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Abstract. We study the provable consequences of the existence of
a well-order of H(κ+) definable by a Σ1-formula over the structure
〈H(κ+),∈〉 in the case where κ is an uncountable regular cardinal. This
is accomplished by constructing partial orders that force the existence of
such well-orders while preserving many structural features of the ground
model. We will use these constructions to show that the existence of a
well-order of H(ω2) that is definable over 〈H(ω2),∈〉 by a Σ1-formula
with parameter ω1 is consistent with a failure of the GCH at ω1. More-
over, we will show that one can achieve this situation also in the presence
of a measurable cardinal. In contrast, results of Woodin imply that the
existence of such a well-order is incompatible with the existence of in-
finitely many Woodin cardinals with a measurable cardinal above them
all.

1. Introduction

Given an infinite cardinal κ, if the set of all subsets of κ is constructible

from some subset z of κ, then there is a well-order of the set H(κ+) of all sets

of hereditary cardinality at most κ that is locally definable by a Σ1-formula

with parameter z, i.e. there is such a well-order that is definable over the

structure 〈H(κ+),∈〉 by a Σ1-formula1 with parameter z. In particular, if the

power set of κ is contained in Gödel’s constructible universe L, then there

is a well-order of H(κ+) that is locally definable by a Σ1-formula without

parameters. One may view such well-orders as the simplest possible locally

definable well-orders of H(κ+), because their definition uses no parameters

and a short argument shows that no formula that lies lower down in the Levy

hierarchy defines a well-order over a structure of the form H(κ+) for any

infinite cardinal κ. For the sake of completeness, we present this argument.

2010 Mathematics Subject Classification. 03E35, 03E47, 03E50.
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1Note that if C is a well-order, then x C y ⇐⇒ [x 6= y ∧ ¬(y C x)]. Thus any

Σ1-definable well-order of H(κ+) is in fact ∆1-definable. Proposition 1.1 shows that a
Σ1-formula defining a well-order is not provably equivalent to the Π1-formula obtained
from the above equivalence.
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Remember that a Σ1-formula ϕ(v0, . . . , vn−1) is ∆ZFC−

1 if there is a Π1-

formula ψ(v0, . . . , vn−1) with

ZFC− ` ∀x0, . . . , xn−1 [ϕ(x0, . . . , xn−1) ←→ ψ(x0, . . . , xn−1)] ,

where ZFC− denotes the axioms of ZFC without the Power Set Axiom. Note

that every Σ0-formula is a ∆ZFC−

1 -formula.

Proposition 1.1. Let κ be an infinite cardinal. Then there is no well-order

of H(κ+) that is definable over the structure 〈H(κ+),∈〉 by a ∆ZFC−

1 -formula

with parameters.

Proof. Let ϕ(v0, v1, v2) be a ∆ZFC−

1 -formula and let ψ(v0, v1, v2) be the corre-

sponding Π1-formula. Using the formula ψ, we can construct a Σ1-formula

Φ0(v) with the property that the axioms of ZFC− prove that for every

set z, the statement Φ0(z) is equivalent to the statement that the rela-

tion {〈x, y〉 | ϕ(x, y, z)} is not linear. Moreover, we can use the formula

ϕ to construct a Σ1-formula Φ1(v) with the property that the axioms of

ZFC− prove that for every set z, the statement Φ1(z) is equivalent to the

statement that the relation {〈x, y〉 | ϕ(x, y, z)} is not well-founded. Set

Φ(v) ≡ Φ0(v) ∨ Φ1(v). By the Σ1-Reflection Principle, the axioms of ZFC

prove that whenever θ is an infinite cardinal and z ∈ H(θ+), then Φ(z) holds

in 〈H(θ+),∈〉 if and only if the set

{〈x, y〉 ∈ H(θ+)× H(θ+) | 〈H(θ+),∈〉 |= ϕ(x, y, z)}

is not a well-order of H(θ+).

Assume, towards a contradiction, that there is an infinite cardinal κ such

that the formula ϕ and some parameter z ∈ H(κ+) define a well-order of

H(κ+) over the structure 〈H(κ+),∈〉. By the above remarks, this implies

that ¬Φ(z) holds in 〈H(κ+),∈〉. Pick a regular cardinal ν > 2κ and let G be

Add(ν, (ν<ν)+)-generic over V. Then ν = ν<ν holds in V[G] and a folklore

result (see, for example, [15, Corollary 9.2]) says that there is no well-order of

H(ν+)V[G] that is definable over the structure 〈H(ν+)V[G],∈〉. In particular,

Φ(z) holds in 〈H(ν+)V[G],∈〉 and Σ1-reflection implies that it also holds in

〈H(κ+)V[G],∈〉. But we have H(κ+)V[G] = H(κ+)V, a contradiction. �

A classical theorem of Mansfield shows that the converse of the implica-

tion mentioned at the beginning of this section also holds in the case κ = ω,

in the sense that the existence of a locally Σ1-definable well-order of H(ω1)

implies that all subsets of ω are constructible from the parameters of this

definition. In particular, the existence of such a well-order implies that CH

holds and that there are no measurable cardinals.
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Theorem 1.2 ([17]). The following statements are equivalent for every z ⊆
ω.

(i) Every subset of ω is an element of L[z].

(ii) There is a well-order of the set H(ω1) that is definable over the

structure 〈H(ω1),∈〉 by a Σ1-formula with parameter z.

(iii) There is a well-order of the set ωω of all functions from ω to ω

that is definable over the structure 〈H(ω1),∈〉 by a Σ1-formula with

parameter z.

In this paper, we are interested in the provable consequences of the ex-

istence of locally definable well-orders of H(κ+) of low complexity in the

case where κ is an uncountable regular cardinal. In particular, we want to

determine the simplest definition such that the existence of a well-order de-

finable in this way is consistent together with certain natural set theoretical

assumptions whose negation holds in L. Examples of such assumptions are

failures of the GCH at κ or the existence of larger large cardinals above

κ. For that purpose, we construct partial orders that force the existence of

locally Σ1-definable well-orders while preserving many structural features

of the ground model. The starting point of this work is the following result

proven in [11]. It can be used to show that many statements are compatible

with the existence of locally Σ1-definable well-orders if we allow arbitrary

parameters in their definitions.

Theorem 1.3 ([11, Theorem 1.1]). Let κ be an uncountable cardinal such

that κ = κ<κ holds2 and 2κ is regular. Then there is a partial order P with

the following properties.

(i) P is <κ-closed and forcing with P preserves cofinalities less than or

equal to 2κ and the value of 2κ.

(ii) If G is P-generic over the ground model V, then there is a well-order

of H(κ+)V[G] that is definable over the structure 〈H(κ+)V[G],∈〉 by a

Σ1-formula with parameters.

The parameter used in the definition of this well-order is added by the

forcing and therefore is, in a certain sense, a very complicated object. In

this paper, we want to improve the above result by constructing models of

set theory possessing locally Σ1-definable well-orders that only use simple

parameters. The first (and in fact main) step towards this goal will be the

construction of a locally Σ1-definable well-order in a generic extension whose

definition only uses parameters that already exist in the ground model.

2Note that the assumption κ = κ<κ implies that κ is regular.
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This is achieved (for a somewhat smaller class of cardinals κ) in the next

theorem.3 Remember that, given an uncountable cardinal κ, a subset S of

κ is fat stationary if for every club C ⊆ κ, the intersection C ∩ S contains

closed subsets of ordinals of arbitrarily large order-types below κ. Given

regular cardinals η < κ, we let Sκη denote the set of all limit ordinals less

than κ of cofinality η. The set Sκ<η is defined analogously.

Theorem 1.4. Let κ be an uncountable cardinal such that κ = κ<κ, η<η <

κ for every η < κ and 2κ is regular.4 Assume that one of the following

statements holds.

(a) κ is the successor of a regular cardinal η and 〈Sα | α ≤ κ〉 is a

sequence of pairwise disjoint stationary subsets of Sκη .

(b) κ is an inaccessible cardinal and 〈Sα | α ≤ κ〉 is a sequence of pair-

wise disjoint fat stationary subsets of κ.

Then there is a partial order P with the following properties.

(i) P is <κ-distributive and forcing with P preserves cofinalities less

than or equal to 2κ and the value of 2κ.

(ii) If G is P-generic over the ground model V, then there is a well-order

of H(κ+)V[G] that is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula

with parameter 〈Sα | α < κ〉.

In the second part of this paper, we use Theorem 1.4 to construct models

of set theory containing locally Σ1-definable well-orders of some H(κ+) that

only use the ordinal κ as a parameter by forcing over certain canonical inner

models of set theory. This will allow us to show that the existence of such

a well-order is compatible with a failure of the GCH at κ. The following

theorem is an example of such a construction.

Theorem 1.5. Assume that V = L holds and κ is either the successor of

a regular cardinal or an inaccessible cardinal. Let P be a partial order with

the following properties.

(a) Forcing with P preserves cofinalities less than or equal to κ+ and

fat stationary subsets of κ.

(b) If G is P-generic over V, then in V[G], 2κ is regular, κ = κ<κ and

η<η < κ for all η < κ.

3While the forcing construction in our paper is based on the construction in [11], one
could instead base it on the construction that was later provided in [10]. This would
eliminate the assumption that 2κ be regular and would yield a forcing that preserves all
cofinalities (rather than just those less than or equal to 2κ) in our below results.

4Note that the second assumptions implies that κ is either an inaccessible cardinal or
the successor of a regular cardinal.
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Then there is a P-name Q̇ for a partial order such that the following

statements hold whenever G ∗H is (P ∗ Q̇)-generic over V.

(i) The partial order Q̇G is <κ-distributive in V[G].

(ii) Forcing with Q̇G over V[G] preserves all cofinalities less than or

equal to (2κ)V[G] and the value of 2κ.

(iii) There is a well-ordering of H(κ+)V[G,H] that is definable over the

structure 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with parameters κ.

Letting P = Add(κ, κ++), Theorem 1.5 shows that a failure of the GCH

at an uncountable regular cardinal κ is consistent with the existence of a

well-order of H(κ+) that is locally definable by a Σ1-formula with parameter

κ.

By Mansfield’s Theorem 1.2 and the Σ1-Reflection Principle, the exis-

tence of a well-order of H(κ+) that is definable over 〈H(κ+),∈〉 by a Σ1-

formula with parameter z ∈ H(ω1) implies that P(ω) ⊆ L[z]. In particular,

the assumption

(?) ∀z ⊆ ω ∃x ⊆ ω x /∈ L[z]

implies that there is no such well-order. Note that (?) holds in all Add(ω, ω1)-

generic extensions and that the partial order P = Add(ω, ω1) satisfies the

requirements (a) and (b) of Theorem 1.5 in L. Since the partial order Q̇G

from Theorem 1.5 adds no new reals whenever G is P-generic over L, it pre-

serves the statement (?). Thus Theorem 1.5 shows that in this setting, the

above forcing construction for κ = ω1 adds a locally definable well-order

of H(ω2) of the optimal complexity compatible with (?), in the sense of

providing a Σ1-definition with smallest possible parameter.

It is natural to ask whether it is possible to strengthen the above result

and force the existence of well-orders of H(ω2) that are definable using

smaller parameters. By the above remarks, the existence of such a well-

order would imply the negation of (?). It is not known if such a well-order

can exist outside of models of the form L[z] with z ⊆ ω.

Question 1.6. Does the existence of a well-order of H(ω2) that is definable

over 〈H(ω2),∈〉 by a Σ1-formula with parameters in H(ω1) imply that P(ω1)

is constructible from some subset z of ω?

In another direction, one can ask whether assumptions like the ones listed

in Theorem 1.5 are actually necessary for such constructions. In particular, it

is interesting to ask whether the existence of such well-orders is compatible

with the existence of larger large cardinals. A modification of the above
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construction yields the following result that shows that the existence of a

well-order of H(κ+) that is definable over 〈H(κ+),∈〉 by a Σ1-formula with

parameter κ is consistent with the existence of a measurable cardinal above

κ and a failure of the GCH at κ.

Theorem 1.7. Assume that U is a normal measure on a cardinal δ, V =

L[U ] holds and κ < δ is either the successor of a regular cardinal or an

inaccessible cardinal. Let P ∈ Vδ be a partial order with the properties (a)

and (b) listed in Theorem 1.5. Then there is a P-name Q̇ ∈ Vδ for a partial

order such that the statements (i)-(iii) listed in Theorem 1.5 hold whenever

G ∗H is (P ∗ Q̇)-generic over V.

Note that, if κ = ω1 and U witnesses that δ is a measurable cardinal

in V, then (?) holds and the above remarks imply that the well-ordering

of H(ω2) produced by the above forcing has the optimal complexity that

is compatible with the existence of a measurable cardinal. Since the above

construction still relies on the assumption that V lies close to some well-

behaved inner model, we may ask if it is possible to have such well-orders

in the presence of larger large cardinals. It was pointed out to the authors

by Daisuke Ikegami that results of Woodin on the Π2-maximality of the

Pmax-extension of L(R) (see [14] and [20]) directly imply that the existence

of certain large cardinals implies that no well-order of H(ω2) is definable

over 〈H(ω2),∈〉 by a Σ1-formula with parameter ω1.

Proposition 1.8. Assume that there are infinitely many Woodin cardinals

with a measurable cardinal above them. If there is a well-order of H(ω2) that

is definable over 〈H(ω2),∈〉 by a Σ1-formula with parameter z ⊆ ω1, then

z /∈ L(R).

