Small Models, Large Cardinals, and Large Cardinal Ideals (joint work with Philipp Lücke)

Peter Holy

Universität Bonn

06.07.2019

Peter Holy (Bonn)

Small Models and Large Cardinals

06.07.2019 1 / 1

Victoria Gitman isolated the following from work of William Mitchell from the late 70'ies.

Theorem

 κ is a Ramsey cardinal if for every $A \subseteq \kappa$ there is a transitive weak κ -model M with $A \in M$ and with a (uniform) κ -amenable, countably complete and M-normal ultrafilter U on κ .

- A weak κ -model M is a model of ZFC⁻ such that $|M| = \kappa$ and $\kappa + 1 \subseteq M$.
- An *M*-ultrafilter *U* is *M*-normal if it closed under diagonal intersections in *M*.
- *U* is *countably complete* if any countable intersection (in **V**) of filter elements is nonempty.
- U is κ -amenable if whenever X is a set of size κ in M, then $X \cap U \in M$.

Note: We will require all our filters to be uniform.

What happens if we vary the requirements on M and on U? For example:

- Instead of the countable completeness of U, only require the ultrapower of M by U to be well-founded.
- Do not require well-foundedness of the ultrapower.

Or require U to be ...

- stationary-complete: Every countable intersection from U (in **V**) is stationary in κ .
- genuine: Every diagonal intersection of U is unbounded in κ .
- normal: Every diagonal intersection of U is stationary in κ .

We may also require that $M \prec H(\theta)$ for sufficiently large regular θ instead of transitivity of M in any of the above.

イロト イポト イヨト イヨト 二日

U is κ -amenable and	M is transitive	$M \prec H(\theta)$
$< \kappa$ -complete for M	weakly compact	weakly compact
<i>M</i> -normal	$\mathbf{T}^{\kappa}_{\omega}$ -Ramsey	completely ineffable
and well-founded	weakly Ramsey	ω -Ramsey
and countably complete	Ramsey	≺-Ramsey
and stationary-complete	ineffably Ramsey	Δ -Ramsey
genuine	∞^κ_ω -Ramsey	Δ -Ramsey
normal	Δ^κ_ω -Ramsey	Δ -Ramsey

996

イロト イロト イヨト イヨト

Completely ineffable cardinals

Definition

 $S \subseteq \mathcal{P}(\kappa)$ is a *stationary class* if $S \neq \emptyset$ is a collection of stationary subsets of κ .

Definition

A cardinal κ is *completely ineffable* if there is a stationary class $S \subseteq \mathcal{P}(\kappa)$ such that whenever $A \in S$ and $f : [A]^2 \to 2$, then there is $H \subseteq A$ in S that is homogeneous for f.

Theorem (Kleinberg, 1970ies)

 κ is completely ineffable iff for every sufficiently large regular θ and every / some countable $M \prec H(\theta)$ with $\kappa \in M$, there is an M-normal, κ -amenable M-ultrafilter U on κ .

イロト イポト イヨト イヨト

Results from below papers essentially show the following theorem (using completely different proofs than the above result about countable models):

- Holy-Schlicht (2018): A hierarchy of Ramsey-like cardinals, characterized through the (non-)existence of winning strategies for certain infinite games, with ω-Ramsey cardinals at the bottom.
- Nielsen-Welch (2019): A characterization of complete ineffability as a weakening of ω-Ramseyness.

Theorem

 κ is completely ineffable iff for every sufficiently large regular θ and every $x \in H(\theta)$ there is a weak κ -model $M \prec H(\theta)$ with $x \in M$ and with a κ -amenable, M-normal ultrafilter U on κ .

イロト イロト イヨト イヨト 二日

Uniform large cardinal ideals

These large cardinal characterizations also allow for highly uniform definitions of corresponding *large cardinal ideals*. Let φ denote a large cardinal property that is characterized (as are Ramseyness or complete ineffability above) through the existence of certain models M with M-ultrafilters U having a certain property φ^* . We define I_{φ} and $I_{\prec\varphi}$ as follows:

- $A \in I_{\varphi}$ if there is $x \subseteq \kappa$ such that for all transitive weak κ -models M with $x \in M$ and every M-ultrafilter U with Property φ^* , we have $A \notin U$.
- $A \in I_{\prec \varphi}$ if for all sufficiently large regular θ there is $x \in H(\theta)$ such that for all weak κ -models $M \prec H(\theta)$ with $x \in M$ and every M-ultrafilter U with Property φ^* , we have $A \notin U$.

