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Abstract. Assuming the existence of a supercompact cardinal, we construct

a model of ZFC that may contain many local large cardinals of high consistency

strength, a class generic extension but no set generic extension of which satisfies
the proper forcing axiom PFA.

1. Introduction

We will show the following.

Theorem 1.1. Assume PFA holds in V. There is a (class-)generic extension W
such that PFA holds in a further class-generic extension of W which collapses a
proper class of cardinals, but PFA holds in no eventually cardinal-preserving exten-
sion of W and thus in particular in no set-generic extension of W.

An immediate corollary is the following:

Corollary 1.2. Assuming the consistency of a supercompact cardinal, there is a
model of ZFC a class-generic extension of which satisfies PFA, but no set-generic
extension of which does.

Proof. Starting from a model with a supercompact cardinal, obtain a forcing ex-
tension V satisfying PFA. Now Apply Theorem 1.1 to this model. �

With a little more work, we will also show the following.

Theorem 1.3. Assuming the consistency of a supercompact cardinal and a proper
class of subcompact (or ω-superstrong) cardinals, there is a model of ZFC with a
proper class of subcompact (or ω-superstrong) cardinals a class-generic extension of
which satisfies PFA, but no eventually cardinal-preserving extension of which and
thus in particular no set-generic extension of which does.

This has the following corollaries, which are particular instances of the more
general (folklore) rule that the existence of local large cardinals1 can never suffice
to ensure that PFA holds in a set forcing extension of the universe.

Corollary 1.4. Assuming the consistency of a proper class of subcompact cardinals,
it is consistent to have a universe with a proper class of subcompact cardinals no
set forcing extension of which satisfies PFA.
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Corollary 1.5. Assuming the consistency of a proper class of ω-superstrong cardi-
nals, it is consistent to have a universe with a proper class of ω-superstrong cardinals
no set forcing extension of which satisfies PFA.

While Corollary 1.5 deals with a large cardinal close to the edge of known in-
consistency, Corollary 1.4 is relevant to (in the sense of sheding additional light on)
the following result of Sy Friedman and the author:

Theorem 1.6 (Friedman, Holy). [FH, Theorem 1] Assuming the consistency of a
proper class of subcompact cardinals, it is consistent that there is a proper class of
subcompact cardinals, but PFA restricted to posets which are (2ℵ0)+-linked holds in
no proper extension2 of the universe.

While the proof of Theorem 1.6 given in [FH] is highly intricate, the short proof
of Corollary 1.4 shows that the statement made by Theorem 1.6 about the full PFA
and about set forcing (or, in fact, eventually cardinal-preserving) extensions can be
obtained by much simpler means.3

2. Prerequisites

We will make use of the following: 4

Theorem 2.1. [KY04] PFA is preserved by <ω2-closed forcing.

For the rest of this section, we will present definitions and results from Sections
6.1 and 6.2 of [CFM01] that will be our basic tools in Section 3.

Definition 2.2. Let κ be an uncountable cardinal. A �κ-sequence is a sequence
〈Cα | α < κ+, lim(α)〉 such that for all α < κ+

(i) Cα is closed and unbounded in α.
(ii) If cof(α) < κ, then otp (Cα) < κ.
(iii) For all β ∈ lim(Cα), Cβ = Cα ∩ β.

Definition 2.3. Let κ be an uncountable cardinal. We define a forcing A(κ) which
adds a generic �κ-sequence and thus forces �κ. p ∈ A(κ) iff

(i) p is a function with dom(p) = {β ≤ α | lim(β)} for some limit ordinal
α < κ+.

(ii) For all β ∈ dom(p), p(β) is club in β and otp (p(β)) ≤ κ.
(iii) If cof(β) < κ then otp (p(β)) < κ.
(iv) For all β ∈ dom(p) and γ ∈ lim(p(β)), p(γ) = p(β) ∩ γ.

If p, q ∈ A(κ) then q ≤ p iff q end-extends p.

The following is well-known and easily verified.