Proof. Given α < ω1, let WOα denote the set of all x ∈ R that code (in some

fixed canonical way) a well-ordering of ω of order-type α. Note that the set

{〈x, α〉 ∈ R× ω1 | x ∈WOα} is definable over 〈H(ω2),∈〉 by a Σ1-formula

without parameters. Let LȦ denote the language of set theory extended by

an unary predicate symbol Ȧ. Then there is a Σ1-formula ϕ0(v) in LȦ such

that the axioms of ZFC prove that

〈H(ω2),∈, A〉 |= ϕ0(z) ⇐⇒ z ⊆ {α < ω1 | ∃x ∈ A x ∈WOα}

for all A ⊆ R and z ∈ H(ω2). Moreover, there is a Π1-formula ϕ1(v) in LȦ
such that the axioms of ZFC prove that

〈H(ω2),∈, A〉 |= ϕ1(z) ⇐⇒ {α < ω1 | ∃x ∈ A x ∈WOα} ⊆ z

for all A ⊆ R and z ∈ H(ω2).
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Fix a Σ1-formula ψ(v0, v1, v2) in the language of set theory. Using the

formulas constructed above and the arguments used in the proof of Propo-

sition 1.1, we find a Π2-sentence Ψ in LȦ such that the axioms of ZFC prove

that whenever A ⊆ R and zA = {α < ω1 | ∃x ∈ A x ∈WOα}, then the set

{〈x, y〉 ∈ R× R | 〈H(ω2),∈〉 |= ψ(x, y, zA)}

is a well-ordering of R if and only if 〈H(ω2),∈, A〉 |= Ψ.

Assume, towards a contradiction, that there are infinitely many Woodin

cardinals with a measurable cardinal above them and there is z ∈ P(ω1)L(R)

such that

{〈x, y〉 ∈ H(ω2)× H(ω2) | 〈H(ω2),∈〉 |= ψ(x, y, z)}

is a well-ordering of H(ω2). Set Az =
⋃
α∈z WOα ∈ L(R). Then z = zAz

and 〈H(ω2),∈, Az〉 |= Ψ. Let G be Pmax-generic over L(R). By [14, Theorem

7.3], we have 〈H(ω2)L(R)[G],∈, Az〉 |= Ψ and hence there is a well-order of R
that is definable over 〈H(ω2)L(R)[G],∈〉 by the formula ψ and the parameter

z ∈ L(R). By our assumptions and [14, Lemma 2.10], the partial order Pmax

is homogeneous5 in L(R). This shows that the set

{〈x, y〉 ∈ R× R | 1l 
L(R)
Pmax

ψ(x̌, y̌, ž)} ∈ L(R)

is a well-order of R in L(R). By results of Woodin (see [18, 8.24 Theorem]),

our assumptions imply that AD holds in L(R) and hence L(R) contains no

well-orders of R, a contradiction. �

Since the existence of a well-order of H(ω2) definable over 〈H(ω2),∈〉
by a Σ1-formula with parameter ω1 is consistent with the existence of a

measurable cardinal and inconsistent with the existence of infinitely many

Woodin cardinals with a measurable cardinal above them, it is natural to

ask the following question.

Question 1.9. What is the weakest large cardinal whose existence implies

that no well-order of H(ω2) is locally definable by a Σ1-formula with param-

eter ω1?

This question will be answered in the forthcoming [16], by showing that

the existence of a well-ordering of H(ω2) that is definable over 〈H(ω2),∈〉
by a Σ1-formula with parameter ω1 is consistent with the existence of a

Woodin cardinal and inconsistent with the existence of a Woodin cardinal

with a measurable cardinal above it. Moreover, we will use the techniques

5In the sense that for all conditions p0, p1 ∈ Pmax, there are conditions q0, q1 ∈ Pmax

such that qi ≤Pmax
pi and the restriction of Pmax to all conditions below q0 is isomorphic

to the restriction of Pmax to all conditions below q1.
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developed in Section 7 of this paper to show that the existence of such

a well-order is compatible with the existence of a Woodin cardinal and a

failure of the GCH at ω1.

In another direction, the above arguments do not answer the above ques-

tion for the case κ > ω1.

Question 1.10. Given a formula ϕ(v0, v1, v2), do the axioms of ZFC prove

that for every supercompact cardinal δ and every regular cardinal ω1 < κ <

δ, the set

{〈x, y〉 ∈ H(κ+)× H(κ+) | 〈H(κ+),∈〉 |= ϕ(x, y, κ)}

is not a well-ordering of H(κ+)?

Next, we consider locally definable well-orders of the set κκ of all func-

tions from κ to κ. Note that the Σ1-Reflection Principle implies that the

set κκ is not definable over 〈H(κ+),∈〉 by a Σ1-formula with parameters in

H(κ) and hence no well-order of this set is definable in this way. In the case

of successor cardinals, the following proposition shows that the forcing con-

struction provided by Theorem 1.5 adds a locally Π1-definable well-order of
κκ whose definition uses parameters of small cardinality.

Proposition 1.11. Assume that η is an infinite cardinal, κ = η+ and there

is a well-order of H(κ+) that is definable over 〈H(κ+),∈〉 by a Σ1-formula

with parameter κ. Then there is a well-order of κκ that is definable over

〈H(κ+),∈〉 by a Π1-formula with parameter η.

Proof. Fix a Σ1-formula Φ(v0, v1, v2) such that the formula Φ and the pa-

rameter κ define a well-order C of H(κ+) over 〈H(κ+),∈〉. Let A be the set

of all x ∈ H(κ+) with |x| = κ. Then A consists of all x ∈ H(κ+) such that

there is no surjection from η onto x in H(κ+). Therefore A is definable over

〈H(κ+),∈〉 by a Π1-formula ψ(v0, v1) with parameter η. If x ∈ A, then κ

is the unique ordinal α < κ+ such that there is a bijection b : α −→ x in

H(κ+) and for every ᾱ < α there is a surjection s : η −→ ᾱ in H(κ+). This

shows that there is a Σ1-formula ϕ(v0, v1, v2) such that

y = κ ⇐⇒ 〈H(κ+),∈〉 |= ϕ(x, y, η)

holds for all x, y ∈ H(κ+) with x ∈ A. Finally, pick a Σ0-formula φ(v0, v1)

such that φ(x, y) holds if and only if x : y −→ y is a function.

Define J = C∩ (κκ× κκ). Then the set J is equal to the set of all pairs

〈x, y〉 in H(κ+)× H(κ+) with

〈H(κ+),∈〉 |= x 6= y ∧ ψ(x, η) ∧ ψ(y, η)

∧ ∀α [ϕ(x, α, η) −→ (¬Φ(y, x, α) ∧ φ(x, α) ∧ φ(y, α)]
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This shows that the well-ordering J of κκ is definable over the structure

〈H(κ+),∈〉 by a Π1-formula with parameter η. �

Since the set {ω} is definable over 〈H(ω2),∈〉 by a Σ0-formula without

parameters, the above proposition shows that the forcing given by Theorem

1.5 produces a locally definable well-ordering of ω1ω1 of optimal complexity.

Corollary 1.12. Assume that there is a well-order of H(ω2) that is defin-

able over 〈H(ω2),∈〉 by a Σ1-formula with parameter ω1. Then there is a

well-order of ω1ω1 that is definable over 〈H(ω2),∈〉 by a Π1-formula without

parameters. �

Finally, motivated by [11, Corollary 1.5], we also consider Bernstein sub-

sets of κκ. Given an uncountable regular cardinal κ, we equip κκ with the

topology whose basic open subsets are of the form Ns = {x ∈ κκ | s ⊆ x}
for some function s : α −→ κ with α < κ and we say that a closed subset

of this space is perfect if it is homeomorphic to the set κ2 equipped with

the subspace topology induced by that of κκ. A Bernstein subset of κκ is

a subset X of κκ with the property that X and its complement intersect

every perfect subset of κκ.

By [11, Corollary 1.5], the partial order P that witnesses Theorem 1.3

introduces a Bernstein subset of κκ that is ∆1-definable with parameters

over 〈H(κ+),∈〉. It is easy to see that the proof of this result, presented in

[11, Section 4], also shows that in the forcing extensions produced by the

above theorems there are Bernstein subsets of κκ with simple definitions.

Corollary 1.13. (i) In the situation of Theorem 1.4, forcing with the

partial order P introduces a Bernstein subset of κκ that is ∆1-

definable over 〈H(κ+),∈〉 using the parameter 〈Sα | α < κ〉 .

(ii) In the situation of Theorem 1.5 or Theorem 1.7, forcing with the

partial order P ∗ Q̇ introduces a Bernstein subset of κκ that is ∆1-

definable over 〈H(κ+),∈〉 using the parameter κ. �

We outline the structure of this paper. In Section 2, we start by discussing

forcing techniques that allow us to make an arbitrary subset of H(κ+) de-

finable in a generic extension of the ground model. Section 3 contains the

definition of strongly S-complete forcings and several observations that will

later allow us to show that the forcing constructed in the proof of Theorem

1.4 is <κ-distributive and preserves the stationarity of certain subsets of κ.

Next, we prove that the generic coding introduced in Section 2 is absolute

with respect to strongly S-complete forcings. We continue by construct-

ing the partial order witnessing Theorem 1.4 in Section 5 and proving the
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statements of the theorem in Section 6. Finally, we prove Theorem 1.5 and

Theorem 1.7 in Section 7 by constructing forcing extensions of canonical in-

ner models that contain simply definable sequences of disjoint fat stationary

sets.

2. Almost Disjoint Coding at Uncountable Cardinals

In this section, we discuss almost disjoint coding forcing (see [3] and [12])

for uncountable cardinals κ that satisfy κ = κ<κ. Given such κ, this forcing

technique will allow us to make an arbitrary subset of κκ definable by a

formula of low complexity in an upwards-absolute way. In order to make

this precise, we generalize basic notions of complexity to our uncountable

setting.

We equip the set κκ with the topology whose basic open sets are of the

form Ns = {x ∈ κκ | s ⊆ x} for some function s : α −→ κ with α < κ. A

subset of κκ is a Σ0
2-subset of κκ if it is equal to the union of κ-many closed

subsets of κκ. Note that a subset of κκ is closed if and only if it is equal to

the set

[T ] = {x ∈ κκ | ∀α < κ x � α ∈ T}

of κ-branches through some subtree6 T of <κκ. In particular, A ⊆ κκ is a

Σ0
2-subset of κκ if and only if there is a sequence 〈Tα | α < κ〉 of subtrees

of <κκ with A =
⋃
α<κ[Tα]. We say that such a sequence of trees witnesses

that A is a Σ0
2-subset of κκ.

We will now discuss how almost disjoint coding forcing at uncountable

cardinals κ with κ = κ<κ allows us to make an arbitrary subset of κκ Σ0
2-

definable by a cofinality-preserving forcing.

Definition 2.1. Assume that κ is an uncountable cardinal with κ = κ<κ,

A ⊆ κκ and ~s = 〈sα | α < κ〉 is an enumeration of <κκ with the property

that every element of <κκ is enumerated κ-many times. We define a partial

order C~s(A) by the following clauses.

(i) A condition in C~s(A) is a pair p = 〈tp, ap〉 with tp : αp −→ 2 for

some αp < κ and ap ∈ [A]<κ.

(ii) We have q ≤C~s(A) p if and only if tp ⊆ tq, ap ⊆ aq and

sβ ⊆ x −→ tq(β) = 1

for every x ∈ ap and αp ≤ β < αq.

The following proposition lists the basic properties of this partial order.

6A nonempty subset T ⊆ <κκ is a subtree of <κκ if it is closed under initial segments.
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Proposition 2.2. (i) If η < κ and 〈pξ | ξ < η〉 is a descending se-

quence of conditions in C~s(A), then the pair p = 〈
⋃
ξ<η tpξ ,

⋃
ξ<η apξ〉

is a condition in C~s(A) with p ≤C~s(A) pξ for all ξ < η. In particular,

C~s(A) is <κ-closed with infima.

(ii) If p and q are conditions in C~s(A) with tp = tq, then p and q are

compatible in C~s(A). In particular, C~s(A) satisfies the κ+-chain

condition. �

The coding provided by the above forcing turns out to be much stronger

than in the countable setting, because we no longer need to bother with the

definability of κκ of the ground model (see [9, Section 1]).

There is a sequence 〈Ṫα | α < κ〉 of canonical C~s(A)-names with the

property that whenever G is C~s(A)-generic over V and tG =
⋃
{tp | p ∈ G} :

κ −→ 2, then for every α < κ,

ṪGα = {t ∈ <κκ | ∀α < β < κ [tG(β) = 0 −→ sβ * t]}.

Theorem 2.3. If κ is an uncountable cardinal with κ = κ<κ, A is a subset of
κκ and G is C~s(A)-generic over V, then the sequence 〈ṪGα | α < κ〉 witnesses

that A is a Σ0
2-subset of κκ in V[G].

Rather than presenting the short proof of this theorem, we will prove an

absoluteness version of it in Section 4 (see Corollary 4.3) that will imply

the above statement. This result will show that the above coding does not

only hold true in V[G] but is in fact persistent under certain further forcing.

We close this section with a small observation showing that in a certain

sense, the generic coding provided by Theorem 2.3 is optimal.

Proposition 2.4. Let κ be an uncountable regular cardinal with κ = κ<κ.

Then there is a subset C of κκ with the property that in every generic ex-

tension of the ground model by a <κ-distributive forcing, the complement of

C is not a Σ0
2-subset of κκ.

Proof. Define C to be the club filter on κ, i.e. C is the set of all x ∈ κκ such

that the set {α < κ | x(α) = 0} contains a closed unbounded subset of κ.

Assume, towards a contradiction, that there is a generic extension V[G] of

the ground model V by a <κ-distributive forcing P such the complement of

C is a Σ0
2-subset of κκ in V[G]. Work in V[G]. By our assumption, there is

a sequence 〈Uα | α < κ〉 of open subsets of κκ with C =
⋂
α<κ Uα. By the

<κ-distributivity of P, the set C is dense in κκ and this implies that the set

Uα is open dense for every α < κ.



12 PETER HOLY AND PHILIPP LÜCKE

Let h : κκ −→ κκ be the unique function such that x(α) ≥ 2 implies

h(x)(α) = x(α) and x(α) < 2 implies h(x)(α) = 1 − x(α) for all x ∈ κκ

and α < κ. Then h is a homeomorphism of κκ and h[C] is also equal to

the interseaction of κ-many dense open subsets of κκ. In this situation, a

standard argument shows that there is an x ∈ C ∩ h[C] and there are closed

unbounded subsets C0 and C1 of κ in V such that Ci ⊆ {α < κ | x(α) = i}
for all i < 2. But then C0 ∩ C1 = ∅, a contradiction. �

Note that it also possible to use [8, Theorem 4.2] to derive a contradiction

in the proof of the above proposition.

