκ, and thus

C = {ξ < κ | Vξ |= ϕ(X ∩ ξ, y ∩ ξ)} ∈ Π1
β+2(κ)∗.

Since X 6∈ J , X is not the union of a set in O0(Π1
β(κ)) and a set in Π1

β+2(κ), and

since X = (X ∩ C) ∪ (X \ C), it follows that X ∩ C 6∈ O0(Π1
β(κ)). Thus we may

find ξ ∈ (X ∩C) \ (β + 1), a weak ξ-model M̄ with y ∩ ξ ∈ M̄ and an M̄ -ultrafilter
Ū on ξ with X ∩C ∩ ξ ∈ Ū such that Ψ(M̄, Ū) and Ω(Ū ,Π1

β(ξ)) hold, contradicting
the above.

30Baumgartner has also verified a version of Theorem 14.1 for the weakly ineffable ideal in [3,

Section 7]. Namely, he has shown that the weakly ineffable ideal on a cardinal κ is generated by

the subtle ideal together with the Π1
1-indescribable ideal. We do not know whether this result

could also be obtained via Theorem 14.1, by using the operator Imod or perhaps some slight

variant. Some strongly related issues will be discussed in Section 15.
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Now suppose X ∈ O(Π1
β(κ))+. By [6, Remark 2.1], it suffices to show that

X ∈ O0(Π1
β(κ))+ and X ∈ Π1

β+2(κ)+, where the latter is immediate from Corollary

10.5. We are thus left to show that X ∈ O0(Π1
β(κ))+. Fix y ⊆ κ and a club C ⊆ κ.

By the third item in Observation 10.4, it follows that X ∩ C ∈ O(Π1
β(κ))+. Thus,

there areM and U such that the following Π1
β+1-sentence ϕ holds over the structure

〈Vκ,∈, y,X ∩C,M,U〉: M is (a code for) a transitive weak κ-model M with y ∈M
and U is (a code for) an M -ultrafilter U on κ with X ∩ C ∈ U such that Ψ(M,U)
and Ω(U,Π1

β(κ)) hold. Since X ∩C ∈ Π1
β+2(κ)+, there is ξ ∈ (X ∩C)\ (β+ 1) such

that
〈Vξ,∈, y ∩ ξ,X ∩ C ∩ ξ,M ∩ ξ, U ∩ ξ〉 |= ϕ,

and hence X ∩C ∩ ξ ∈ Oy(Π1
β(ξ))+, as witnessed by the code M∩ ξ for a weak ξ-

model and the code U ∩ ξ for an M -ultrafilter on ξ, yielding that X ∈ O0(Π1
β(κ))+.

�

By similar means as in Theorem 14.1, many of the results from [6] for the Ramsey
operator can be extended to our generalized operators in a fairly straightforward
way. Amongst other things, these further generalizations are planned to be included
in a follow-up paper [7]. Let us present one final easy sample result here, namely
that applications of our operators to different indescribability ideals give rise to a
proper hierarchy of large cardinal notions (this is a weak generalized analogue of
results from [6]).

Proposition 14.2. If O is ineffable and simple, β < κ, and κ ∈ O(Π1
β+1(κ))+,

then κ is a stationary limit of cardinals α for which α ∈ O(Π1
β(α))+. If O is

ineffable and always simple, then the above also holds in case β = −1.

Proof. Assume that κ ∈ O(Π1
β+1(κ))+. By the monotonicity ofO, we thus also have

κ ∈ O(Π1
β(κ))+. But by Corollary 10.5, our assumption implies that κ ∈ Π1

β+3(κ)+,

and by Lemma 13.5, κ ∈ O(Π1
β(κ))+ can be expressed as a Π1

β+3-property over Vκ.

Hence, the set of cardinals α for which α ∈ O(Π1
β(α))+ is contained in the Π1

β+3-
indescribable filter on κ, and hence in particular this set is stationary in κ. �

Let us close this section by providing some additional information about the
relationship between the operators I and R.

Observation 14.3. Assume that β ∈ {−1} ∪ Ord, and that κ is least such that
κ ∈ R(Π1

β(κ))+. Then κ 6∈ I(Π1
β+1(κ))+.