2A proper extension of the universe is an extension of the universe which preserves the sta-

tionarity of S for every stationary S ⊆ [γ]ℵ0 for all γ.
3This is however not supposed to undermine the importance of Theorem 1.6, it just says that

the statement it makes about the full PFA is mostly interesting in the case when the proper
extension in question collapses a proper class of cardinals and that, and that’s of course the

most important point here, Theorem 1.6 is important for in fact it proves a (highly non-trivial)

statement about a small fragment of PFA (which is by no means provable using the methods of
the present note).

4This strengthens a result from [Lar00], where it is (essentially) shown that PFA is preserved
by <ω2-directed closed forcing. This weaker result would actually be sufficient for our present

purposes.
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Lemma 2.4. Whenever p ∈ A(κ) and ξ < κ+ then there is q ≤ p in A(κ) such
that max(dom(p)) ≥ ξ. �

Definition 2.5. Let P be a partial ordering, let α be an ordinal. The game Gα(P )
is played as follows: Players I and II take turns to choose elements of a decreasing
sequence 〈pβ | β < α〉 of conditions in P , with I playing at at stage 0 and at all
odd stages and II playing at all even stages except stage 0, but including all limit
stages. If the play reaches an even stage γ < α where player II cannot move then
player I wins, otherwise player II wins. The poset P is <α-strategically closed iff
player II has a winning strategy for the game Gα(P ).

Lemma 2.6. [CFM01, Lemma 6.7] A(κ) is <(κ+ 1)-strategically closed.

Definition 2.7. Let ~C = 〈Cα | α < κ+〉 be a �κ-sequence in V. Let W ⊇ V. We

say that C ∈ W threads ~C if C is club in κ+ and ∀α ∈ lim(C) C ∩ α = Cα. It is
clear that no such C can exist in V or any extension of V in which κ+ is a cardinal
because every initial segment of C can have order type at most κ.

Definition 2.8. Let κ be an uncountable cardinal and let ~C = 〈Cα | α < κ+〉 be

a �κ-sequence. Let γ ≤ κ be a regular cardinal. We define a forcing Tγ(~C) which

threads ~C. c ∈ Tγ(~C) iff

(i) c is a closed bounded subset of κ+.
(ii) otp (c) < γ.

(iii) ∀β ∈ lim(c) c ∩ β = Cβ .

If c, d ∈ Tγ(~C), then d ≤ c iff d end-extends c.

Clearly, Tγ(~C) adds a club C ⊆ κ+ which threads ~C. It is not clear though in gen-
eral what the order type of C will be and whether the forcing satisfies some amount
of distributivity. We will not actually use the following lemma from [CFM01], but
its proof will be varied and made use of in section 3.

Lemma 2.9. [CFM01, Lemma 6.9] Let κ be an uncountable cardinal and let γ ≤ κ
be a regular cardinal. Let ~C denote the generic �κ sequence added by forcing with
A(κ).

(i) A(κ) ∗ Tγ(~C) has a <γ-closed dense subset.

(ii) Tγ(~C) adds a generic club which threads ~C and has order-type γ. (κ+)V

has cofinality γ in VA(κ)∗Tγ(~C).

It follows that Tγ(~C) is <γ-distributive in VA(κ).

3. The Main Theorem

Proof of Theorem 1.1. Assume PFA holds in V. Let S be a proper class of regular
cardinals such that for every λ ∈ S, sup({2ν | ν ∈ S ∩ λ}) < λ and such that
min(S) ≥ ω2. Let P be the class sized iteration with Easton support which at

stage λ forces with A(λ) to add a �λ-sequence ~Cλ if λ ∈ S and is trivial at stage

λ otherwise. Let Q̇ denote a P -name for the class sized Easton support product

which at stage λ forces with Tλ(~Cλ) if λ ∈ S and is trivial at stage λ otherwise.