3. Strongly S-complete Forcings

In this section, we define a strengthening of the notion of an S-complete

forcing introduced in [19, Chapter V, Definition 1.1]. We will use this prop-

erty to show that the forcing constructed in the proof of Theorem 1.4 is

<κ-distributive and preserves the stationarity of certain subsets of κ. This

will allow us to generically code information with the help of the sequence

〈Sα | α ≤ κ〉 of disjoint stationary sets.

Definition 3.1. Assume κ is an uncountable regular cardinal, S ⊆ κ and

P is a partial order. We say that P is strongly S-complete if there is a

sequence ~D = 〈Dα | α < κ〉 of open dense subsets of P with the property

that whenever

(a) θ > κ is a regular cardinal with P(P) ∈ H(θ),

(b) M is an elementary submodel of H(θ) of cardinality less than κ such

that ~D,P ∈M and α = κ ∩M ∈ S, and

(c) ~p = 〈pξ | ξ < η〉 is a descending sequence of conditions in P such

that pξ ∈ M for every ξ < η and {ᾱ < α | ∃ξ < η pξ ∈ Dᾱ} is

unbounded in α,

then there is a condition p in P with p ≤P pξ for every ξ < η.

Lemma 3.2. Let κ be an uncountable regular cardinal with η<η < κ for

every cardinal η < κ, let S be a fat stationary subset of κ and let P be a

strongly S-complete partial order. Then P is <κ-distributive.

Proof. We show that P is <η-distributive for every infinite cardinal η ≤ κ by

induction on η. Note that limit steps are trivial, for if η is a limit cardinal,

then P is <η-distributive iff it is <µ-distributive for every infinite cardinal

µ < η. Moreover, any forcing is trivially <ω-distributive. Similarly, if η < κ
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is a singular cardinal such that P is <η-distributive, then P is in fact <η+-

distributive. All of the above hold true for any notion of forcing P . The only

nontrivial case in the induction is the following.

Assume η < κ is a regular cardinal such that P is <η-distributive, let ḟ

be a P-name for a function from η to On and let p0 be a condition in P.

Pick a sequence ~D = 〈Dα | α < κ〉 of open dense subsets of P witnessing

that P is strongly S-complete, and pick a sufficiently large regular cardinal

θ.

We inductively construct a continuous ⊆-increasing chain 〈Mβ | β < κ〉
of elementary submodels of H(θ) of cardinality less than κ and a strictly

increasing continuous sequence 〈αβ | β < κ〉 of limit ordinals less than κ

such that the following statements hold for every β < κ.

(i) η, ḟ , p0, ~D,P ∈M0.

(ii) αβ = κ ∩Mβ ∈ κ.

(iii) If cof(αβ) < η, then cof(αβ)Mβ ⊆Mβ+1.

Then C = {αβ | β < κ} is a closed unbounded subset of κ and, using the

assumption that S is fat stationary, there is a strictly increasing continuous

map b : η + 1 −→ κ such that {αb(ξ) | ξ ≤ η} is a closed subset of S of order-

type η+1. Now we inductively construct a sequence 〈pξ | ξ < η〉 of conditions

in P and a sequence 〈tξ | ξ < η〉 such that pξ ∈Mb(ξ+1), pξ+1 
 “ ḟ � ξ̌ = ťξ ”

and pξ+1 ∈ Dαb(ξ) for every ξ < η.

Assume 〈pξ̄ | ξ̄ ≤ ξ〉 is already constructed. Then pξ and Dαb(ξ) are both

elements of Mb(ξ+1), because αb(ξ) < αb(ξ+1) ⊆ Mb(ξ+1). Using that P is <η-

distributive by induction hypothesis, there are pξ+1 ∈ Dαb(ξ) ∩Mb(ξ+1)+1 ⊆
Mb(ξ+2) and tξ with pξ+1 ≤P pξ and pξ+1 
 “ ḟ � ξ̌ = ťξ ”.

Now, assume ξ ∈ η ∩ Lim and 〈pξ̄ | ξ̄ < ξ〉 is already constructed. Then

{ᾱ < αb(ξ) | ∃ξ̄ < ξ pξ̄ ∈ Dᾱ} is unbounded in αb(ξ). Hence there is a con-

dition q in P with q ≤P pξ̄ for every ξ̄ < ξ. Let 〈ξµ | µ < cof(ξ)〉 be a

strictly increasing continuous sequence of ordinals that is cofinal in ξ. Since

cof(αb(ξ)) = cof(ξ) < η, we can conclude cof(ξ)Mb(ξ) ⊆ Mb(ξ)+1 ⊆ Mb(ξ+1).

This shows that the sequence 〈pξµ | µ < cof(ξ)〉 is an element of Mb(ξ+1)

and, by elementarity, there is a condition pξ ∈ Mb(ξ+1) such that pξ ≤P pξ̄
holds for every ξ̄ < ξ.

Since {ᾱ < αb(η) | ∃ξ < η pξ ∈ Dᾱ} is unbounded in αb(η), there is a con-

dition p ∈ P with p ≤P pξ for every ξ < η. If we define f =
⋃
ξ<η tξ, then

p 
 “ ḟ = f̌ ”. This shows that P is η-distributive. �
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We continue with a technical definition that summarizes the important

properties that we will deduce from strong S-completeness.

Definition 3.3. Let P be a partial order, let θ be a regular uncountable

cardinal with P(P) ∈ H(θ) and let M be an elementary submodel of H(θ)

with P ∈M . A condition p in P is strongly (M,P)-generic if whenever D is

a open dense subset of P that is an element of M , then there is a condition

q ∈ D with q ∈M and p ≤P q.

The following basic observation will be needed in the proof of the next

lemma.

Proposition 3.4. Let κ be an uncountable regular cardinal and let S be a

fat stationary subset of κ. If P is a <κ-closed partial order, then S is a fat

stationary subset of κ in every P-generic extension of V.

Proof. Let Ċ be a name for a club subset of κ, γ < κ and p0 be a condition

in P. Then we can inductively construct a descending sequence 〈pα | α < κ〉
of conditions in P and a sequence 〈cα | α < κ〉 of bounded subsets of κ such

that pα+1 
 “ Ċ ∩ α̌ = čα ” holds for every α < κ. Then C =
⋃
α<κ cα is a

closed unbounded subset of κ and there is an α∗ < κ such that C ∩ S ∩ α∗
contains a closed subset of order-type γ. Hence pα∗ ≤P p0 forces that the

intersection of Ċ and S contains a closed subset of order-type γ. �

We are now ready to show that strongly S-complete forcings contain

dense subsets of strongly generic conditions for a great variety of elementary

submodels.

Lemma 3.5. Assume that

(a) κ is an uncountable regular cardinal with η<η < κ for every η < κ,

(b) S is a fat stationary subset of κ,

(c) P is a partial order that is <κ-closed with infima,

(d) Q̇ is a P-name for a strongly S-complete partial order,

(e) ~D = 〈Ḋα | α < κ〉 is a sequence of P-names for open dense subsets

of Q̇ such that whenever G is P-generic over V, then the sequence

〈ḊG
α | α < κ〉 witnesses that Q̇G is strongly S-complete in V[G], and

(f) θ > κ is regular with ~D,P(P ∗ Q̇) ∈ H(θ).

Then for every element x of H(θ) and every regular cardinal η < κ, there is

a dense set of conditions 〈p, q̇〉 in P ∗ Q̇ such that the following statements

hold for some elementary submodel M of H(θ).

(i) M has cardinality less than κ and x,P, Q̇ ∈M .
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(ii) α = κ ∩ M ∈ S and there is a closed unbounded subset of α of

order-type η consisting of elements of S.

(iii) 〈p, q̇〉 is strongly (M,P ∗ Q̇)-generic.

(iv) The condition p is the infimum of a descending sequence of condi-

tions in P ∩M .

Proof. We start by proving some general facts about the behaviour of ele-

mentary submodels of H(θ) in P-generic extensions. Let M be an elementary

submodel of H(θ) of size less than κ, with ~D,P, Q̇ ∈M and κ ∩M ∈ S, let

〈〈pξ̄, q̇ξ̄〉 | ξ̄ < ξ〉 be a descending sequence of conditions in (P ∗ Q̇) ∩M of

length less than κ, such that every dense subset of P ∗ Q̇ that is an element

of M has some pξ̄ as element, and let pξ be the infimum of the sequence

〈pξ̄ | ξ̄ < ξ〉 in P. If G is P-generic over V, then H(θ)V[G] is a P-generic

extension of H(θ)V, and we define

M [G] = {ẋG | ẋ ∈M is a P-name}.

The following claims are standard, but we provide their short proofs for

sake of completeness.

Claim. If G is P-generic over V with pξ ∈ G, then M [G] is an elementary

submodel of H(θ)V[G] with M ∩ κ = M [G] ∩ κ.

Proof of the Claim. Let ẋ ∈M be a P-name with ẋG ∈ κ. Then

D = {〈p, q̇〉 ∈ P ∗ Q̇ | ∃α < κ p 
 “ ẋ = α̌”}

is a open dense subset of P ∗ Q̇ an an element M . Hence 〈pξ̄, q̇ξ̄〉 ∈ D ∩M
for some ξ̄ < ξ and there is an ᾱ ∈ κ ∩M with ẋG = ᾱ.

Assume there are P-names ẋ0, . . . , ẋn−1 ∈M such that ϕ(x, ẋG0 , . . . , ẋ
G
n−1)

holds in H(θ)V[G] for some formula ϕ(v0, . . . , vn) and some x ∈ H(θ)V[G].

Since H(θ)V[G] is a P-generic extension of the model H(θ)V, the set of all

conditions 〈p, q̇〉 in P ∗ Q̇ such that either p 
 “∀x ¬ϕ(x, ẋ0, . . . , ẋn−1)”

holds in H(θ)V or p 
 ϕ(ẋ, ẋ0, . . . , ẋn−1) holds in H(θ)V for some P-name

ẋ ∈ H(θ)V is a open dense subset of P ∗ Q̇, and is an element of M . By our

assumptions, this implies that there is a P-name ẋ∗ ∈ M and a ξ̄ < ξ such

that pξ̄ 
 ϕ(ẋ∗, ẋ0, . . . , ẋn−1) holds in H(θ)V and this shows that there is an

x ∈M [G] such that ϕ(x, ẋG0 , . . . , ẋ
G
n−1) holds in H(θ)V[G]. �

Claim. There is a P-name q̇ξ for a condition in Q̇ such that 〈pξ, q̇ξ〉 is

strongly (M,P ∗ Q̇)-generic condition and 〈pξ, q̇ξ〉 ≤P∗Q̇ 〈pξ̄, q̇ξ̄〉 for every

ξ̄ < ξ.
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Proof of the Claim. Let G be P-generic over V with pξ ∈ G and let D be a

open dense subset of Q̇G that is an element of M [G]. Then there is a P-name

Ḋ ∈M for a dense subset of Q̇ with D = ḊG and

D∗ = {〈p, q̇〉 ∈ P ∗ Q̇ | p 
 “ q̇ ∈ Ḋ ”}

is a open dense subset of P∗ Q̇ and an element of M . Hence there is a ξ̄ < ξ

such that 〈pξ̄, q̇ξ̄〉 is an element of D∗ ∩M , and this yields q̇G
ξ̄
∈ D. We can

conclude that for every α ∈ κ ∩M [G] there is ξ̄ < ξ with q̇G
ξ̄
∈ ḊG

α . By our

assumptions and the above claim, this shows that there is a condition qξ in

Q̇G such that qξ ≤Q̇G q̇
G
ξ̄

holds in V[G] for every ξ̄ < ξ. These computations

yield a P-name q̇ξ with the desired properties. �

Pick an element x of H(θ), a condition 〈p0, q̇0〉 in P ∗ Q̇ and a regular

cardinal η < κ. We inductively construct a continuous ⊆-increasing chain

Mβ of elementary submodels of H(θ) of cardinality less than κ and a strictly

increasing continuous sequence 〈αβ | β < κ〉 of limit ordinals less than κ such

that the following statements hold for every β < κ.

(i) η, p0, q̇0, ~D,P, Q̇ ∈M0.

(ii) αβ = κ ∩Mβ ∈ κ.

(iii) Mβ ∈Mβ+1.

(iv) If cof(αβ) < η, then cof(αβ)Mβ ⊆Mβ+1.

If we define C = {αβ | β < κ}, then there is a continuous strictly in-

creasing function b : η + 1 −→ κ such that {αb(ξ) | ξ ≤ η} is a closed subset

of S of order-type η+1. We define a decreasing sequence 〈〈pξ, q̇ξ〉 | ξ < η〉 of

conditions in P∗Q̇ such that 〈pξ, q̇ξ〉 ∈Mb(ξ+1) and 〈pξ+1, q̇ξ+1〉 is an element

of every open dense subset of P ∗ Q̇ that is an element of Mb(ξ).

Assume that the sequence 〈〈pξ̄, q̇ξ̄〉 | ξ̄ ≤ ξ〉 is already constructed. Then

Lemma 3.2 and Proposition 3.4 show that the partial order P ∗ Q̇ is <κ-

distributive and this implies that the intersection of all open dense subsets

of P∗Q̇ that are elements of Mb(ξ) is open dense. Since pξ, q̇ξ,Mb(ξ) ∈Mb(ξ+1)

and Mb(ξ) has cardinality less than κ in Mb(ξ+1), elementarity implies that

there is a condition 〈pξ+1, q̇ξ+1〉 in (P ∗ Q̇)∩Mb(ξ+1) below 〈pξ, q̇ξ〉 that is an

element of every open dense subset of P ∗ Q̇ that is an element of Mb(ξ).

Now assume that ξ ∈ η ∩ Lim and the sequence 〈〈pξ̄, q̇ξ̄〉 | ξ̄ < ξ〉 is

already constructed. By the above claim, there is a strongly (Mb(ξ),P ∗ Q̇)-

generic condition r with r ≤P∗Q̇ 〈pξ̄, q̇ξ̄〉 for every ξ̄ < ξ. Pick a sequence

〈ξµ | µ < cof(ξ)〉 that is cofinal in ξ. Since cof(αb(ξ)) = cof(ξ) < η, our

assumptions imply that the sequence 〈〈pξµ , q̇ξµ〉 | µ < cof(ξ)〉 is an element

Mb(ξ+1) and, since Mb(ξ) is an element of Mb(ξ+1), elementarity implies that
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there is a strongly (Mb(ξ),P∗Q̇)-generic condition 〈pξ, q̇ξ〉 ∈ (P∗Q̇)∩Mb(ξ+1)

such that 〈pξ, q̇ξ〉 ≤P∗Q̇ 〈pξ̄, q̇ξ̄〉 holds for every ξ̄ < ξ.