Proof. Assume for a contradiction that κ ∈ I(Π1
β+1(κ))+. Then, by Theorem 14.1,

κ ∈ Π1
β+3(κ)+. By Lemma 13.5, κ ∈ R(Π1

β(κ))+ can be expressed as a Π1
β+3-

property over Vκ. Combining these, we find some α < κ such that α ∈ R(Π1
β(α))+,

contradicting the leastness of κ. �

15. Some remarks on weak ineffability

In this final section, we want to treat the seemingly problematic case of applying
operators of the form OΨΩ with Ω(U, I) being the statement that ∆U ∈ I+ to
ideals of the form [κ]<κ. Note that by the convention from Section 2, ∆U ∈ I+

abbreviates the statement that every diagonal intersection of (all the elements of)
U is in I+. If we strengthen this to require that every diagonal intersection of
any κ-many (and not necessarily all) elements of U is in I+, we can show the
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following, which is based on the observation from [12] that the notions of genuinity
and normality from [17] coincide for weak κ-models.

Observation 15.1. If Ω(U, I) denotes the property that every diagonal intersection
of elements of U is in I+, and O = OΨΩ for some first order formula Ψ, then for
any ideal I on κ and y ⊆ κ, Oy(I) = Oy(I ∪NSκ). In particular, this implies
that O(I) = O(I ∪NSκ), and hence that O([κ]<κ) = O(NSκ). Moreover, given a

sequence ~I of ideals, this also implies that O0(~I) = O0(〈Iα ∪NSα | α ≤ κ〉), and
hence that O0([κ]<κ) = O0(NSκ).

Proof. It is immediate that O(I) ⊆ O(I ∪NSκ). Assume thus that y ⊆ κ, and
that A ∈ Oy(I)+. That is, there is a transitive weak κ-model M with y ∈ M and
an M -ultrafilter U on κ with A ∈ U such that Ψ(M,U) holds and every diagonal
intersection of elements of U is in I+, and thus in particular an unbounded subset
of κ. In the notation of [17], this means that U is a genuine M -ultrafilter. But
by [12, Proposition 17.2], this implies that U is in fact a normal M -ultrafilter,
meaning that ∆U is a stationary subset of κ. Making use of [6, Remark 2.1], this
shows that A ∈ Oy(I ∪NSκ)+, as desired. The remaining statements follow by the
very definitions of the operators involved. �

The above tells us for example that we cannot characterize the weakly ineffable
ideal I([κ]<κ) by using the operator O = OΨΩ, where Ψ(M,U) is trivial and
Ω(U, I) is the statement that any diagonal intersection of elements of U is in I+,
for O([κ]<κ) already yields the ineffable ideal on κ whenever κ is ineffable (or all
of P(κ) whenever it is not). As was already observed in [12, Section 17], such a
characterization (of weak ineffability only) was wrongly claimed in [17, Theorem
3.2 (ii)]. Concerning our original operator Imod, we do not know as to whether
Imod([κ]<κ) is the weakly ineffable ideal on κ, however it seems unlikely to us. Let
us introduce yet another variant of the operator Imod.

Definition 15.2. We define the operator I∗mod as follows. First, for any y ⊆ κ, we
introduce its local instance at y, letting

• x ∈ I∗ymod(I)+ if there is a transitive weak κ-model M with y ∈ M such
that for any κ-enumeration ~x of P(κ) ∩M , there is an M -ultrafilter U on
κ that flips ~x such that x ∈ U and ∆U ∈ I+, and we let
• I∗mod(I)+ =

⋂
y⊆κ I

∗y
mod(I)+.

Assume that κ is weakly ineffable. Then, by the very definitions of the operators
involved, I∗mod([κ]<κ) ⊆ Icoll([κ]<κ), and we have shown the latter to be equal to the
weakly ineffable ideal on κ in Proposition 2.2. However, the reverse inclusion seems
to be potentially problematic, and thus we ask the following, which we conjecture
to have a negative answer.

Question 15.3. Is I∗mod([κ]<κ) the weakly ineffable ideal on κ?

A positive answer to Question 15.3 would show that a cardinal κ is weakly
ineffable if and only if κ ∈ I∗mod([κ]<κ)+, and this was in fact claimed in [12,
Paragraph after Proposition 17.2] without proof, however we do not know how
to verify this claim, and would like to pose it as an open question.31 It seems

31The problem that occurs if trying to verify the claim made in [12] is with collections of
subsets of κ which are not of the form P(κ) ∩M for a weak κ-model M . While this may seem

like a minor technical difficulty at first, it appears to be a serious obstacle on second sight.
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likely that a positive answer to Question 15.4 would also yield a positive answer for
Question 15.3.

Question 15.4. Does κ ∈ I∗mod([κ]<κ)+ imply that κ is weakly ineffable?
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