Let G be P -generic over V and let H be Q̇G-generic over W = V[G]. Clearly no
eventually cardinal-preserving extension of W satisfies PFA since the latter refutes
�κ for all κ ≥ ω2, �κ holds in W for every κ ∈ S, and the validity of �κ can not
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be destroyed in extensions which preserve κ+ as a cardinal. We will thus establish
Theorem 1.1 by showing that forcing with P ∗Q̇ preserves ZFC and that PFA holds
in V[G ∗ H]. We will do the latter by showing that P ∗ Q̇ has a dense subset of
conditions which is <γminS-closed and by applying Theorem 2.1.

Claim 1. If κ ∈ S, P<κ has a dense subset of size less than κ.

Proof. By induction on κ. If κ = minS, P<κ is trivial and thus the claim holds for

κ. If κ ∈ S, a condition in PVP<κ
κ = A(κ)V

P<κ
can be identified with a subset of κ

in VP<κ and thus if P<κ has a dense subset of size less than κ inductively (which
will be the case if max(S ∩ κ) exists), we use a standard nice names argument to
obtain that P<κ+1 has a dense subset of size at most 2κ < min(S \ (κ+ 1)). As P
is trivial in the interval (κ,min(S \ (κ + 1))), the same is true for P<min(S\(κ+1)).
Finally, if κ ∈ S is such that otp (S ∩ κ) is a limit ordinal, P<κ has a dense subset
of size ≤ sup(S ∩ κ)+ < κ. �

Claim 2. P [κ,∞) is <(κ+ 1)-strategically closed.

Proof. For λ ≥ κ, AVP<λ
λ is <(κ + 1)-strategically closed (see Lemma 2.6), which

implies the statement of the claim. �

It now follows by standard arguments that P is cofinality-preserving. Let

D0 = {(p, q) ∈ P ∗ Q̇ | ∀κ q(κ) is a P<κ-name}.

Claim 3. D0 is dense in P ∗ Q̇.

Proof. Let (p, q) ∈ P ∗Q̇ be given. For every κ ∈ S, q(κ) is a P -name for a bounded
subset of κ+ and may therefore be identified with a subset of κ. For any particular
κ ∈ S, using Claim 1 and Claim 2, we may extend p to p′ such that p′ forces that
q(κ) has a P<κ-name while keeping p′ �κ = p�κ by a standard reduction argument.
Replace q(κ) by that name to obtain q′ from q. Then (p′, q′) ≤ (p, q) and q(κ) is
a P<κ-name. We may iterate this process over supp(q) to obtain (p∗, q∗) ≤ (p, q)
such that for all κ ∈ S, q∗(κ) is a P<κ-name. �

Let

D1 = {(p, q) ∈ D0 | ∀κ p�κ  max(dom(p(κ))) = max(q(κ))}.

Claim 4. D1 is dense in D0 and hence in P ∗ Q̇.

Proof. Let (p, q) ∈ D0 be given. Fix some κ ∈ (dom(p)∪ dom(q)). Since both p(κ)
and q(κ) are P<κ-names and P<κ has a dense subset of size less than κ, it follows
that for every κ ∈ (dom(p) ∪ dom(q)),

∃ξκ < κ+ 1P<κmax(dom(p(κ))),max(q(κ)) < ξκ.

We may assume that each ξκ is a limit ordinal and choose p′ ≤ p by choosing
p′(κ)(ξκ) cofinal in ξκ to end-extend q(κ) and such that p′(κ) ∈ A(κ). Let, for

every such κ, q′(κ) = q(κ)∪ {ξκ}. Then (p′, q′) ∈ P ∗ Q̇, (p′, q′) ≤ (p, q) and in fact
(p′, q′) ∈ D1. �

In fact, the above proof shows that the following subset of D1 is dense in D0 and
hence in P ∗ Q̇:

D2 = {(p, q) ∈ D0 | ∀κ 1P<κ decides max(dom(p(κ))) = max(q(κ))}.
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Claim 5. D2 is <γmin(S) closed.