This completes the construction of the sequence 〈〈pξ, q̇ξ〉 | ξ < η〉. An-

other application of the above claim shows that there is a strongly (Mb(η),P∗
Q̇)-generic condition 〈pη, q̇η〉 such that 〈pη, q̇η〉 ≤P∗Q̇ 〈pξ, q̇ξ〉 for every ξ < η

and pη is the infimum of the sequence 〈pξ | ξ < η〉 in P. Moreover, the set

{αb(ξ) | ξ < η} is a club subset of αb(η) ∈ S consisting of elements of S. �

Corollary 3.6. Assume that κ, S, P, Q̇, ~D and θ satisfy the properties

listed in Lemma 3.5. Then S is a fat stationary subset of κ in every (P∗ Q̇)-

generic extension of the ground model.

Proof. Let Ċ be a (P ∗ Q̇)-name for a closed unbounded subset of κ and let

G ∗H be (P ∗ Q̇)-generic over V. Fix an infinite regular cardinal η < κ such

that either η is uncountable or κ = ω1. By Lemma 3.5, there is an elementary

submodel M of H(θ) containing Ċ with α = κ∩M ∈ S, a closed unbounded

subset c of α of order-type η contained in S and a strongly (M,P∗Q̇)-generic

condition r ∈ G. We then have α ∈ Lim(ĊG∗H)∩S and, if η is uncountable,

then c ∩ ĊG∗H contains a closed subset of order-type η.

If κ > ω1, then this argument shows that ĊG∗H ∩ S contains a closed

subset of order-type η+1 for every regular cardinal η < κ and, by [1, Lemma

1.2], this implies that S is fat stationary in V[G,H]. In the other case, the

argument shows that S is a stationary subset of ω1 in V[G,H] and every

such subset is fat by [5]. �

4. Almost Disjoint Coding and strongly S-complete Forcings

This section contains the proofs of the absoluteness versions of Theorem

2.3 mentioned at the end of Section 2. Throughout this section, let κ be an

uncountable cardinal satisfying κ<κ = κ, let A ⊆ κκ and let 〈Ṫα | α < κ〉
be defined as before the statement of Theorem 2.3.

Lemma 4.1. Let Q̇ be a C~s(A)-name for a partial order. Assume that for

sufficiently large regular cardinals θ and every x ∈ H(θ) there is a dense set

of conditions 〈p, q̇〉 in C~s(A) ∗ Q̇ that are strongly (M,C~s(A) ∗ Q̇)-generic

for some elementary submodel M of H(θ) of cardinality less than κ with

x,C~s(A), Q̇ ∈M , κ∩M ∈ κ and ap ⊆M . Then the sequence 〈ṪGα | α < κ〉
witnesses that A is a Σ0

2-subset of κκ in V[G,H] whenever G∗H is (C~s(A)∗
Q̇)-generic over V, i.e. A =

⋃
α<κ[Ṫ

G
α ] in V[G,H].

Proof. Fix x ∈ A. Then the set D = {p ∈ C~s(A) | x ∈ ap} is dense and

there is a condition p ∈ G with x ∈ ap. Assume, towards a contradiction,
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that x /∈ [ṪGαp ]
V[G]. Then there is a αp < β < κ with tG(β) = 0 and sβ ⊆ x.

In this situation, we can find a q ∈ G with q ≤C~s(A) p and β < αq. Then

sβ ⊆ x implies tG(β) = tq(β) = 1, a contradiction. This argument shows

that x ∈ [ṪGαp ]
V[G] ⊆ [ṪGαp ]

V[G,H].

Now, assume that there is an x ∈ [ṪGα ]V[G,H] \ A for some α < κ. Pick a

(C~s(A) ∗ Q̇)-name ẋ for an element of κκ with x = ẋG∗H and a sufficiently

large regular cardinal θ. By our assumption, we can find a condition 〈p∗, q̇∗〉
in G ∗ H with the property that 〈p∗, q̇∗〉 
 “ ẋ ∈ [Ṫα] \ Ǎ” and 〈p∗, q̇∗〉 is

strongly (M,C~s(A) ∗ Q̇)-generic for some elementary submodel M of H(θ)

of cardinality less than κ with α, ẋ,C~s(A), Q̇ ∈M , κ∩M ∈ κ and ap∗ ⊆M .

Given ᾱ ∈ κ ∩M , the set

Dᾱ =
{
r ∈ C~s(A) ∗ Q̇ | r 
 “ ẋ /∈ [Ṫα] ” ∨

∃u
[
lh(u) = ᾱ ∧ r 
 “ ǔ ⊆ ẋ ∧ ǔ ∈ Ṫα ”

]}
is an open dense subset of C~s(A) ∗ Q̇ and an element of M . Hence we can

find rᾱ ∈ Dᾱ ∩ M with 〈p∗, q̇∗〉 ≤C~s(A) rᾱ and uᾱ with lh(uᾱ) = ᾱ and

rᾱ 
 “ ǔᾱ ⊆ ẋ ∧ ǔα ∈ Ṫα ”. Define u =
⋃
{uᾱ | ᾱ < αpη}. Then 〈p∗, q̇∗〉 


“ ǔ ⊆ ẋ” and hence u ∈ Tα.

Next, if y ∈ A ∩M , then the set

Ey = {〈p, q̇〉 ∈ C~s(A) ∗ Q̇ | y ∈ ap ∧(
r 
 “ ẋ = y̌ ” ∨ ∃δ < κ r 
 “ ẋ � δ̌ 6= y̌ � δ̌ ”

)
}

is an element of M and a open dense subset of C~s(A)∗Q̇. This shows that for

every y ∈ A ∩M there is a condition ry ∈ Ey ∩M with 〈p∗, q̇∗〉 ≤C~s(A)∗Q̇ ry.

Having established that ap∗ ⊆M above, we can conclude that ap∗ = A∩M
and u * y for every y ∈ A ∩M .

By our assumptions on ~s, there is an αp∗ ≤ α∗ < κ with u = sα∗ and

we can find a condition p̄ in C~s(A) with p̄ ≤C~s(A) p∗, α∗ < αp̄, ap̄ = ap∗ and

tp̄(α∗) = 0. Let Ḡ ∗ H̄ be (C~s(A) ∗ Q̇)-generic over V with 〈p̄, q̇∗〉 ∈ Ḡ ∗ H̄.

Then ẋḠ ∈ [Ṫ Ḡα ]V[Ḡ,H̄] and hence u = ẋḠ � lh(u) ∈ Ṫ Ḡα . But we also have

α∗ ≥ αp∗ > α, sα∗ = u and tḠ(α∗) = tp̄(α∗) = 0, contradicting the definition

of Ṫα. �

Corollary 4.2. Assume that η<η < κ holds for every η < κ. If S is a

fat stationary subset of κ, Q̇ is a C~s(A)-name for a strongly S-complete

partial order and G ∗ H is (C~s(A) ∗ Q̇)-generic over V, then the sequence

〈ṪGα | α < κ〉 witnesses that A is a Σ0
2-subset of κκ in V[G,H].

Proof. Pick θ satisfying Lemma 3.5.(f) and some x ∈ H(θ). By Lemma

3.5, there is a dense set of conditions 〈p, q̇〉 in C~s(A) ∗ Q̇ such that the
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statements (i)-(iv) listed in the lemma hold for some elementary submodel

M of H(θ) of cardinality less than κ with x ∈M . Since every such condition

p is the infimum of a sequence of conditions in C~s(A) ∩M , Proposition 2.2

shows that ap ⊆ M holds for these conditions. We can conclude that the

assumptions of Lemma 4.1 are satisfied in this case. �

We close this section with another corollary of Lemma 4.1 that directly

implies the statement of Theorem 2.3. Note that, in contrast to the last

corollary, the following argument only uses the assumption that κ is an

uncountable cardinal with κ = κ<κ.

Corollary 4.3. Let Q̇ be a C~s(A)-name for a σ-closed, <κ-distributive

partial order. If G ∗ H is (C~s(A) ∗ Q̇)-generic over V, then the sequence

〈ṪGα | α < κ〉 witnesses that A is a Σ0
2-subset of κκ in V[G,H].

Proof. We show that the assumptions of Lemma 4.1 are satisfied in this

setting. Let θ be a sufficiently large regular cardinal, x ∈ H(θ) and r be a

condition in C~s(A) ∗ Q̇. Since our assumptions imply that the partial or-

der C~s(A) ∗ Q̇ is <κ-distributive and therefore the intersection of less than

κ-many open dense subsets of this partial order is nonempty, we can simul-

taneously construct a ⊆-increasing sequence 〈Mn | n < ω〉 of elementary

submodels of H(θ) of cardinality less than κ and a descending sequence

〈〈pn, q̇n〉 | n < ω〉 of conditions in C~s(A)∗ Q̇ below r such that the following

statements hold for every n < ω.

(i) r, x,C~s(A) ∗ Q̇ ∈M0, 〈pn, q̇n〉,Mn ∈Mn+1 and κ ∩Mn ∈ κ.

(ii) 〈pn, q̇n〉 is an element of every open dense subset of C~s(A) ∗ Q̇ that

is an element of Mn.

Set M =
⋃
n<ωMn and let p be the infimum of the sequence 〈pn | n < ω〉 in

C~s(A). By our assumption, there is a C~s(A)-name q̇ for a condition in Q̇ with

〈p, q̇〉 ≤C~s(A)∗Q̇ 〈pn, q̇n〉 for all n < ω. Then 〈p, q̇〉 is strongly (M,C~s(A) ∗ Q̇)-

generic with the desired properties. �

5. The Main Forcing Construction

In this section and the next, we work under the following assumptions.

(1) κ is an uncountable cardinal with κ = κ<κ and η<η < κ for every

η < κ.

(2) λ = 2κ is a regular cardinal.

(3) 〈Sα | α ≤ κ〉 is a sequence of disjoint stationary subsets of Sκη if κ

is the successor of a regular cardinal η and a sequence of disjoint

fat stationary subsets of κ if κ is inaccessible.
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We define S = Sκ, ~S = 〈Sα | α < κ〉 and S̃α = κ \ Sα for every α < κ.

Note that assumption (1) implies that κ is either an inaccessible cardinal

or the successor of a regular cardinal. In the following, we will work with

stationary subsets R of κ such that either κ = η+ and R ⊆ Sκη or κ is

inaccessible and R is fat stationary. We write R∗ = R∪Sκ<η in the first case

and R∗ = R in the second case. By using [1, Lemma 1.2], it is easy to see

that R∗ is a fat stationary subset of κ in both cases.

Towards a proof of Theorem 1.4, we recursively define a forcing that

simultaneously performs the following three tasks.7

• Generically add a sequence ~A = 〈Aδ | δ < 2κ〉 of subsets of κ in

the generic extension V[G] such that every element of H(κ+)V[G] is

coded (in a sense made precise later on) by exactly one Aδ.

• Generically code ~A to ensure that this sequence is definable over

H(κ+)V[G] by a Σ1-formula using a parameter y ⊆ κ that is added

by our forcing.

• Ensure that the parameter y is definable in H(κ+)V[G] by a Σ1-

formula that uses the sequence 〈Sα | α < κ〉 as a parameter.

In this situation, we can well-order H(κ+)V[G] in the desired way by iden-

tifying each element of H(κ+)V[G] with the unique Aδ coding it. The generic

coding used in this construction will be a variation of the almost disjoint

coding forcing from Section 2 that was introduced in [2, Section 2] and com-

bines the original forcing with iterated club shooting. The additional coding

to make the parameter y definable from 〈Sα | α < κ〉 will be achieved by

further iterated club shooting.

Before we begin with the construction of our forcing, we specify a number

of notions used in this construction and fix some more assumptions. We start

with several notions of coding sets into other sets.

• We let ≺·, ·� : On×On −→ On denote the Gödel pairing function.

• We say that A ⊆ κ codes an element z of H(κ+) if there is a bijection

b : κ −→ tc({z}) such that

A = {≺0,≺α, β�� | α, β < κ, b(α) ∈ b(β)} ∪ {≺1, α� | α < κ, b(α) ∈ z}.

Note that z and b are uniquely determined by A.

7This extends the construction of the forcing to witness Theorem 1.3, as provided
in [11, Section 2], by the additional third task below. Note that this task introduces
the additional technical difficulty that the witnessing forcing for Theorem 1.4 cannot be
(unlike the witnessing forcing for Theorem 1.3) <κ-closed. The final forcing to witness
Theorem 1.4 will be a two-step iteration of the forcing described in this section preceded
by a preliminary forcing to achieve assumption (5) below. This two-step iteration is
described in detail at the end of Section 6.
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• Given x, y ∈ κκ, we define x⊕ y ∈ κκ by setting

(x⊕ y) (α) :=

 x(β), if α = ≺0, β�,
y(β), if α = ≺1, β�,
0, otherwise.

for all α < κ.

• Given α, β < κ, we define c(α, β) ∈ κ2 by setting

c(α, β) (γ) :=

{
1, if γ ∈ {≺0, α�,≺1, β�},
0, otherwise.

for all γ < κ.

In addition to our previous assumptions, we also assume that the follow-

ing objects exist. Note that we can (and will) achieve (5) by a preparatory

almost disjoint coding forcing, using Corollary 4.2.

(4) ~w = 〈wγ | γ < λ〉 is a sequence of pairwise distinct elements of κ2.

(5) ~T = 〈Tα | α < κ〉 is a sequence of subtrees of <κκ with the property

that

(1) {wγ̄ ⊕ wγ | γ̄ < γ < λ} =
⋃
α<κ

[Tα]V[G]

holds whenever V[G] is a generic extension of the ground model V

by a strongly S∗-complete forcing.

~T thus witnesses that {wγ̄ ⊕ wγ | γ̄ < γ < λ} is a Σ0
2-subset of κκ in

every generic extension by a strongly S∗-complete forcing.