Given that $\varphi(\kappa)$ holds, these ideals are easily seen to be proper ideals on κ . If φ^* implies the *M*-normality of *U*, then these ideals are normal ideals on κ .

ヘロト 人間 トメヨトメヨト 三星

In all cases of large cardinals for which corresponding large cardinal ideals have already been defined, these coincide with our definitions: weakly compact, Ramsey, ineffably Ramsey. In some other cases, our ideals correspond to well-known set theoretic objects, and sometimes they are *new*.

Let κ be completely ineffable, and let I denote the completely ineffable ideal on κ . An adaption of the proof of the previous theorem yields the following.

Theorem

I is the complement of the maximal (w.r.t. \supseteq) stationary class witnessing the complete ineffability of κ .

イロト イポト イヨト イヨト

We can show in most cases that these ideals are strictly \subseteq -increasing, in a way which also implies that the related large cardinal notions are strictly increasing in terms of consistency strength. For example: Weakly compact ideal \subsetneq Ineffable Ideal \subsetneq Completely Ineffable ideal \subsetneq weakly Ramsey ideal \subsetneq Ramsey ideal \subsetneq -Ramsey ideal \subsetneq measurable ideal.

イロト イポト イヨト イヨト 二日

The measurable ideal

The measurable ideal I_{ms}^{κ} on a measurable cardinal κ is the complement of the union of all normal ultrafilters on κ , and also fits into our framework of large cardinal ideals. This ideal is not very interesting in small inner models (for example in L[U]). Moreover:

Theorem

If any set of pairwise incomparable conditions in the Mitchell ordering at κ has size at most κ , then the partial order $\mathcal{P}(\kappa)/I_{ms}^{\kappa}$ is atomic.

However, it is consistently non-trivial - adapting classical arguments from Kunen and Paris yields the following:

Theorem

Every model with a measurable cardinal κ has a forcing extension in which $\mathcal{P}(\kappa)/I_{ms}^{\kappa}$ is atomless.

Sac

イロト イポト イヨト イヨト

Normally Ramsey cardinals

Definition

An uncountable cardinal κ is S-Ramsey / ∞ -Ramsey / Δ -Ramsey if for every regular $\theta > \kappa$, every $x \in H(\theta)$ is contained in a weak κ -model $M \prec H(\theta)$ with a κ -amenable, *M*-normal ultrafilter *U* on κ that is stationary-complete / genuine / normal.

Generalizing results from Holy and Schlicht shows the following.

Theorem

 κ is S-Ramsey / ∞ -Ramsey / Δ -Ramsey if for all regular $\theta > \kappa$, Player I does not have a winning strategy in the game of length ω in which Player I plays a \subset -increasing sequence of κ -models $M_i \prec H(\theta)$ with union M, and Player II responds with a \subseteq -increasing sequence of M_i -ultrafilters U_i with union U. Player I also has to ensure that M_i and U_i are both elements of M_{i+1} for every $i \in \omega$. Player II wins if U is an M-normal filter that is stationary-complete / genuine / normal.

... are equivalent to some seemingly weaker Ramsey-like cardinals

Lemma

S-*Ramsey* $\equiv \infty$ -*Ramsey* $\equiv \Delta$ -*Ramsey*.

Proof: Assume that κ is *S*-Ramsey, that $\theta > \kappa$ is regular, and let $x \in H(\theta)$. Let $M_0 \prec H(\theta)$ with $x \in M_0$ be a weak κ -model. Consider a run of the game for *S*-Ramseyness, in which Player I starts by playing M_0 , and which Player II wins – with resulting model $M = \bigcup_{i < \omega} M_i$ and *M*-ultrafilter $U = \bigcup_{i < \omega} U_i$. This means that $M \prec H(\theta)$ is a weak κ -model with $x \in M$, and *U* is κ -amenable, *M*-normal and stationary-complete. But $\Delta U \supseteq \bigcap_{i < \omega} \Delta U_i$ (modulo a non-stationary set). Since each $\Delta U_i \in U$, it follows that ΔU is stationary, for it is stationary-complete. But this means that *U* is normal, and hence κ is Δ -Ramsey.

イロト イロト イヨト イヨト 二日