Proof. Fix a decreasing sequence 〈(pδ, qδ) | δ < β〉 of conditions in D1 for some
β < γmin(S). We want to construct a lower bound (p, q) for this sequence. Let

αδ(κ) = max(dom(pδ(κ))) for each δ < β and each κ ∈ dom(pδ). Let α(κ) =
supδ<β α

δ(κ) for all κ ∈
⋃
δ<β dom(pδ). Define q(κ) =

⋃
δ<β q

δ(κ)∪ {α(κ)} and let

p be such that for every κ ∈
⋃
δ<β dom(pδ),

• p(κ)�α(κ) =
⋃
δ<β p

δ(κ),

• max(dom(p(κ))) = α(κ) and
• p(κ)(α(κ)) = q(κ) ∩ α(κ).

It is now easy to see that (p, q) ≤ (pδ, qδ) for every δ < β. �

To finish the proof of Theorem 1.1, it only remains to show that forcing with
P ∗ Q̇ preserves ZFC. P itself clearly preserves ZFC by standard arguments (see
[Fri00, Section 2.2]), being a reverse Easton iteration of increasingly distributive
forcings. Given t = (p, q) ∈ D2 and a cardinal η, let lη((p, q)) = (p�η, q �η) and let
uη((p, q)) = (p� [η,∞), q � [η,∞)). Let lη(D2) = {lη(t) | t ∈ D2}.

Claim 6. uη(P ∗ Q̇) is <γη-closed.

Proof. Similar to the proof of Claim 5. �

Claim 7. Let κ ∈ S and γ = min(S \ (κ+ 1)). Every κ-sequence of elements of V

in VP∗Q̇ is in VP∗Q̇<γ . Hence (P ∗ Q̇)/(P ∗ Q̇<γ) is <κ-distributive.

Proof. lγ(D2) has a dense subset of size 2κ < γ by the proof of Claim 1. Now given

a P ∗ Q̇-name ẋ for a sequence of length κ of elements of V and t ∈ D2, consider
every possible value of lη(s) for s ∈ D2. Consecutively for each i < κ, for each
such value extend uη(t) such that together with lη(s) it decides ẋ(i) if possible. Let
t∗ ≤ uη(t) be the final condition obtained by this process after 2κ · κ-many steps.
We made sure that ẋ is forced by lη(t) together with uη(t∗) (this is the condition
r such that lη(r) = lη(t) and uη(r) = t∗), which is a condition stronger than t, to

have a P ∗ Q̇<γ-name, as desired. �

Claim 8. P ∗ Q̇ preserves ZFC.

Proof. By Claim 7 together with the arguments of [Fri00, Section 2.2]. �

�

Proof of Theorem 1.3. Start with a model with a supercompact cardinal θ and a
proper class X of subcompact (or ω-superstrong) cardinals above (in the case of
ω-superstrongs, also choose a witnessing ultrapower embedding jκ whenever κ is ω-
superstrong and make sure that whenever κ ∈ X, jκ

ω(κ) < min(X \ (κ+ 1)). Force
PFA using Baumgartner’s iteration of size θ that collapses θ to become ω2, to obtain
a model V which preserves the subcompactness (or ω-superstrength) of all cardinals
in X (their witnessing embeddings may all be lifted for the iteration is small) and
satisfies PFA. Now choose S as in the proof of Theorem 1.1, but additionally
make sure that (in the case of treating subcompacts) S ∩ X = ∅ and that S is
bounded below every element of X or (in the case of treating ω-superstrongs) that
S contains no cardinals in [κ, jκ

ω(κ)] for every κ ∈ X and that S is bounded below
every κ ∈ X. This will make sure that forcing with P , as defined in the proof of
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Theorem 1.1, preserves the subcompactness (or ω-superstrength) of all cardinals
in X.5 The resulting model VP will be as desired - VQ will satisfy PFA while no
eventually cardinal-preserving extension of VP will do so, by the same argument
as in the proof of Theorem 1.1. �

Proof of Corollary 1.4 and 1.5. Almost like the proof of Theorem 1.3 - start with a
model with a proper class of subcompacts (or ω-superstrongs). Now (after omitting
the step where we forced PFA) continue by forcing with P over that model, as in
the proof of Theorem 1.3. Then VP will be as desired in each case. �
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