In the following, we inductively construct a sequence ~P~w = 〈Pγ | γ ≤ λ〉
of partial orders such that Pδ is a complete subforcing of Pγ whenever δ <

γ ≤ λ. Fix γ ≤ λ and assume that we constructed Pδ with that property

for every δ < γ.

Definition 5.1. We call a tuple

p = 〈sp, tp, ~dp,~cp, ~Ap〉

a Pγ-candidate if the following statements hold for some ordinals βp < κ

and γp < min{γ + 1, λ}.
(i) sp : βp + 1 −→ <κ2.

(ii) tp : βp + 1 −→ 2.

(iii) ~dp = 〈dp,α | α ≤ βp〉 is such that dp,α is a closed subset of S̃α∩(βp+1)

for every α ≤ βp. We require that dp,α is the empty set if α = β ·7+i

with i < 7, β = ≺γ, δ� and one of the following statements holds.8

8We will shoot clubs through the S̃α, but only for specific α, in order to ensure that

in the end, certain sets will be definable using ~S as parameter by checking which of the
Sα remained stationary. Coding each piece of information both positively and negatively



22 PETER HOLY AND PHILIPP LÜCKE

(a) i < 2 and sp(γ)(δ) = i.

(b) i = 2 and lh(sp(γ)) ≤ δ.

(c) 2 < i < 5 and tp(β) = i− 3.

(d) i = 5 and sp(γ) 6∈ Tδ.
(e) i = 6 and sp(γ) ∈ Tδ.

(iv) ~cp = 〈cp,x | x ∈ ap〉 is a sequence that satisfies the following prop-

erties.

(a) ap is a subset of {wδ ⊕ c(α, i) | δ < γp, α < κ, i < 2} of cardi-

nality less than κ.

(b) If x ∈ ap, then cp,x is a closed subset of βp + 1 and the impli-

cation

sp(α) ⊆ x −→ tp(α) = 1

holds for every α ∈ cp,x.
(v) ~Ap = 〈Ȧp,δ | δ < γp〉 is a sequence that satisfies the following state-

ments.

(a) If δ < γp, then Ȧp,δ is a Pδ-nice name for a subset of κ (and

thus by our assumptions a Pδ̃-nice name for a subset of κ for

every δ ≤ δ̃ < γ).

(b) If γ̄ < γp and G is Pγ̄-generic over the ground model V, then

either |λ|V[G] = |γ̄|V[G] holds9 or in V[G], there is a sequence

〈yδ | δ ≤ γ̄〉 of pairwise distinct elements of H(κ+) s.t. ȦGp,δ
codes yδ for every δ ≤ γ̄.

Given a Pγ-candidate p and δ ≤ γ, we define p � δ to be the tuple

〈sp, tp, ~dp, 〈cp,x | x ∈ ap � δ〉, ~Ap � min{γp, δ}〉,

where ap � δ = ap ∩ {wδ̄ ⊕ c(α, i) | δ̄ < δ, α < κ, i < 2}.
It is straightforward to check that whenever p is a Pγ-candidate and

δ ≤ γ, p � δ is a Pδ-candidate.

Definition 5.2. A Pγ-candidate p is a condition in Pγ if the following

statement holds for all δ < γp, α < κ and i < 2 with wδ ⊕ c(α, i) ∈ ap.
(vi) If p � δ is a condition in Pδ, then

p � δ 
Pδ “ i = 1 ←→ α̌ ∈ Ȧp,δ ”.10

will make sure that the complexity of those definitions will in fact be ∆1-definable. Note
that each S̃α is a fat stationary subset of κ.

9We will show later that this case never occurs (see Corollary 5.12).
10The idea behind this construction is that the set ap collects information about the

interpretations of names in ~Ap that is already decided by the condition p. This will
allow us to use the almost disjoint coding part of the forcing (see Clause (iv), (b)) to

add a subset of κ that in the end codes
⋃
p∈G ap and thus also

⋃
p∈G

~Ap whenever G is
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Given conditions p and q in Pγ, we define q ≤Pγ p to hold if sp = sq �

(βp + 1), tp = tq � (βp + 1), dp,α = dq,α � (βp + 1) for every α ≤ βp, ap ⊆ aq,
~Ap = ~Aq � γp and cp,x = cq,x � (βq + 1) for every x ∈ ap.

Proposition 5.3. If p is a condition in Pγ and δ < γ, then p � δ is a

condition in Pδ. In particular, every condition p in Pγ is also a condition in

Pγp.

Proof. Let δ < γ and assume that p � δ̄ is a condition in Pδ̄ for every δ̄ < δ.

Fix δ̄ < δ, α < κ and i < 2 with wδ̄ ⊕ c(α, i) ∈ ap�δ. Then (p � δ) � δ̄ = p � δ̄

is a condition in Pδ̄ and ap�δ = ap � δ ⊆ ap. Since p is a condition in Pγ, this

implies δ̄ < γp and

(p � δ) � δ̄ 
Pδ “ i = 1 ←→ α̌ ∈ Ȧp,δ̄ ”.

We can conclude that p � δ is a condition in Pδ. �

The following statement is a direct consequence of the above definitions.

Proposition 5.4. If p is a condition in Pγ and ~A is a sequence of length

smaller than min{γ+ 1, λ} such that ~Ap ⊆ ~A and ~A satisfies the statements

listed in Clause (v) of Definition 5.1, then the tuple 〈sp, tp, ~dp,~cp, ~A〉 is a

condition in Pγ that is stronger than p. �

Proposition 5.5. If γ̄ < min{γ + 1, λ}, then the set of all conditions p in

Pγ with γp ≥ γ̄ is dense in Pγ.

Proof. Fix a condition p in Pγ with γp < γ̄. Since γ̄ < λ = 2κ, we can

recursively construct a sequence ~A of length γ̄ that satisfies the statements

listed in Clause (v) of Definition 5.1. By Proposition 5.4, the resulting tuple

〈sp, tp, ~dp,~cp, ~A〉 is a condition in Pγ that is stronger than p. �

Lemma 5.6. If δ < γ, then Pδ is a complete subforcing of Pγ.

Proof. Every condition in Pδ is a condition in Pγ, ≤Pδ = ≤Pγ� (Pδ × Pδ)
and, if q is a condition in Pδ and p is a condition in Pγ with p ≤Pγ q,

then Proposition 5.3 shows that p � δ is a condition in Pδ and it is easy to

check that p � δ ≤Pδ q holds. Hence it suffices to show that every maximal

antichain in Pδ is maximal in Pγ.
Fix a maximal antichain A of Pδ and a condition p0 in Pγ. By Proposition

5.5, there is a condition p with p ≤Pγ p0 and γp ≥ δ. Proposition 5.3 implies

Pλ-generic. In Clause (iii), we simultaneously work on making this subset of κ lightface
definable.
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that p � δ is a condition in Pδ. Hence we find a condition q in Pδ and r ∈ A
with q ≤Pδ p � δ, r. Then γq = δ. Define p∗ to be the tuple

〈sq, tq, ~dq, 〈cp,x | x ∈ ap \ aq〉 ∪ 〈cq,x | x ∈ aq〉, ~Ap〉.

Then p∗ is a Pγ-candidate with γp∗ = γp. Fix δ̄ < γ, α < κ and i < 2 such

that p∗ � δ̄ is a condition in Pδ̄ and x = wδ̄ ⊕ c(α, i) ∈ ap ∪ aq. If x ∈ aq,
then δ̄ < δ ≤ γp∗ and ~Aq = ~Ap � δ implies that p∗ � δ̄ ≤Pδ̄ q � δ̄. Hence

p∗ � δ̄ 
Pδ̄ “ i = 1←→ α̌ ∈ Ȧp,δ̄ ”

holds in this case. Now assume that x ∈ ap \ aq. Since q ≤Pδ p � δ, we have

p∗ � δ̄ ≤Pδ̄ p � δ̄ and this implies that the above forcing statement also holds

in this case. Therefore p∗ is a condition in Pγ and our construction ensures

that p∗ ≤Pγ p, q holds. Hence A is a maximal antichain in Pγ. �

This completes the construction of the sequence ~P~w of partial orders.

Proposition 5.7. Let γ ≤ λ, λ̄ < λ and 〈pα | α < λ̄〉 be a sequence of

conditions in Pγ such that ~Apα ⊆ ~Apβ holds for all α < β < λ̄. Then ~A =⋃
{ ~Apα | α < λ̄} satisfies the statements listed in Clause (v) of Definition

5.1. �

Proposition 5.8. If β̄ < κ and γ ≤ λ, then the set of all conditions q in

Pγ with βq ≥ β̄ is dense in Pγ. In particular, if γ ≤ λ and G is Pγ-generic

over V, then κ = sup{βp | p ∈ G}.

Proof. Fix a condition p in Pγ with βp < β̄ and define q to be the tuple

〈sp ∪ 〈(α, ∅) | βp ≤ α ≤ β̄〉, tp ∪ 〈(α, 1) | βp ≤ α ≤ β̄〉, 〈dq,α | α ≤ β̄〉,~cp, ~Ap〉

with dq,α = dp,α for α ≤ βp and dq,α = ∅ for all βp < α ≤ β̄. Then it is easy

to see that q is a condition in Pγ with q ≤Pγ p and βq = β̄. �

Lemma 5.9. If γ ≤ λ, then Pγ is strongly S∗-complete. Moreover, if p is

a condition in Pγ and ζ ≤ βp is such that dp,ζ is required to be the empty

set by one of the statements listed in Clause (iii) of Definition 5.1, then the

partial order of conditions in Pγ below p is strongly S∗ζ -complete.

Proof. Let ~D = 〈Dα | α < κ〉 be defined by setting Dα = {q ∈ Pγ | βq ≥ α}
for every α < κ. Each Dα is open dense in Pγ by Proposition 5.8. We show

that ~D witnesses that Pγ is strongly S∗-complete.

Assume θ > κ is a regular cardinal with P(Pγ) ∈ H(θ), M is an elemen-

tary substructure of H(θ) of cardinality less than κ with β = sup(M ∩ κ) ∈
S∗ and ~D,Pγ ∈ M and ~p = 〈pξ | ξ < η〉 ⊆ M is a descending sequence of
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conditions in Pγ such that {α < β | ∃ξ < η pξ ∈ Dα} is unbounded in β.

This implies that β = supξ<η βpξ ∈ S∗. We define a tuple

p∗ = 〈s, t, 〈dα | α ≤ β〉, 〈cx | x ∈ a〉, ~A〉,

by setting

• s = {〈β, ∅〉} ∪
⋃
{spξ | ξ < η}.

• t = {〈β, 1〉} ∪
⋃
{tpξ | ξ < η}.

• d̄α =
⋃
{dpξ,α | ξ < η, α ≤ βpξ} for every α < β.

• dα =

{
d̄α ∪ {β}, if α < β and d̄α 6= ∅.
∅, if either α = β or α < β and d̄α = ∅.

• a =
⋃
{apξ | ξ < η},

• cx = {β} ∪
⋃
{cpξ,x | ξ < η, x ∈ apξ} for each x ∈ a,

• ~A =
⋃
{ ~Apξ | ξ < η}.

By Proposition 5.7, ~A satisfies the statements listed in Clause (v) of

Definition 5.1. Since β ∈ S∗ ⊆ S̃α for every α < β, we can conclude that p∗

is a Pγ-candidate. Fix δ < γ, ν < κ and i < 2 with x = wδ ⊕ c(ν, i) ∈ a.

Then there is ξ < η with x ∈ apξ and hence δ < γpξ ≤ γp∗ . If p∗ � δ is

a condition in Pδ, then p∗ � δ ≤Pδ pξ � δ and hence it forces that α is an

element of Ȧp∗,δ if and only if i = 1. This shows that p∗ is a condition in Pγ
and our construction ensures that p∗ ≤Pγ pξ holds for every ξ < η.

The proof of the second statement is similar, noting that if p and ζ are

as in its hypothesis, then we have S∗ζ ⊆ S̃α for all ζ 6= α < κ and dq,ζ = ∅
for every condition q in Pγ below p. Thus, if θ, M , β and ~p satisfy the

above statements with S∗ replaced by S∗ζ , then we can repeat the above

construction to obtain a condition p∗ witnessing strong S∗ζ -completeness.

�

If κ = η+ is a successor cardinal, then the assumption Sα ⊆ Sκη can be

used to show that Pγ is in fact <η-closed.

Lemma 5.10. If γ < λ and p ∈ Pγ is a condition with γp = γ, then the

forcing Pγ satisfies the κ+-cc below p.

Proof. By a standard ∆-system argument, using the assumption that κ =

κ<κ and that whenever q ≤ p in Pγ we have that ~Aq = ~Ap. �

Lemma 5.11. If q is a condition in Pλ and D is a collection of less than

λ-many open dense subsets of Pλ, then there is a condition p in Pλ such

that p ≤Pλ q and the set D ∩ Pγp is dense below p in Pγp for every D ∈ D.

Proof. We start by proving the following claim. An iterated application of

this claim will yield the statement of the lemma.
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Claim. Let q0 be a condition in Pλ and D be a open dense subset of Pλ. Then

there is a condition q∗0 in Pλ such that q∗0 = 〈sq0 , tq0 , ~dq0 ,~cq0 , ~Aq∗0 〉 ≤Pλ q0 and

D ∩ Pγq∗0 is dense below q∗0 in Pγq∗0 .

Proof of the Claim. We inductively construct a sequence 〈qα | 0 < α < θ〉
of incompatible conditions below q0 in Pλ with 0 < θ ≤ κ+ and ~Aqᾱ ⊆ ~Aqα
for all ᾱ < α < θ: Assume that the sequence 〈qᾱ | 0 < ᾱ < α〉 is already

constructed. If there is pα ∈ D such that pα ≤Pλ 〈sq0 , tq0 , ~dq0 ,~cq0 ,
⋃
ᾱ<α

~Apᾱ〉
and the conditions pα and qᾱ are incompatible in Pλ for all 0 < ᾱ < α, then

we set qα = pα and we continue our construction. Otherwise, we stop our

construction and set θ = α.

Define ~A =
⋃
α<θ

~Aqα and q∗α = 〈sqα , tqα , ~dqα ,~cqα , ~A〉 for all α < θ. Given

α < θ, Proposition 5.7 shows that q∗α is a condition in Pγq∗0 below q∗0 and qα.

In particular, the set A = {q∗α | 0 < α < θ} is an antichain in Pγq∗0 below

q∗0. By Lemma 5.10, this means that the above construction has stopped at

stage θ < κ+, because no suitable condition pθ could be found. This implies

that A is a maximal antichain in Pγq∗0 below q∗0.

Pick a condition p in Pγq∗0 below q∗0. Then there is 0 < α < θ and a

condition r in Pγq∗0 with r ≤Pγq∗0
p, q∗α. Since q∗α is an element of D, we get

r ∈ D. This shows that the condition q∗0 has the desired properties. �

Let 〈Dα | α < λ̄〉 be an enumeration of D such that λ̄ < λ is a limit

ordinal. By the above claim and Proposition 5.7, we can construct a de-

creasing sequence 〈qα | α ≤ λ̄〉 of conditions in Pλ such that q = q0, qα =

〈sq, tq, ~dq,~cq, ~Aqα〉 for all α ≤ λ̄ and Dα∩Pγqα+1
is dense below qα+1 in Pγqα+1

for all α < λ̄.

Pick a condition r in Pγqλ̄ below qλ̄ and α < λ̄. Then our construction

ensures ~Ar = ~Aqλ̄ and r � γqα+1 ≤Pγqα+1
qλ̄ � γqα+1 = qα+1. This allows

us to find a condition r̄α ∈ Dα with r̄α ≤Pγqα+1
r � γqα+1 . We define ~c =

〈cx | x ∈ ar ∪ ar̄α〉 by letting cx = cr̄α,x if x ∈ ar̄α and letting cx = cr,x

otherwise. Then rα = 〈sr̄α , tr̄α , ~dr̄α ,~c, ~Ar〉 is a Pγqλ̄ -candidate with r̄α = rα �

γqα+1 . Moreover, if δ < γqλ̄ and rα � δ is a condition in Pδ, then this condition

is stronger than r � δ. We can conclude that rα is actually a condition in

Pγqλ̄ that is a common extension of r and r̄α, and an element of Dα. This

shows that p = qλ̄ has the desired properties. �

Corollary 5.12. Forcing with Pλ preserves all cofinalities less than or equal

to λ.

Proof. By Lemma 3.2 and Lemma 5.9, forcing with Pλ preserves cofinalities

less than or equal to κ. Let γ ≤ λ be a limit ordinal with cof(γ) > κ and let ν
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be a regular cardinal with κ ≤ ν < cof(γ). Assume, towards a contradiction,

that there is q ∈ Pλ and a Pλ-name ċ with q 
Pλ “ ċ : ν̌ −→ γ̌ is cofinal”.

Given α < ν, define

Dα = {p ∈ Pλ | ∃β < γ p 
Pλ “ ċ(α̌) = β̌ ”}.

Let G be Pλ-generic over V. By Lemma 5.11, there is p ∈ G such that

p ≤Pλ q and Dα ∩ Pγp is dense below p in Pγp for every α < ν. By Lemma

5.10, Pγp satisfies the κ+-cc below p. Therefore we can define c : ν −→ γ in

V by setting

c(α) = sup{β + 1 | ∃r ∈ Pγp [r ≤Pγp p ∧ r 
Pλ “ ċ(α̌) = β̌ ”]}

for every α < ν. Pick α < ν. By Lemma 5.6, Ḡ = G∩Pγp is Pγp-generic over

V. Since p ∈ Ḡ, the above computations show that there is an r ∈ Dα ∩ Ḡ.

If β < γ witnesses that r is an element of Dα, then ċG(α) = β < c(α). This

shows that the range of c is unbounded in γ, a contradiction. �

Corollary 5.13. Let G be Pλ-generic over V and A be a subset of κ in

V[G]. Then there is a γ < λ such that A = ȦG∩Pγ for some Pγ-name Ȧ for

a subset of κ.

Proof. Let Ȧ0 be a Pλ-name for a subset of κ with A = ȦG0 and, given

α < κ, let Dα be the open dense subset of Pλ consisting of all conditions in

Pλ that decide the statement “ α̌ ∈ Ȧ0 ”. By Lemma 5.11, there is a p ∈ G
such that the set Dα ∩ Pγp is dense below p for every α < κ. Define

Ȧ = {〈α̌, r〉 | α < κ, r ∈ Dα ∩ Pγp , r ≤Pλ p, r 
Pλ “ α̌ ∈ Ȧ0 ”}.

Then Ȧ is a Pγp-name for a subset of κ and we can use Lemma 5.6 to

conclude that A = ȦG = ȦG∩Pγp . �

6. The Proof of Theorem 1.4

We are now ready to show how the forcing constructed in the last section

can be used to produce a locally Σ1-definable well-order of H(κ+) using only

the sequence ~S as a parameter.

Lemma 6.1. If G is Pλ-generic over V and y is an element of H(κ+)V[G],

then there is a unique ordinal δ < λ such that for some p ∈ G with δ < γp

the set ȦGp,δ codes y.

Proof. By Corollary 5.13, there is a γ < λ and a Pγ-name ẏ such that

y = ẏG∩Pγ . Fix a condition p in Pλ with γp ≥ γ. Let Ȧ be a Pγp-name

for a subset of κ such that the following statements hold whenever H is

Pγp-generic over V with p ∈ H and ẏH ∈ H(κ+)V[G].
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• If there is no δ < γp such that ȦHp,δ codes ẏH , then ȦH codes ẏH .

• Otherwise, ȦH codes an element of H(κ+)V that is not coded by

some ȦHp,δ with δ < γp (note that Corollary 5.12 implies that such

an element always exists).

Define ~A = ~Ap ∪ {〈γp, Ȧ〉}. Then ~A satisfies the statements listed in

Clause (v) of Definition 5.1 and 〈sp, tp, ~dp,~cp, ~A〉 is a condition in Pλ below

p. This density argument shows that there is q ∈ G and δ < γq such that

γq > γ and Ȧ
G∩Pγq
q,δ = ȦGq,δ codes ẏG∩Pγq = ẏG.

Now assume, towards a contradiction, that there are δ0 < δ1 < λ and

p0, p1 ∈ G such that both ȦGp0,δ0
and ȦGp1,δ1

code y. Pick p ∈ G with

p ≤Pλ p0, p1. Then Ḡ = G ∩ Pδ1 is Pδ1-generic over V and Corollary 5.12

implies |δ1|V[Ḡ] < |λ|V[Ḡ]. Thus ȦḠp,δ0 = ȦGp0,δ0
and ȦḠp,δ1 = ȦGp1,δ1

code the

same element of H(κ+)V[Ḡ], contradicting Clause (v) of Definition 5.1 for

the condition p. �

Corollary 6.2. Forcing with Pλ preserves the value of 2κ. �

If G is Pλ-generic over V, then we define

D(G) = {wδ ⊕ c(α, i) | i < 2, ∃p ∈ G [δ < γp ∧ (i = 1 ←→ α ∈ ȦGp,δ)]}.

Proposition 6.3. If G is Pλ-generic over V and x = wδ ⊕ c(α, i) ∈ D(G),

then there is a condition p ∈ G with x ∈ ap. In particular, D(G) =
⋃
p∈G ap.

Proof. Assume x = wδ ⊕ c(α, i) ∈ D(G). Then there is a condition q ∈ G
such that δ < γq and q � δ 
Pδ “ i = 1←→ α̌ ∈ Ȧq,δ ”. We may assume that

x /∈ aq. Fix p0 ∈ Pλ with p0 ≤Pλ q and x /∈ ap0 . If we define

p = 〈sp0 , tp0 ,
~dp0 , {〈x, ∅〉} ∪ 〈cp0,y | y ∈ ap0〉, ~Ap0〉,

then the above assumptions imply that p is a condition in Pλ that is stronger

than p0. Hence the set of all conditions p in Pλ with x ∈ ap is dense below

q ∈ G.

The second statement of the claim is immediate from its first statement

and the definition of Pλ. �

Proposition 6.4. If G is Pλ-generic over V and x ∈ D(G), then

κ = sup{sup(cp,x) | p ∈ G, x ∈ ap}

and for every α < κ, either κ = sup{sup(dp,α) | p ∈ G} or dp,α = ∅ for every

p ∈ G with α ≤ βp. Moreover the latter case occurs if and only if there is a

condition p ∈ G such that α ≤ βp and dp,α is required to be the empty set

by one of the statements listed in Clause (iii) of Definition 5.2.
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Proof. Fix a condition q in Pλ with x ∈ aq and β ∈ S with βq < β < κ.

Moreover, if there is an α ≤ βq such that dq,α is not required to be the

empty set by one of the statements listed in Clause (iii) of Definition 5.2,

then we also fix such an ordinal α. We define p to be the tuple

〈s, t, 〈dζ | ζ ≤ β〉, 〈cx | x ∈ aq〉, ~Aq〉

with

• s = sq ∪ 〈〈ξ, ∅〉 | βq < ξ ≤ β〉.
• t = tq ∪ 〈〈ξ, 1〉 | βq < ξ ≤ β〉.
• cx = cq,x ∪ (βq, β] for all x ∈ aq.

• dζ =

 dq,ζ , if ζ ≤ βq with α 6= ζ.
dq,α ∪ {β}, if α = ζ.
∅, if βq < ζ ≤ β.

Then p is a condition in Pλ with p ≤Pλ q, βp = β, sup(cp,x) = β and

sup(dp,α) = β. Together with Proposition 6.3, this implies all but the back-

wards direction of the last statement of the claim. To see that this direction

holds as well, note that if p ∈ G and dp,α is required to be the empty set by

one of the statements in Clause (iii) of Definition 5.2 and q is a condition in

Pλ below p, then dq,α is required to be the empty set by that same statement

and hence dq,α = ∅ for every q ∈ G with α ≤ βq. �

We fix Pλ-names ṡ and ṫ in V such that ṡH =
⋃
{sp | p ∈ H} : κ −→ <κ2

and ṫH =
⋃
{tp | p ∈ H} : κ −→ 2 holds whenever H is Pλ-generic over V.

Lemma 6.5. If G is Pλ-generic over V, then D(G) is definable over the

structure 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters ṡG and ṫG.

Proof. Let G be Pλ-generic over V. The statement of the lemma will be a

consequence of the following two claims. The first claim is a direct conse-

quence of the definition of Pλ and Proposition 6.4.

Claim. If x ∈ D(G), then Cx
G =

⋃
{cp,x | p ∈ G, x ∈ ap} is a club subset

of κ such that the implication

(2) ṡG(α) ⊆ x −→ ṫG(α) = 1

holds for all α ∈ Cx
G. �

Claim. Assume that x ∈ (κ2)V[G] is such that the implication (2) holds for

every element α of some club subset C of κ. Then x is an element of D(G).

Proof of the Claim. Note that the following proof will be similar to the

proof of Lemma 4.1. Let ȧ be the canonical Pλ-name such that ȧH =⋃
{ap | p ∈ H} holds whenever H is Pλ-generic over V. Assume, towards
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a contradiction, that x is not an element of ȧG = D(G). Then we can find

q ∈ G and Pλ-names Ċ and ẋ such that x = ẋG and

q 
Pλ “ ẋ ∈ κ̌2 \ ȧ ∧ Ċ ⊆ κ̌ club ∧ ∀α ∈ Ċ [ṡ(α) ⊆ ẋ −→ ṫ(α) = 1]”

Fix a condition p0 in Pλ below q. Let M be a countable elementary

substructure of 〈H(θ),∈〉 for some large, regular θ with the property that

β = sup(M ∩ κ) ∈ S∗ and Pλ, p0, q, ȧ, Ċ, ẋ ∈M . Pick a decreasing sequence

of conditions 〈pn | n < ω〉 ⊆M so that pn ∈ D for some n whenever D ∈M
is a dense subset of Pλ. By the genericity of the pn and the fact that forcing

with Pλ preserves the regularity of κ, we have β = supn<ω βpn and (using

Lemma 3.2 and Lemma 5.9) there is u : β −→ 2 such that for every n < ω

there is an m ≥ n with pm 
Pλ “ ẋ � β̌pn = ǔ � β̌pn ” and y � βpn 6= u � βpn
for all y ∈ apn . Define

p = 〈s, t, 〈dα | α ≤ β〉, 〈cy | y ∈ a〉, ~A〉

by setting

• s = {〈β, u〉} ∪
⋃
n<ω spn .

• t = {〈β, 0〉} ∪
⋃
n<ω tpn .

• d̄α =
⋃
{dpn,α | n < ω, α ≤ βpn} for every α < β.

• dα =

{
d̄α ∪ {β}, if α < β and d̄α 6= ∅.
∅, if either α = β or α < β and d̄α = ∅.

• a =
⋃
n<ω apn .

• cy = {β} ∪
⋃
{cpα,y | α < η, y ∈ apα} for every y ∈ a.

• ~A =
⋃
n<ω

~Apn .

Since β ∈ S∗ and u * y for every y ∈ a, we can conclude that p is a

condition in Pλ that is stronger than p0. This construction ensures

p 
Pλ “ β̌ ∈ Ċ ∧ ṡ(β̌) = š(β̌) ⊆ ẋ ∧ ṫ(β̌) = 0”,

a contradiction. Hence we can conclude that x ∈ ȧG. �

By the above claims we can conclude that

D(G) = {x ∈ (κ2)V[G] | ∃C ⊆ κ club ∀α ∈ C [ṡG(α) ⊆ x −→ ṫG(α) = 1]}.

This yields a Σ1-definition of D(G) over 〈H(κ+)V[G],∈〉 using the parameters

ṡG and ṫG . �

Lemma 6.6. Let α < κ and G is Pλ-generic over V. Then Sα is a stationary

subset of κ in V[G] if and only if there is a p ∈ G such that dp,α is required to

be the empty set by one of the statements listed in Clause (iii) of Definition

5.2.
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Proof. By Lemma 5.9, the partial order of conditions in Pλ below p is

strongly S∗α-complete whenever dp,α is required to be the empty set by one

of the statements listed in Clause (iii) of Definition 5.2. Thus, if there is such

a condition p in G, then Corollary 3.6 shows that forcing with Pλ preserves

the fat stationarity of S∗α. In the other case, forcing with Pλ destroys the sta-

tionarity of Sα, because Proposition 6.4 shows that
⋃
{dp,α | p ∈ G, α ≤ βp}

is a closed unbounded subset of S̃α in V[G]. �

Lemma 6.7. Let G be Pλ-generic over V. Then the sets ṡG, ṫG and ~T are

∆1-definable in 〈H(κ+)V[G],∈〉 using the sequence ~S as a parameter.

Proof. Using Clause (iii) in Definition 5.2 and Lemma 6.6, it follows that

the following equivalences hold for all β, γ, δ < κ with β = ≺γ, δ�.

ṡG(γ)(δ) = 0 ⇐⇒ Sβ·7 is stationary

⇐⇒ Sβ·7+1 is not stationary ∧ Sβ·7+2 is not stationary.

ṡG(γ)(δ) = 1 ⇐⇒ Sβ·7+1 is stationary

⇐⇒ Sβ·7 is not stationary ∧ Sβ·7+2 is not stationary.

ṫG(β) = 0 ⇐⇒ Sβ·7+3 is stationary ⇐⇒ Sβ·7+4 is not stationary.

ṫG(β) = 1 ⇐⇒ Sβ·7+4 is stationary ⇐⇒ Sβ·7+3 is not stationary.

ṡG(γ) /∈ Tδ ⇐⇒ Sβ·7+5 is stationary ⇐⇒ Sβ·7+6 is not stationary.

ṡG(γ) ∈ Tδ ⇐⇒ Sβ·7+6 is stationary ⇐⇒ Sβ·7+5 is not stationary.

These equivalences yield ∆1-definitions of ṡG, ṫG and ~T in H(κ+)V[G] that

only use the sequence ~S as a parameter. �

Lemma 6.8. Let G be Pλ-generic over V. Then there is a well-order of

H(κ+)V[G] that is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with param-

eter ~S.

Proof. Define W = {wδ | δ < λ}. Then our assumptions (made at the begin-

ning of Section 5) imply thatW and ~w are both definable over 〈H(κ+)V[G],∈〉
by Σ1-formulas that use the sequence ~T of subtrees of <κκ as a parameter.

Claim. If p ∈ G and δ < γp, then

ȦGp,δ = {α < κ | wδ ⊕ c(α, 1) ∈ D(G)} = {α < κ | wδ ⊕ c(α, 0) /∈ D(G)}.

Proof of the Claim. By the definition of D(G), we have

α ∈ ȦGp,δ ⇐⇒ ∃q ∈ G [δ < γq ∧ α ∈ ȦGq,δ] ⇐⇒ wδ ⊕ c(α, 1) ∈ D(G)

and

α /∈ ȦGp,δ ⇐⇒ ∃q ∈ G [δ < γq ∧ α /∈ ȦGq,δ] ⇐⇒ wδ ⊕ c(α, 0) ∈ D(G). �
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Working in V[G], we define P to be the set of all pairs 〈z, v〉 such that

z ∈ H(κ+)V[G], v ∈ W and there is a subset A of κ coding z that satisfies

[α ∈ A −→ v ⊕ c(α, 1) ∈ D(G)] ∧ [α /∈ A −→ v ⊕ c(α, 0) ∈ D(G)].

Claim. Let z ∈ H(κ+)V[G] and let δz be the unique ordinal (given by Lemma

6.1) such that δz < γp and ȦGp,δz codes z for some p ∈ G. Then wδz is the

unique element of W with 〈z, wδz〉 ∈ P .

Proof of the Claim. By the previous claim, the subset ȦGp,δz of κ witnesses

that 〈z, wδz〉 is an element of P . Now assume, towards a contradiction,

that there is δ < λ with δ 6= δz and 〈z, wδ〉 ∈ P . Let A ⊆ κ witness

that 〈z, wδ〉 ∈ P . By the above claim, A = ȦGq,δ for some q ∈ G with

γ̄ = max{δ, δz} < γq. If we set Ḡ = G ∩ Pγ̄, then Corollary 5.12 implies

|γ̄|V[Ḡ] < |λ|V[Ḡ] and the subsets ȦḠq,δ = ȦGq,δ and ȦḠq,δz = ȦGq,δz code the same

element of H(κ+)V[Ḡ]. This contradicts Clause (v) of Definition 5.1. �

Let ≺~w denote the wellorder on W induced by its enumeration ~w. Define

≺∗ to be the set of all pairs 〈z, z̄〉 in H(κ+) such that

∃v, v̄ ∈ W [〈z, v〉 ∈ P ∧ 〈z̄, v̄〉 ∈ P ∧ v ≺~w v̄].

Lemma 6.5 implies that P is Σ1-definable over H(κ+)V[G] using parame-

ters ~T , ṡG and ṫG. Thus the assumptions made at the beginning of Section

5 imply that ≺∗ is Σ1-definable over H(κ+)V[G] using parameters ~T , ṡG and

ṫG. Lemma 6.7 shows that each of these parameters is itself definable in

H(κ+)V[G] by a Σ1-formula with parameter ~S. In particular, the relation ≺∗
is definable over H(κ+)V[G] by a Σ1-formula with parameter ~S.

Given z0, z1 ∈ H(κ+)V[G] and δ0, δ1 < λ such that δi is the unique ordinal

with the property that δi < γp and ȦGp,δi codes zi for some p ∈ G, we

have z0 ≺∗ z1 if and only if δ0 < δ1. This shows that ≺∗ is a well-order of

H(κ+). �

Proof of Theorem 1.4. Let κ and 〈Sα | α ≤ κ〉 be as in the statement of the

theorem and λ = 2κ. Fix an injective sequence ~w = 〈wγ | γ < λ〉 of elements

of κ2 and define A = {wδ ⊕ wγ | δ < γ < λ}. Fix an enumeration ~s of <κκ

as in Definition 2.1. Let C~s(A) be the notion of forcing corresponding to A

given by Definition 2.1. Since forcing with C~s(A) preserves our assumptions

on κ and Corollary 4.2 shows that all assumptions listed at the beginning

of Section 5 hold in C~s(A)-generic extensions of the ground model V, there

is a canonical C~s(A)-name Q̇ with the property that Q̇G = Pλ whenever

G is C~s(A)-generic over V and PV[G]
~w = 〈Pγ | γ ≤ λ〉 is the corresponding

sequence of partial orders constructed in V[G] with respect to ~w.
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Then the combination of Proposition 2.2, Lemma 5.9, Corollary 5.12

and Corollary 6.2 implies that P = C~s(A) ∗ Q̇ is <κ-distributive and forcing

with P preserves all cofinalities less than or equal to λ and the value of 2κ.

If G ∗H be (C~s(A) ∗ Q̇)-generic over V, then Lemma 6.8 implies that there

is a well-order of H(κ+)V[G∗H] that is definable over 〈H(κ+)V[G∗H],∈〉 by a

Σ1-formula with parameter ~S. �

7. Σ1-definable Sequences of disjoint fat stationary Sets

This section contains the proofs of Theorem 1.5 and Theorem 1.7. We

start with a definition that will allow us to prove both theorems using the

same techniques.

Definition 7.1. Let κ be an uncountable regular cardinal. We say that a

tuple 〈δ, θ, ν,C〉 is suitable for κ if θ > κ is a regular cardinal, δ ≥ θ is a

strong limit cardinal, ν ≤ κ is an ordinal, C is a well-ordering of H(θ) of

order-type θ and the following statements hold.

(i) The set I(C) = {{x | xC y} | y ∈ H(θ)} of all proper initial seg-

ments of C is definable over 〈H(θ),∈〉 by a Σ1-formula with param-

eter ν.

(ii) If P is a partial order of cardinality less than δ with the property

that forcing with P preserves cofinalities less than or equal to κ+ and

G is P-generic over V, then H(κ+)V is definable over 〈H(κ+)V[G],∈〉
by a Σ1-formula with parameters κ and ν.

(iii) There is a closed unbounded subset of [H(θ)]<κ consisting of ele-

mentary submodels M of H(θ) with π[I(C) ∩M ] ⊆ I(C), where

π : M −→ N denotes the corresponding transitive collapse.

The following proposition shows that the last statement listed in the

above definition follows from the first statement in the case where ν < κ.

Proposition 7.2. Let κ < θ be uncountable regular cardinals and let C be a

well-ordering of H(θ). Assume that there is ν < κ such that the set I(C) of

all proper initial segments of C is definable over 〈H(θ),∈〉 by a Σ1-formula

with parameter ν. If M is an elementary substructure of H(θ) of cardinality

less than κ with κ, ν ∈ M and M ∩ κ ∈ κ and π : M −→ N denotes the

corresponding transitive collapse, then π[I(C) ∩M ] ⊆ I(C) holds.

Proof. Fix a Σ0-formula ϕ(v0, v1, v2) such that

I(C) = {A ∈ H(θ) | ∃x ∈ H(θ) ϕ(A, x, ν)}
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and pick A ∈ I(C) ∩ M . By elementarity, there is X ∈ M such that

ϕ(A,X, ν) holds. Since π(ν) = ν and N ⊆ H(θ), we can apply Σ0-absolute-

ness to conclude that ϕ(π(A), π(X), ν) holds and π(A) is an element of

I(C). �

In the following, we present two settings in which the above requirements

are satisfied. We start by showing that in L there is a suitable tuple for every

uncountable regular cardinal.

Lemma 7.3. Assume that V = L holds. If θ > κ is a regular cardinal, δ ≥ θ

is a strong limit cardinal and C denotes the restriction of the canonical well-

ordering of L to H(θ), then the tuple 〈δ, θ, 0,C〉 is suitable for κ.

Proof. The set I(C) consists of all A ∈ H(θ) with the property that there

is an α < θ with A ∈ Lα and 〈Lα,∈〉 |= “A is an initial segment of <L ”.

This shows that I(C) is definable over 〈H(θ),∈〉 by a Σ1-formula without

parameters.

Let P be a partial order with the property that forcing with P preserves

cofinalities less than or equal to κ+ and let G be P-generic over V. Then

H(κ+)V is equal to L(κ+)V[G] . This shows that the set H(κ+)V is definable

over 〈H(κ+)V[G],∈〉 by a Σ1-formula without parameters. �

Next, we present a setting in which suitable tuples exists for all uncount-

able regular cardinals below a measurable cardinal. The following arguments

make use of some basic properties of the Dodd-Jensen core model KDJ (see

[4]). The following observation will allow us to show that the third clause

of Definition 7.1 is satisfied in this setting.

Proposition 7.4. Assume that V = L[E] is an extender model in the sense

of [21]. If κ is an uncountable regular cardinal, C is the restriction of the

canonical well-ordering of L[E] to H(κ+) and I(C) is the set of all proper

initial segments of C, then there is a closed unbounded subset of [H(κ+)]<κ

consisting of elementary submodels M of H(κ+) with π[I(C) ∩M ] ⊆ I(C),

where π : M −→ N denotes the corresponding transitive collapse.

Proof. By [6, Theorem 8], we know that Local Club Condensation holds and

we can use [7, Theorem 88] to find a closed unbounded subset of [H(κ+)]<κ

consisting of elementary submodels of H(κ+) with the desired properties.

�

In the proof of the following lemma, we use the presentation of the core

model given in [13]. In the proof of the lemma, we only consider premice
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over the empty set. Therefore we omit the index D (as used in [13]) in these

arguments.

Lemma 7.5. Assume that U is a normal measure on a cardinal δ and

V = L[U ] holds. If κ < δ is an uncountable regular cardinal and C denotes

the restriction of the canonical well-ordering of the Dodd-Jensen core model

KDJ to H(κ+)KDJ , then the tuple 〈δ, κ+, κ,C〉 is suitable for κ.

Proof. Let K denote the Dodd-Jensen core model KDJ . Then the results of

[4] show that H(δ) ⊆ K and C is a well-ordering of H(κ+) of order-type κ+.

Let P ∈ H(δ) be a (possibly trivial) partial order with the property that

forcing with P preserves cofinalities less than or equal to κ+ and let G be

P-generic over V. Then we have H(κ+)V[G] = H(κ+)K[G] and the results of

[13] show that K = (KDJ)K[G]. By [13, Theorem 2.7], the set of all mice in

H(κ+)V[G] is definable over the structure 〈H(κ+)V[G],∈〉 by a Σ1-formula with

parameter κ. Since V = L[U ] and H(δ)V ⊆ K, a standard argument using

elementary substructures of H(δ+)V of cardinality κ shows that H(κ+)V is

equal to the union of all low parts lp(M) of mice M (see [13, Section 1]) in

H(κ+)V[G] and we can conclude that H(κ+)V is definable over 〈H(κ+)V[G],∈〉
by a Σ1-formula with parameter κ. Moreover, given A ∈ H(κ+)V[G], we can

use [13, Theorem 2.10] and [13, Theorem 3.4] to see that A is an element of

I(C) if and only if there is a mouse M = Jα[F ] ∈ H(κ+)V[G] such that A ∈
lp(M) and 〈M,∈〉 |= “A is a proper initial segment of <J[F ] ”. This shows

that I(C) is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameter

κ. Finally, K is an extender model and therefore Proposition 7.4 implies

that the third clause of Definition 7.1 is satisfied in this setting. �

In the subsequent paper mentioned after Question 1.9 in Section 1, we

will show that if M1 exists, δ is the unique Woodin cardinal in M1 and C

is the canonical well-ordering of H(ω2) in M1, then the tuple 〈δ, ω2, ω1,C〉
is suitable for ω1 in M1. With the help of the techniques developed in this

chapter, we will use this result in that paper to show that the existence

of a well-ordering of H(ω2) that is locally definable by a Σ1-formula with

parameter ω1 is consistent with the existence of a Woodin cardinal and a

failure of the GCH at ω1.

Next, we show how the concept of κ-suitable tuples can be combined with

our previous forcing constructions to obtain well-orders of H(κ+) whose Σ1-

definition only uses the cardinal κ as a parameter. We start by proving some

direct consequences of suitability.
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Lemma 7.6. Let κ be an uncountable regular cardinal and let 〈δ, θ, ν,C〉 be

suitable for κ. Define Cκ = C � (H(κ)× H(κ)).

(i) The order C is definable over 〈H(θ),∈〉 by a Σ1-formula with pa-

rameter ν.

(ii) The set H(κ) is an element of I(C) and κ is Cκ-cofinal in H(κ).

(iii) The well-order 〈H(κ),Cκ〉 has order-type κ and κ = κ<κ holds.

(iv) The set {H(κ)} is definable over 〈H(θ),∈〉 by a Σ1-formula with

parameters κ and ν.

(v) The set {Cκ} is definable over 〈H(θ),∈〉 by a Σ1-formula with pa-

rameters κ and ν.

(vi) If κ is the successor of a regular cardinal η, then the set {Sκη } is

definable over 〈H(θ),∈〉 by a Σ1-formula with parameters κ and ν.

Proof. (i) Given x, y ∈ H(θ), we have x C y if and only if there are A,B ∈
I(C) with x ∈ A and y ∈ B \ A. By our assumptions on I(C), this yields

the first statement of the lemma.

(ii) Fix x, y ∈ H(θ) with xC y and y ∈ H(κ). Since C has order-type θ,

there is λ < θ with yCλ. Pick A,B ∈ I(C) with y ∈ A and λ ∈ B\A. Choose

an elementary submodel M of H(θ) contained in the closed unbounded set

described in Definition 7.1.(iii) with tc({y}) ∪ {A,B, λ, κ, ν} ⊆ M and let

π : M −→ N denote the corresponding transitive collapse. Then we have

π(A), π(B) ∈ I(C), y = π(y) ∈ π(A) ∈ I(C) and hence x ∈ π(A) ⊆ N ⊆
H(κ). Moreover, we have y = π(y) ∈ π(B) \ π(A), π(λ) ∈ π(B) and hence

y C π(λ) < κ.

(iii) The second statement of the lemma implies that the well-order

〈H(κ),Cκ〉 has order-type at least κ. Assume toward a contradiction that

there is A ∈ I(C), a bijection b : κ −→ A and y ∈ H(κ) with A =

{x ∈ H(κ) | xC y}. Choose an elementary submodel M of H(θ) contained

in the closed unbounded set described in Definition 7.1.(iii) with tc({y}) ∪
{A, b, κ, ν} ⊆ M and let π : M −→ N denote the corresponding transitive

collapse. Then we have π(A), π(A∪ {y}) ∈ I(C), π(A)∪ {y} = π(A∪ {y}),
which shows that A = π(A). But elementarity implies that there is a bijec-

tion between π(A) and π(κ) < κ, a contradiction. In particular, this shows

that H(κ) has cardinality κ and hence we also get κ = κ<κ.

(iv) By the second part of the lemma, H(κ) is the unique element M of

H(θ) such that M ∈ I(C), M∩κ = κ and κ is C-cofinal in M . By Definition

7.1.(i) and the first part of the lemma, this yields the statement of the claim.

(v) This statement follows from our assumptions and the above state-

ments.
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(vi) Since the sets Sκη and {η} are definable over 〈H(κ),∈〉, this statement

follows directly from the fourth statement of the lemma. �

The next result shows how we can use suitable tuples to replace sequences

of fat stationary subsets of κ by the cardinal κ as the parameter in a Σ1-

definition of a well-ordering of H(κ+).

Theorem 7.7. Let κ be an uncountable regular cardinal and let 〈δ, θ, ν,C〉 be

suitable for κ. Then there is a sequence 〈Sα | α ≤ κ〉 of disjoint fat stationary

subsets of κ with the property that the set {〈Sα | α < κ〉} is definable over

〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν whenever P is a

partial order of cardinality less than δ such that forcing with P preserves

cofinalities less than or equal to κ+ and G is P-generic over V.

Proof. Define F : κ ∩ Lim −→ κ to be the unique function such that the

following statements hold for all α ∈ κ ∩ Lim.

(i) Assume that there is a triple 〈γ, λ, C〉 such that γ, λ < α and C ⊆
α ∩ Lim is a club in α with the property that, for every closed

bounded subset c of C of order-type λ, there is ᾱ ∈ c with F (ᾱ) 6= γ.

Then F (α) = γ0, where 〈γ0, λ0, C0〉 denotes the C-minimal triple

with this property.

(ii) If there is no such triple, then F (α) = α.

By the Recursion Theorem, F is definable over 〈H(θ),∈〉 by a formula

with parameters κ and ν.

Claim. Given β < κ, the set F−1{β} is a fat stationary subset of κ.

Proof. Assume, towards a contradiction, that the statement of the claim

fails. Then there is a triple 〈β, λ, C〉 such that β, λ < κ and C ⊆ κ∩ Lim is

a club subset of κ with the property that, for every closed bounded subset

c of C of order-type λ, there is an α ∈ c with F (α) 6= β. Let 〈β0, λ0, C0〉
denote the C-minimal triple with these properties and set

A = {x | xC 〈β0, λ0, C0〉} ∪ {〈β0, λ0, C0〉} ∈ I(C).

Since 〈δ, θ, ν,C〉 is suitable for κ, we can find a monotone enumeration

〈αξ | ξ < κ〉 of a club subset of κ and a continuous ascending sequence

〈Mξ | ξ < κ〉 of elementary submodels of H(θ) of size less than κ such that

the following statements hold for all ξ < κ.

(1) αξ = κ ∩Mξ and β0, λ0, κ, ν, A, C0 ∈Mξ.

(2) Mξ is contained in the club described in Definition 7.1.(iii), thus if

πξ : Mξ −→ Nξ denotes the transitive collapse of Mξ, then we have

π[I(C) ∩M ] ⊆ I(C).
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Fix ξ < κ. Then β0, λ0 < αξ = πξ(κ) ∈ Lim, C0∩αξ = πξ(C0) ⊆ αξ∩Lim

is a club in αξ and αξ ∈ C0. Pick a closed bounded subset c of C0 ∩ αξ of

order-type λ. Then c is a closed bounded subset of C0 and there is ᾱ ∈ c
with F (ᾱ) 6= β0. This shows that the triple 〈β0, λ0, C0 ∩ κα〉 satisfies the

assumption in (i) with respect to αξ and hence F (αξ) < αξ by elementarity

ofMξ. Next, if such exists, pick 〈γ, ρ,D〉C〈β0, λ0, C0∩κα〉 such that γ, ρ < αξ

and D ⊆ αξ ∩ Lim is a club in αξ. Since (2) implies that πξ(A) ∈ I(C) and

〈γ, ρ,D〉 ∈ πξ(A) ⊆ Nξ, there is D̄ ⊆ κ ∩ Lim club in κ such that D̄ ∈ Mξ,

D = πξ(D̄) = D̄ ∩ αξ and 〈γ, ρ,D〉 C 〈β0, λ0, C0〉. In this situation, the

C-minimality of 〈β0, γ0, C0〉 and elementarity implies that there is a closed

bounded subset d of D̄ of order-type ρ such that d ∈Mξ and F (α) = γ for

all α ∈ d. Then sup(d) < αξ and d is a closed bounded subset of D of order-

type ρ. These computations show that 〈β0, λ0, C0 ∩ κα〉 is the C-minimal

triple that satisfies the assumption in (i) with respect to αξ, and we can

conclude that F (αξ) = β0.

Set c = {αξ | ξ < λ0}. We have just shown that c is a closed bounded

subset of C0 with F (α) = β0 for all α ∈ c. This contradicts the choice of

〈β0, λ0, C0〉. �

Set Sκ = F−1{0} and Sβ = F−1{1 + β} for all β < κ. By the above

claim, the sequence 〈Sβ | β ≤ κ〉 consists of pairwise disjoint fat stationary

subsets of κ.

Claim. The set {〈Sβ | β < κ〉} is definable over 〈H(θ),∈〉 by a Σ1-formula

with parameters κ and ν.

Proof of the Claim. By Lemma 7.6, the set {〈H(κ),∈,Cκ〉} is definable over

the structure 〈H(θ),∈〉 by a Σ1-formula with parameters κ and ν. Since

〈H(κ),∈,Cκ〉 is a model of ZFC−
Ȧ

(the canonical extension of the axioms of

ZFC− to the language of set theory extended by a new predicate symbol

Ȧ, that includes all instances of Replacement and Separation for formulas

in the extended language), we can use the Recursion Theorem within this

structure in order to show that F is definable over {〈H(κ),∈,Cκ〉} by a

formula without parameters. In combination, these observations yield the

statement of the claim. �

Now, let P be a partial order of cardinality less than δ such that forc-

ing with P preserves cofinalities less than or equal to κ+ and let G be P-

generic over V. By Definition 7.1.(ii), H(κ+)V is definable over the structure

〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν. By the above claim

and Σ1-absoluteness, the set {〈Sβ | β < κ〉} is definable over 〈H(κ+)V,∈〉



SIMPLEST POSSIBLE DEFINABLE WELL-ORDERS 39

by a Σ1-formula with parameters κ and ν. Together, these statements imply

that {〈Sβ | β < κ〉} is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with

parameters κ and ν.

This completes the proof of the theorem. �

Corollary 7.8. Let η be an infinite regular cardinal and let 〈δ, θ, ν,C〉 be

suitable for κ = η+. Then there is a sequence 〈Sα | α ≤ κ〉 of pairwise

disjoint stationary subsets of Sκη with the property that the set {〈Sα | α < κ〉}
is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν

whenever P is a partial order of cardinality less than δ such that forcing with

P preserves cofinalities less than or equal to κ+ and G is P-generic over V.

Proof. Let 〈S̄α | α ≤ κ〉 be the sequence of pairwise disjoint fat stationary

subsets of κ produced by Theorem 7.7. Given α ≤ κ, set Sα = S̄α ∩ Sκη .

Then Sα is a stationary subset of κ for each α ≤ κ.

Let P be a partial order of cardinality less than δ such that forcing with

P preserves cofinalities less than or equal to κ+ and let G be P-generic over

V. By Lemma 7.6.(vi) and Σ1-reflection, the set {Sκη } is definable over the

structure 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν. Since

Theorem 7.7 shows that the set {〈S̄α | α < κ〉} is definable in the same way,

this yields the statement of the corollary. �

Corollary 7.9. Assume that κ is either the successor of a regular cardinal

or an inaccessible cardinal. Let 〈δ, θ, ν,C〉 be suitable for κ and let P be a

partial order of cardinality less than δ with the following properties.

(a) Forcing with P preserves cofinalities less than or equal to κ+ and

fat stationary subsets of κ.

(b) If G is P-generic over V, then 2κ is regular, κ = κ<κ and η<η < κ

for all η < κ in V[G].

Then there is a P-name Q̇ for a partial order such that the following

statements hold whenever G ∗H is (P ∗ Q̇)-generic over V.

(i) The partial order Q̇G is <κ-distributive in V[G].

(ii) Forcing with Q̇G over V[G] preserves all cofinalities less than or

equal to (2κ)V[G] and the value of 2κ.

(iii) There is a well-ordering of H(κ+)V[G,H] that is definable over the

structure 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with parameters κ and

ν.

Proof. If κ is the successor of a regular cardinal η, let ~S = 〈Sα | α ≤ κ〉
denote the sequence of pairwise disjoint stationary subsets of Sκη produced
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by Corollary 7.8. If κ is an inaccessible cardinal, then we let ~S denote the

sequence of fat stationary subsets of κ provided by Theorem 7.7. In either

case, by (a), ~S is a sequence of either fat stationary subsets of κ or stationary

subsets of Sκη respectively in every P-generic extension of the ground model.

Together with (b), this shows that κ and ~S satisfy the requirements of

Theorem 1.4 in every P-generic extension of the ground model. Let Q̇ be a

P-name for the partial order given by Theorem 1.4. Since P has cardinality

less than δ and δ is a strong limit cardinal, the construction of the forcing

in the proof of Theorem 1.4 shows that we can find such a name with the

property that P ∗ Q̇ also has cardinality less than δ.

Let G ∗ H be (P ∗ Q̇)-generic over V. By Theorem 1.4, Q̇G is <κ-

distributive in V[G], forcing with Q̇G over V[G] preserves all cofinalities less

than or equal to (2κ)V[G] and the value of 2κ and there is a well-ordering J of

H(κ+)V[G,H] that is definable over 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with pa-

rameter 〈Sα | α < κ〉. Since Theorem 7.7 shows that the set {〈Sα | α < κ〉}
is definable over 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with parameters κ and ν,

we can conclude that the well-order J is also definable over 〈H(κ+)V[G,H],∈〉
by a Σ1-formula with parameters κ and ν. �

Proof of Theorem 1.5. Assume that V = L holds and κ is either the succes-

sor of a regular cardinal or an inaccessible cardinal. Let P be a partial order

with the properties (a) and (b) listed in Corollary 7.9. Pick a strong limit

cardinal δ with |P| < δ. By Lemma 7.3, there is a well-order C of H(κ+)

such that the tuple 〈δ, κ+, 0,C〉 is suitable for κ. Let Q̇ be the P-name for

a partial order given by Corollary 7.9. Then Corollary 7.9 implies that the

statements (i)-(iii) listed in the theorem hold. �

Proof of Theorem 1.7. Assume that U is a normal measure on δ, V = L[U ]

holds and κ < δ is either the successor of a regular cardinal or an inaccessible

cardinal. Let P ∈ Vδ be a partial order with the properties (a) and (b) listed

in Corollary 7.9. By Lemma 7.5, there is a well-order C of H(κ+) such that

the tuple 〈δ, κ+, κ,C〉 is suitable for κ. Let Q̇ be the P-name for a partial

order given by Corollary 7.9 and let G ∗H be (P ∗ Q̇)-generic over V. Then

Corollary 7.9 implies that the partial order Q̇G is <κ-distributive in V[G],

forcing with Q̇G over V[G] preserves all cofinalities less than or equal to

(2κ)V[G] and the value of 2κ and there is a well-ordering of H(κ+)V[G,H]

that is definable over the structure 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with

parameter κ. �
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[16] Philipp Lücke, Ralf Schindler, and Philipp Schlicht. Σ1(κ)-definable subsets of

H(κ+). Submitted.
[17] Richard Mansfield. The non-existence of Σ1

2 well-orderings of the Cantor set. Fund.
Math., 86(3):279–282, 1975.



42 PETER HOLY AND PHILIPP LÜCKE
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